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Secret-key cryptography

Cryptography = “secret writing" .

Achieve various security goals

by secretly transforming messages.

Major theme of research:
Users have cost constraints.
Can be challenging to reach

acceptable security levels.

Prerequisite: Alice and Bob
share a short secret key £
not known to eavesdropper Eve.

Security goals:

Confidentiality and integrity

for any number of messages
exchanged by Alice and Bob,
despite Eve's espionage+forgery.
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Prerequisite:

Alice has a short secret key
corresponding public key A.
Everyone knows A.

Eve does not know a.

Security goal: Integrity

for any number of messages
published by Alice.

\\

m% c—=C %mlfc

Alice Eve



Secret-key cryptography

Prerequisite: Alice and Bob
share a short secret key £
not known to eavesdropper Eve.

Security goals:

Confidentiality and integrity

for any number of messages
exchanged by Alice and Bob,
despite Eve's espionage+-forgery.

k > k

l l

m-—=c—=c —mifc =c

Alice Eve Bob

Public-key signatures

Prerequisite:

Alice has a short secret key a,
corresponding public key A.
Everyone knows A.

Eve does not know a.

Security goal: Integrity

for any number of messages
published by Alice.

\\

m% c—C %mlfc—c

Alice Eve



ey cryptography

site: Alice and Bob
short secret key &
vn to eavesdropper Eve.

goals:

itiality and integrity
wumber of messages
ed by Alice and Bob,

—ve's espionage-forgery.

Public-key signatures

Prerequisite:

Alice has a short secret key a,
corresponding public key A.
Everyone knows A.

Eve does not know a.

Security goal: Integrity

for any number of messages
published by Alice.

Allce \
m % — = % mifc =c
Alice Eve

Public-k

Prerequi
Alice ha
Public k

Eve doe

Security
Confider

for any |
exchang

Alice
a —

m —
Alice



raphy

 and Bob
t key &
sdropper Eve.

1 Integrity
‘messages
e and Bob,
nage+forgery.
o

mifc =c

>
30b

Public-key signatures

Prerequisite:

Alice has a short secret key a,
corresponding public key A.
Everyone knows A.

Eve does not know a.

Security goal: Integrity
for any number of messages

published by Alice.

Allce \
m % — = % mifc =c
Alice Eve

Public-key encrypt

Prerequisite:

Alice has a, A; Bc
Public knows A ar
Eve does not knov

Security goals:

Confidentiality anc
for any number of
exchanged by Alic

Allce

\%

m—=C—=C -

Alice Eve



Eve.

Public-key signatures

Prerequisite:

Alice has a short secret key a,
corresponding public key A.
Everyone knows A.

Eve does not know a.

Security goal: Integrity

for any number of messages
published by Alice.
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Public-key encryption (DH f

Prerequisite:
Alice has a, A: Bob has b, £

Public knows A and B.
Eve does not know a, 0.

Security goals:

Confidentiality and integrity
for any number of messages
exchanged by Alice and Bok
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Prerequisite:

Alice has a short secret key a,
corresponding public key A.
Everyone knows A.

Eve does not know a.

Security goal: Integrity
for any number of messages
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Public-key encryption (DH form)

Prerequisite:
Alice has a, A: Bob has b, B.

Public knows A and B.
Eve does not know a, 0.

Security goals:

Confidentiality and integrity
for any number of messages
exchanged by Alice and Bob.
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Advance

Prerequisite:
Alice has a, A: Bob has b, B.

Public knows A and B.
Eve does not know a, 0.

Security goals:

Confidentiality and integrity
for any number of messages
exchanged by Alice and Bob.
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Public-key encryption (DH form)

Prerequisite:
Alice has a, A: Bob has b, B.

Public knows A and B.
Eve does not know a, 0.

Security goals:

Confidentiality and integrity
for any number of messages
exchanged by Alice and Bob.
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Advanced security goals

Prerequisite:
Alice has a, A: Bob has b, B.

Public knows A and B.
Eve does not know a, 0.

Security goals:

Confidentiality and integrity
for any number of messages
exchanged by Alice and Bob.
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searching encrypted data,
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Many other security goals
studied in cryptography:
stopping traffic analysis,
securely tallying votes,
searching encrypted data,
and much more.

But I'll focus on the
most fundamental operations:
secret-key cryptography,
oublic-key signatures,

oublic-key encryption.
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Many other security goals
studied in cryptography:
stopping traffic analysis,
securely tallying votes,
searching encrypted data,
and much more.

But I'll focus on the

most fundamental operations:

secret-key cryptography,
oublic-key signatures,

bublic-key encryption.
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searching encrypted data,
and much more. = Hundreds of papers on

| side-channel defenses.
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Critical for cryptography:

attackers exploit physical reality.

1996 Kocher: typical crypto
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public-key signature system.

Modern variants of system
are guaranteed to be as secure
as the underlying hash function.

Reasonable choice of function:
Keccak with 576-bit capacity.
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