Complexity news:

discrete logarithms In
multiplicative groups of
small-characteristic finite fields—
the algorithm of Barbulescu,
Gaudry, Joux, Thomé

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Advertisement, maybe related:
iml .univ-mrs.fr/ati/
geocrypt2013/
2013.10.07-11, Tahiti.
Submit talks this month!


http://iml.univ-mrs.fr/ati/geocrypt2013/
http://iml.univ-mrs.fr/ati/geocrypt2013/

Also somewhat related:

I'm starting to analyze
cost of NFS + CVP
for class groups, unit groups,

short generators of ideals, etc.;
exploiting subfields
(find short norms first),

small Galois groups, etc.
Anyone else working on this?

Cryptanalytic applications:
attack NTRU, Ring-LWE, FHE.

| think NTRU should switch to
random prime-degree extensions

with big Galois groups.



Discrete logarithms

Goal: Compute some
group Isomorphism

Fo = Z/(q—-1),
represented in the usual way.

Algorithm Input:
hi,ho, ... E F(’;.

Algorithm output:

|Ogg hi, |Ogg ho,...€ Z/(qg—1)
for some g.

‘log,” means the isomorphism
g — 1, if it exists.



"Generic” log, algorithms:

1/2+0(1) gperations

on average q
uniform, q1/3+0(1) non-uniform.

Want something faster.
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“Basic index calculus’: 1968
Western—Miller, 1979 Merkle,
1979 Adleman, 1983 Hellman—
Reyneri, 1984 Blake—Fuji-Hara—
Mullin—=Vanstone, 1985 ElGamal,
1986 Coppersmith—Odlyzko—
Schroeppel, 1991 LaMacchia-
Odlyzko, 1993 Adleman-—
DeMarrais, 1995 Semaev,
1998 Bender—Pomerance.




"“NFS”: 1991 Schirokauer, 1993
Gordon, 1993 Schirokauer, 1994
Odlyzko, 1996 Schirokauer—
Weber—Denny, 1996 Weber,
1998 Weber—Denny, 2001 Joux-—
Lercier, 2006 Joux—Lercier—
Smart—Vercauteren.

“"FFES": 1984 Coppersmith, 1985
Coppersmith—Davenport, 1985
Odlyzko, 1990 McCurley, 1992
Gordon—McCurley, 1994 Adleman,
1999 Adleman—Huang, 2001
Joux—Lercier, 2006 Joux—Lercier,
2010/2012 Hayashi—Shinohara—
Wang—Matsuo—Shirase—Takagi.



"FFS”, continued: 2012 Hayashi-
Shimoyama—-Shinohara—Takagi,
2012.10 Barbulescu—Bouvier—
Detrey—Gaudry—Jeljeli—=Thomé-—
Videau—Zimmermann, 2013.04
Barbulescu—Bouvier—Detrey—
Gaudry—Jeljeli-Thomé—Videau—

/immermann.



"FFS”, continued: 2012 Hayashi-
Shimoyama—-Shinohara—Takagi,
2012.10 Barbulescu—Bouvier—
Detrey—Gaudry—Jeljeli—=Thomé-—
Videau—Zimmermann, 2013.04
Barbulescu—Bouvier—Detrey—
Gaudry—Jeljeli-Thomé—Videau—

/immermann.

“Not your grandpa’s FFS":
2012.12 Joux, 2013.02 Joux,
2013.02 Gologlu—Granger—
McGuire—Zumbragel, 2013.05
Gologlu—Granger—McGuire—
Zumbragel, 2013.06 Barbulescu—
Gaudry—Joux—Thomé.
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Reasonable conjectures
for fixed characteristic:

FFS costs <T where
log T € (log ¢)1/3+o1).

2013.02 Joux algorithm:
log T € (log ¢)1/4+o1).

2013.06 Barbulescu—Gaudry—
Joux—Thomé algorithm:
log T € (log log q)2+0(1).

1994 Shor algorithm:
og T € (loglog ¢)1t°(), proven:

out needs a quantum computer.



Field construction

I'll make simplifying assumption:
g = p°™ where

» Is an odd prime power,

nel /p<n<p.

Most interesting: n ~ .
Example: » = 1009, n = 997.
(Can you find all primes dividing
p°" —1=(p" —1)(p" +1)7)

Find “random” poly in F (2]
with an irreducible divisor

@ of degree n.

Construct Fq as F 2[z]/¢.



How many polys to try?
What's chance that 7 € F »|z]
has an irreducible divisor

@ of degree n?

For n < degr < 2n:

express each successful r
uniquely as ¢ - cofactor.
%(pQ)degr—l—l polys 7,
~(p?)™ /n monic irreds ¢,
~s(p?)de8 7"+ cofactors =
chance ~1/n that r works.

Similar story for degr > 2n.

Factoring r is fast.
= Quickly find r, o.



Don't use random polys!
(Starting now: abandon proofs.)

Find ¢ dividing
2P — 2 — 3 for some B € sz.
Then zP = 22 4+ B in F,.

p® choices of B € F 2,

so overwhelmingly likely

that at least one works.

e.g. p = 1009, n = 997:

can have B2 + 928 + 447 = 0.

Easily generalize: e.g., take
2P = 22 + Bz + « or
o = (z+B)/(z + 7).

But larger degrees are slower.




Low-degree discrete logs

First step of algorithm:
build table of A — log, h for
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D>1;,D € O(logn/loglogn).
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Low-degree discrete logs

First step of algorithm:
build table of A — log, h for
each small h € F 2[z] — ¢F »|z].

Easily choose g at same time.

“Small A": degh < D. Choose
D>1;,D € O(logn/loglogn).

Non-uniform approach:
algorithm A, knows table!

Two reasons to be more explicit:
1. Want A with g as an input.

2. Method to build table
will be reused for larger h.



The first relation for D =1

| lacr, (2 —a) = z*—z+f.

=" for F 2[z]|: equal mod

2

P — z° — 3; forces = in Fy.

Hope that z2 — z + 8

splits in F 2[z], say as fi - fo.
Not an unreasonable hope:
~50% of quadratics split.

Then log, f1 + log, fo =
Zaer Iogg(a: — Q).
This i1s a “relation”

among discrete logs
of monic linear polys.



More relations for D =1

For a,b,c,d € sz:

(cz + d) |_‘ (az + b — a(cz + d))

aEFp

Left side is product of
linear polys in F »|z].
Often right side is too.



b
AeF, M= (2q) € GL2(F2)
= M, AM are redundant.

m c GLQ(Fp), M & GLQ(FPQ)
= M. mM are redundant.

No other obvious redundancies.

Is there a nice way to represent
the set of cosets of PGLy(Fp)
in PGLQ(FPQ)? Best hints so far:
Cremona points me to F;4/F;2;
Bartel gives solution for GLs.

Mindless enumeration of cosets
Is not a real bottleneck here
but want fast multipoint eval.



p3 + p potential relations,
conjecturally ~independent.
Each succeeds with chance ~1/6.

Only p? monic linear polys.
Expect enough relations

to determine their logs

(or most logs: ok to miss a few),
unless p Is very small.

BGJT say sparse linear algebra;
but fast matrix multiplication
gives better const in exponent.

(How to avoid annihilating F;';Q?

Maybe cleanest: zP = Bz° + 1,

where B generates F;z.)



More relations for arbitrary D

For each small & € F »[z]:

(ch+d) | | (ah+b—a(ch+d))
ackFy

ch + d)(ah + b)P
ah + b)(ch + d)P

(
—
(ch + d)(aPhP + bP)
—
(

ah + b)(cPhP + dP)

ch + d)(aPh(z? + B) + bP)
— (ah + b)(cPh(z? + B) + dP).

| eft side is product of small polys;

sometimes right side is too.
~5% as D — oco. BGJT say 1/6.




Larger discrete logs

What if D < degh < 2D?

Use same equation:

(ch+d) | | (ah+b—a(ch+d))
ackFy

= (ch + d)(aPh(z* + B) + bP)
— (ah + b)(cPh(z? + B) + dP).

Occasionally right side is

product of small polys.

We now know those discrete logs.

Left side is product on new
factor base: {h+y:v9 € sz}.
Solve for each log,(h + 7).



For degh < (u/3)D:

D-smoothness chance ~u ™Y

so ~u " %p3 relations.

Need ~p? relations.
Note free relations: smooth A + 1.

Works for u ~ log p/ log log ».

Reminiscent of linear sieve
(1977 Schroeppel):

([va] + a)([\/q] + b)
= (a+0) [yq] +ab+[a]° —q

mod large prime g.
Factor base in linear sieve:

{1v/4| +a} U{small primes}.



Arbitrary discrete logs

For (u/3)D < degh < (u/3)?D:

Use same equation

(ch+d) | | (ah+b—a(ch+d))
ackFy

= (ch + d)(aPh(z* + B) + bP)
— (ah + b)(cPh(z? + B) + dP).

Occasionally (u/3)D-smooth right
side; again {h + 7} for left side.
Have seen subroutine to compute
(u/3)D-smooth discrete logs.

po(l) subroutine calls,
of which @(pz) are important.



For larger h: recurse.

Reach degree n — 1 using
lo |
gn - @( ogn )
log(u/3) log log n
levels of recursion.

Total cost p@(log n/loglogn)
| 2
= exp@( (log n) )
log logn
(log log q)° )
logloglogq/
What about p%™ with p < n?

Embed into an extension field.
char

— exp@(

Can also use z etc.



