Complexity news:
discrete logarithms in
multiplicative groups of
small-characteristic finite fields—
the algorithm of Barbulescu,
Gaudry, Joux, Thomé

D. J. BernsteinUniversity of Illinois at Chicago &Technische Universiteit Eindhoven

Advertisement, maybe related: iml.univ-mrs.fr/ati/geocrypt2013/2013.10.07-11, Tahiti.
Submit talks this month!

Also somewhat related:

I'm starting to analyze cost of NFS + CVP for class groups, unit groups, short generators of ideals, etc.; exploiting subfields (find short *norms* first), small Galois groups, etc. Anyone else working on this?

Cryptanalytic applications: attack NTRU, Ring-LWE, FHE. I think NTRU should switch to random prime-degree extensions with big Galois groups.

Discrete logarithms

Goal: Compute some group isomorphism

$$\mathbf{F}_q^* o \mathbf{Z}/(q-1)$$
,

represented in the usual way.

Algorithm input:

$$h_1, h_2, \ldots \in \mathbf{F}_q^*$$
.

Algorithm output:

$$\log_g h_1, \log_g h_2, \ldots \in \mathbf{Z}/(q-1)$$
 for some g .

" \log_g " means the isomorphism $g\mapsto 1$, if it exists.

"Generic" \log_g algorithms: on average $q^{1/2+o(1)}$ operations uniform, $q^{1/3+o(1)}$ non-uniform. Want something faster.

"Generic" \log_g algorithms: on average $q^{1/2+o(1)}$ operations uniform, $q^{1/3+o(1)}$ non-uniform. Want something faster.

"Basic index calculus": 1968 Western-Miller, 1979 Merkle, 1979 Adleman, 1983 Hellman-Reyneri, 1984 Blake—Fuji-Hara— Mullin-Vanstone, 1985 ElGamal, 1986 Coppersmith-Odlyzko-Schroeppel, 1991 LaMacchia-Odlyzko, 1993 Adleman-DeMarrais, 1995 Semaev, 1998 Bender-Pomerance.

"NFS": 1991 Schirokauer, 1993 Gordon, 1993 Schirokauer, 1994 Odlyzko, 1996 Schirokauer— Weber—Denny, 1996 Weber, 1998 Weber—Denny, 2001 Joux— Lercier, 2006 Joux—Lercier— Smart—Vercauteren.

"FFS": 1984 Coppersmith, 1985 Coppersmith–Davenport, 1985 Odlyzko, 1990 McCurley, 1992 Gordon–McCurley, 1994 Adleman, 1999 Adleman–Huang, 2001 Joux–Lercier, 2006 Joux–Lercier, 2010/2012 Hayashi–Shinohara– Wang–Matsuo–Shirase–Takagi. "FFS", continued: 2012 Hayashi—Shimoyama—Shinohara—Takagi, 2012.10 Barbulescu—Bouvier—Detrey—Gaudry—Jeljeli—Thomé—Videau—Zimmermann, 2013.04 Barbulescu—Bouvier—Detrey—Gaudry—Jeljeli—Thomé—Videau—Zimmermann.

"FFS", continued: 2012 Hayashi—Shimoyama—Shinohara—Takagi, 2012.10 Barbulescu—Bouvier—Detrey—Gaudry—Jeljeli—Thomé—Videau—Zimmermann, 2013.04 Barbulescu—Bouvier—Detrey—Gaudry—Jeljeli—Thomé—Videau—Zimmermann.

"Not your grandpa's FFS":
2012.12 Joux, 2013.02 Joux,
2013.02 Göloğlu-GrangerMcGuire-Zumbrägel, 2013.05
Göloğlu-Granger-McGuireZumbrägel, 2013.06 BarbulescuGaudry-Joux-Thomé.

FFS costs $\leq T$ where $\log T \in (\log q)^{1/3+o(1)}$.

FFS costs $\leq T$ where $\log T \in (\log q)^{1/3+o(1)}$.

2013.02 Joux algorithm: $\log T \in (\log q)^{1/4+o(1)}$.

FFS costs
$$\leq T$$
 where $\log T \in (\log q)^{1/3+o(1)}$.

2013.02 Joux algorithm:

$$\log T \in (\log q)^{1/4+o(1)}.$$

2013.06 Barbulescu–Gaudry–Joux–Thomé algorithm: $\log T \in (\log \log q)^{2+o(1)}$.

FFS costs
$$\leq T$$
 where $\log T \in (\log q)^{1/3+o(1)}$.

2013.02 Joux algorithm:

$$\log T \in (\log q)^{1/4 + o(1)}.$$

2013.06 Barbulescu-Gaudry-

Joux-Thomé algorithm:

$$\log T \in (\log \log q)^{2+o(1)}.$$

1994 Shor algorithm:

$$\log T \in (\log \log q)^{1+o(1)}$$
, proven;

but needs a quantum computer.

Field construction

I'll make simplifying assumption:

$$q = p^{2n}$$
 where

p is an odd prime power,

$$n \in \mathbf{Z}$$
, $\sqrt{p} \leq n \leq p$.

Most interesting: $n \approx p$.

Example: p = 1009, n = 997.

(Can you find all primes dividing

$$p^{2n}-1=(p^n-1)(p^n+1)?)$$

Find "random" poly in $\mathbf{F}_{p^2}[x]$ with an irreducible divisor φ of degree n.

Construct \mathbf{F}_q as $\mathbf{F}_{p^2}[x]/\varphi$.

How many polys to try? What's chance that $r \in \mathbf{F}_{p^2}[x]$ has an irreducible divisor φ of degree n?

For $n \leq \deg r < 2n$: express each successful runiquely as φ · cofactor. $\approx (p^2)^{\deg r+1}$ polys r, $\approx (p^2)^n/n$ monic irreds φ , $\approx (p^2)^{\deg r-n+1}$ cofactors \Rightarrow chance $\approx 1/n$ that r works.

Similar story for $\deg r \geq 2n$.

Factoring r is fast. \Rightarrow Quickly find r, φ .

Don't use random polys! (Starting now: abandon proofs.)

Find $oldsymbol{arphi}$ dividing $oldsymbol{x}^p-oldsymbol{x}^2-oldsymbol{eta}$ for some $oldsymbol{eta}\in \mathbf{F}_{p^2}$. Then $oldsymbol{x}^p=oldsymbol{x}^2+oldsymbol{eta}$ in $oldsymbol{\mathsf{F}}_{a}$.

 p^2 choices of $\beta \in \mathbf{F}_{p^2}$, so overwhelmingly likely that at least one works. e.g. $p=1009,\ n=997$: can have $\beta^2+92\beta+447=0$.

Easily generalize: e.g., take $x^p=x^2+\beta x+\gamma$ or $x^p=(x+\beta)/(x+\gamma).$ But larger degrees are slower.

Low-degree discrete logs

First step of algorithm: build table of $h \mapsto \log_g h$ for each small $h \in \mathbf{F}_{p^2}[x] - \varphi \mathbf{F}_{p^2}[x]$. Easily choose g at same time.

"Small h": $\deg h \leq D$. Choose $D \geq 1$; $D \in O(\log n / \log \log n)$.

Low-degree discrete logs

First step of algorithm: build table of $h \mapsto \log_g h$ for each small $h \in \mathbf{F}_{p^2}[x] - \varphi \mathbf{F}_{p^2}[x]$. Easily choose g at same time.

"Small h": $\deg h \leq D$. Choose $D \geq 1$; $D \in O(\log n / \log \log n)$.

Non-uniform approach: algorithm A_q knows table!

Low-degree discrete logs

First step of algorithm: build table of $h \mapsto \log_g h$ for each small $h \in \mathbf{F}_{p^2}[x] - \varphi \mathbf{F}_{p^2}[x]$. Easily choose g at same time.

"Small
$$h$$
": $\deg h \leq D$. Choose $D \geq 1$; $D \in O(\log n / \log \log n)$.

Non-uniform approach: algorithm A_q knows table!

Two reasons to be more explicit:

- 1. Want A with q as an input.
- 2. Method to build table will be reused for larger h.

The first relation for D = 1

$$\prod_{lpha \in \mathsf{F}_{\mathcal{D}}} (x - lpha) \equiv x^2 - x + \beta.$$

"
$$\equiv$$
" for $\mathbf{F}_{p^2}[x]$: equal mod $x^p-x^2-oldsymbol{eta}$; forces $=$ in \mathbf{F}_q .

Hope that $x^2 - x + \beta$ splits in $\mathbf{F}_{p^2}[x]$, say as $f_1 \cdot f_2$. Not an unreasonable hope: $\approx 50\%$ of quadratics split.

Then
$$\log_g f_1 + \log_g f_2 = \sum_{lpha \in \mathbf{F}_p} \log_g (x - lpha).$$

This is a "relation" among discrete logs of monic linear polys.

More relations for D=1

For $a, b, c, d \in \mathbf{F}_{p^2}$:

$$(cx+d)\prod_{lpha\in {\sf F}_p}(ax+b-lpha(cx+d))\ lpha\in {\sf F}_p = (cx+d)(ax+b)^p \ -(ax+b)(cx+d)^p = (cx+d)(a^px^p+b^p) \ -(ax+b)(c^px^p+d^p) = (cx+d)(a^p(x^2+eta)+b^p) \ -(ax+b)(c^p(x^2+eta)+d^p).$$

Left side is product of linear polys in $\mathbf{F}_{p^2}[x]$. Often right side is too.

$$\lambda \in \mathbf{F}_{p^2}^*, M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(\mathbf{F}_{p^2})$$

 $\Rightarrow M, \lambda M$ are redundant.

$$m \in GL_2(\mathbf{F}_p), M \in GL_2(\mathbf{F}_{p^2})$$

 $\Rightarrow M, mM$ are redundant.

No other obvious redundancies.

Is there a nice way to represent the set of cosets of $PGL_2(\mathbf{F}_p)$ in $PGL_2(\mathbf{F}_{p^2})$? Best hints so far: Cremona points me to $\mathbf{F}_{p^4}^*/\mathbf{F}_{p^2}^*$; Bartel gives solution for GL_2 .

Mindless enumeration of cosets is not a real bottleneck here but want fast multipoint eval.

 p^3+p potential relations, conjecturally pprox independent. Each succeeds with chance pprox 1/6.

Only p^2 monic linear polys. Expect enough relations to determine their logs (or *most* logs: ok to miss a few), unless p is very small.

BGJT say sparse linear algebra; but fast matrix multiplication gives better const in exponent.

(How to avoid annihilating $\mathbf{F}_{p^2}^*$? Maybe cleanest: $x^p = \beta x^2 + 1$, where $oldsymbol{eta}$ generates $\mathbf{F}_{p^2}^*$.)

More relations for arbitrary D

For each small $h \in \mathbf{F}_{p^2}[x]$:

$$(ch+d)\prod (ah+b-lpha(ch+d)) \ lpha\in F_p \ = (ch+d)(ah+b)^p \ - (ah+b)(ch+d)^p \ = (ch+d)(a^ph^p+b^p) \ - (ah+b)(c^ph^p+d^p) \ \equiv (ch+d)(a^ph(x^2+eta)+b^p) \ - (ah+b)(c^ph(x^2+eta)+d^p).$$

Left side is product of small polys; sometimes right side is too.

 \approx 5% as $D \to \infty$. BGJT say 1/6.

Larger discrete logs

What if $D < \deg h \le 2D$?

Use same equation:

$$(ch+d)\prod(ah+b-lpha(ch+d)) \ lpha\in \mathsf{F}_p \ \equiv (ch+d)(a^ph(x^2+eta)+b^p) \ - (ah+b)(c^ph(x^2+eta)+d^p).$$

Occasionally right side is product of small polys.

We now know those discrete logs.

Left side is product on new factor base: $\{h+\gamma:\gamma\in \mathbf{F}_{p^2}\}.$ Solve for each $\log_g(h+\gamma).$

For deg $h \leq (u/3)D$:

D-smoothness chance $pprox u^{-u}$ so $pprox u^{-u}p^3$ relations.

Need $\approx p^2$ relations.

Note free relations: smooth $h + \gamma$.

Works for $u \approx \log p / \log \log p$.

Reminiscent of linear sieve

(1977 Schroeppel):

$$(\lceil \sqrt{q} \rceil + a)(\lceil \sqrt{q} \rceil + b)$$

 $\equiv (a+b)\lceil \sqrt{q} \rceil + ab + \lceil \sqrt{q} \rceil^2 - q$
mod large prime q .

Factor base in linear sieve:

$$\{\lceil \sqrt{q} \rceil + a\} \cup \{\text{small primes}\}.$$

Arbitrary discrete logs

For
$$(u/3)D < \deg h \le (u/3)^2D$$
:

Use same equation

$$(ch+d)\prod (ah+b-lpha(ch+d)) \ lpha\in \mathsf{F}_p \ \equiv (ch+d)(a^ph(x^2+eta)+b^p) \ - (ah+b)(c^ph(x^2+eta)+d^p).$$

Occasionally (u/3)D-smooth right side; again $\{h+\gamma\}$ for left side. Have seen subroutine to compute (u/3)D-smooth discrete logs.

 $p^{O(1)}$ subroutine calls, of which $\Theta(p^2)$ are important.

For larger *h*: recurse.

Reach degree n-1 using

$$\frac{\log n}{\log(u/3)} \in \Theta\Big(\frac{\log n}{\log\log n}\Big)$$

levels of recursion.

Total cost $p^{\Theta(\log n/\log\log n)}$

$$= \exp \Theta \Big(\frac{(\log n)^2}{\log \log n} \Big)$$

$$= \exp \Theta \left(\frac{(\log \log q)^2}{\log \log \log q} \right).$$

What about p^{2n} with p < n? Embed into an extension field. Can also use $x^{\rm char}$ etc.