
Implementing

“Practical leakage-resilient

symmetric cryptography”

Daniel J. Bernstein

University of Illinois at Chicago,

Technische Universiteit Eindhoven



CHES 2012 paper

“Practical leakage-resilient

symmetric cryptography”

(Faust, Pietrzak, Schipper)

explains how to

“protect against realistic

side-channel attacks.”



CHES 2012 paper

“Practical leakage-resilient

symmetric cryptography”

(Faust, Pietrzak, Schipper)

explains how to

“protect against realistic

side-channel attacks.”

Sounds great!

But is it secure?



CHES 2012 paper

“Practical leakage-resilient

symmetric cryptography”

(Faust, Pietrzak, Schipper)

explains how to

“protect against realistic

side-channel attacks.”

Sounds great!

But is it secure?

Will an implementor

doing what this paper says

actually end up with a

side-channel-protected cipher?



The TCC view:

“What do you mean?

It’s provably secure!

We have proofs and theorems!”



The TCC view:

“What do you mean?

It’s provably secure!

We have proofs and theorems!”

Macbeth’s view:

“It is a tale

told by an idiot,

full of sound and fury,

signifying nothing.”



The TCC view:

“What do you mean?

It’s provably secure!

We have proofs and theorems!”

Macbeth’s view:

“It is a tale

told by an idiot,

full of sound and fury,

signifying nothing.”

My view: Carefully evaluating

side-channel security

requires an implementation.

) Let’s implement the cipher.



Prerequisite: “F”,

a “PRF” (or a “weak PRF”)

mapping a k-bit key

and an `-bit nonce

to a 2k-bit output.



Prerequisite: “F”,

a “PRF” (or a “weak PRF”)

mapping a k-bit key

and an `-bit nonce

to a 2k-bit output.

Hmmm, this is vague.

What’s k? `? F?

Practical cryptography

requires complete specification.



Prerequisite: “F”,

a “PRF” (or a “weak PRF”)

mapping a k-bit key

and an `-bit nonce

to a 2k-bit output.

Hmmm, this is vague.

What’s k? `? F?

Practical cryptography

requires complete specification.

My best guesses:

k = 128; ` = 127;

FK(p) = AESK(0p) AESK(1p).



First-level cipher Γ:

Input: 128-bit key K;

standard random 32639-bit string

p = (p0; p1; : : : ; p255; p256);

256-bit nonce

n = (n0; n1; : : : ; n255).



First-level cipher Γ:

Input: 128-bit key K;

standard random 32639-bit string

p = (p0; p1; : : : ; p255; p256);

256-bit nonce

n = (n0; n1; : : : ; n255).

Compute

X0 = K,

X1 = AESX0
(n0p0),

X2 = AESX1
(n1p1), : : :,

X256 = AESX255
(n255p255).



First-level cipher Γ:

Input: 128-bit key K;

standard random 32639-bit string

p = (p0; p1; : : : ; p255; p256);

256-bit nonce

n = (n0; n1; : : : ; n255).

Compute

X0 = K,

X1 = AESX0
(n0p0),

X2 = AESX1
(n1p1), : : :,

X256 = AESX255
(n255p255).

Output: 256-bit string

AESX256
(p2560) AESX256

(p2561).



The final cipher:

Input:

384-bit key K0; K1; K2;

512-bit plaintext (a0; b0).



The final cipher:

Input:

384-bit key K0; K1; K2;

512-bit plaintext (a0; b0).

Compute

(a1; b1) = (a0; b0 � ΓK0
(a0));

(a2; b2) = (a1 � ΓK1
(b1); b1);

(a3; b3) = (a2; b2 � ΓK2
(a2)).



The final cipher:

Input:

384-bit key K0; K1; K2;

512-bit plaintext (a0; b0).

Compute

(a1; b1) = (a0; b0 � ΓK0
(a0));

(a2; b2) = (a1 � ΓK1
(b1); b1);

(a3; b3) = (a2; b2 � ΓK2
(a2)).

Output:

512-bit ciphertext (a3; b3).



I implemented this cipher

during a talk this morning.



I implemented this cipher

during a talk this morning.

“Code simplicity?”



I implemented this cipher

during a talk this morning.

“Code simplicity?” Not bad,

assuming AES is provided.

I used AES from OpenSSL.



I implemented this cipher

during a talk this morning.

“Code simplicity?” Not bad,

assuming AES is provided.

I used AES from OpenSSL.

“Validation status?”



I implemented this cipher

during a talk this morning.

“Code simplicity?” Not bad,

assuming AES is provided.

I used AES from OpenSSL.

“Validation status?” Bad.

Surely there are bugs.

Practical cryptography

requires test vectors.



I implemented this cipher

during a talk this morning.

“Code simplicity?” Not bad,

assuming AES is provided.

I used AES from OpenSSL.

“Validation status?” Bad.

Surely there are bugs.

Practical cryptography

requires test vectors.

“Source of random p?”



I implemented this cipher

during a talk this morning.

“Code simplicity?” Not bad,

assuming AES is provided.

I used AES from OpenSSL.

“Validation status?” Bad.

Surely there are bugs.

Practical cryptography

requires test vectors.

“Source of random p?” Bad.

I used C’s random().



I implemented this cipher

during a talk this morning.

“Code simplicity?” Not bad,

assuming AES is provided.

I used AES from OpenSSL.

“Validation status?” Bad.

Surely there are bugs.

Practical cryptography

requires test vectors.

“Source of random p?” Bad.

I used C’s random().

I’m going to hell.



“Code availability?”



“Code availability?” Good.

cr.yp.to/aesgonewild.html

http://cr.yp.to/aesgonewild.html


“Code availability?” Good.

cr.yp.to/aesgonewild.html

“Speed?”

http://cr.yp.to/aesgonewild.html


“Code availability?” Good.

cr.yp.to/aesgonewild.html

“Speed?” Horrifying.

Encrypting 64 bytes:

close to 1 million cycles

on one core of my laptop.

http://cr.yp.to/aesgonewild.html


“Code availability?” Good.

cr.yp.to/aesgonewild.html

“Speed?” Horrifying.

Encrypting 64 bytes:

close to 1 million cycles

on one core of my laptop.

But faster than FHE.

http://cr.yp.to/aesgonewild.html


“Code availability?” Good.

cr.yp.to/aesgonewild.html

“Speed?” Horrifying.

Encrypting 64 bytes:

close to 1 million cycles

on one core of my laptop.

But faster than FHE.

“Security?” Unclear!

Try hyperthreading, DPA, etc.

Maybe chosen-n templates

will discover secret n?

Don’t let slow ciphers

evade security evaluation.

http://cr.yp.to/aesgonewild.html

