Jet list decoding

D. J. Bernstein
University of lllinois at Chicago

Thanks to:

NSF
(1018836)

NIST
(60NANB10D263)

Cisco
(University Research Program)

Interpolation

Chinese remainder theorem:
evt determines ¢t mod N
where N = p1 - - - pn.

Very fast computation:
If 0 <t < N then

t tg; mod p;
i () e

2

where g; = (N/p;)~! mod p;.

Decoding
Fix H< N. Assume 0 <t < H.

Remainder repn is redundant.
Given any vector v &~ evt
can reconstruct %.

Traditional definition of “~":

Hz’:vi#(evt)i Pi < \/N/H
Surprisingly fast v — ¢t methods.

Proof that v determines ¢:
If v ~evu and v =~ evt then

Hi:(evu)ﬁé(evt)i p; < N/H SO
Hi:(evu)i:(evt)i p; > H but
Hi;(e\, w);—(evt); Pi divides t — u.

List decoding

What if we know |v —evi| < W
where W is above 1/ N/H?

Traditional answer: Give up.
No guarantee that ¢ is unique.

Modern answer:

W determines a list
of possibilities for t.

How quickly can we compute list?
How does speed degrade with W7

1957 Elias, 1958 Wozencraft:
pounds on list size,

out no fast algorithms.

Reed—Solomon decoding

Fix prime power g,
distinct a1, ...,an € Fq.

Remainder repn of t € Fy|z]:
evt = (t(a1),...,t(an)).

Given any vector v &~ evt
can reconstruct ¢,
assuming degt < h.

Traditional “~":

#{1 :v; £ (evt);} < (n—h)/2.

List decoding:
compute list of possibilities for ¢

given larger bound on |v — evt|.

Jets

The algebra of 1-jets over R
is the quotient ring R[e]/e?.

Analogous to the set of complex
numbers C = R[3]/(3° + 1),
but €% = 0 while 42 = —1.

Multiplication of jets:
(a+ be)(c+ de) = ac+ (ad+ be)e.

Typical construction of a jet:
differentiable f : R — R induces

jet f(z + €) = f(z) + f'(2)e
for each z € R.
e.g. sin(z + ¢) =sinx + (cos z)e.

| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
= {(b,24a + 17b) : a,b € Z}.

What i1s the shortest
nonzero vector in L?

| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
= {(b,24a + 17b) : a,b € Z}.

What i1s the shortest
nonzero vector in L?

L =(0,24)Z + (1,17)Z

| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
= {(b,24a + 17b) : a,b € Z}.

What i1s the shortest
nonzero vector in L?

L =(0,24)Z + (1,17)Z
— (-1, 7)Z + (1,17)Z

| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
= {(b,24a + 17b) : a,b € Z}.

What i1s the shortest
nonzero vector in L?

L =(0,24)Z + (1,17)Z
= (—1,7)Z+ (1,17)Z
=(—1,7)Z+ (3,3)Z

| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
= {(b,24a + 17b) : a,b € Z}.

What i1s the shortest

nonzero vector in L?

L = (0,24)Z + (1,17)Z
= (=1,7)Z + (1,17)Z
— (~1,7)Z+ (3,3)Z
— (—4,8)Z + (3,3)Z

| attice-basis reduction

Define L = (0,24)Z + (1,17)Z
= {(b,24a + 17b) : a,b € Z}.

What i1s the shortest

nonzero vector in L?

L = (0,24)Z + (1,17)Z
= (=1,7)Z + (1,17)Z
— (~1,7)Z+ (3,3)Z
— (—4,8)Z + (3,3)Z

(—4,4), (3, 3) are orthogonal.
Shortest vectors in L are
(0,0), (3,3), (=3, -3).

Another example:
Define L = (0,25)Z 4 (1,17)Z.

What i1s the shortest
nonzero vector in L?

Another example:
Define L = (0,25)Z 4 (1,17)Z.

What i1s the shortest
nonzero vector in L?

L =(0,25)Z + (1,17)Z

Another example:
Define L = (0,25)Z 4 (1,17)Z.

What i1s the shortest
nonzero vector in L?

L =(0,25)Z + (1,17)Z
— (-1,8)Z + (1,17)Z

Another example:
Define L = (0,25)Z 4 (1,17)Z.

What i1s the shortest
nonzero vector in L?

L =(0,25)Z + (1,17)Z
= (—-1,8)Z+ (1,17)Z
=(—1,8)Z+ (3,1)Z.

Another example:
Define L = (0,25)Z 4 (1,17)Z.

What i1s the shortest
nonzero vector in L?

L =(0,25)Z + (1,17)Z
= (—-1,8)Z+ (1,17)Z
=(—1,8)Z+ (3,1)Z.

Nearly orthogonal.
Shortest vectors in L are

(0,0), (3,1), (=3,-1).

Polynomial lattices

Define R = F»[z],

ro = (101000); = z°> + z3 € R,
ri = (10011), =z*+z+1€ R,
L=(0,79)R+(1,71)R.

What i1s the shortest
nonzero vector in L?

Polynomial lattices

Define R = Fs|z],

ro = (101000); = z°> + z3 € R,
ri = (10011), =z*+z+1€ R,
L=(0,79)R+(1,71)R.

What i1s the shortest
nonzero vector in L?

L = (0,101000)R + (1,10011)R

Polynomial lattices

Define R = Fs|z],

ro = (101000); = z°> + z3 € R,
ri = (10011), =z*+z+1€ R,
L=(0,79)R+(1,71)R.

What i1s the shortest
nonzero vector in L?

[= (0,101000)R + (1,10011)R
— (10, 1110)R + (1, 10011)R

Polynomial lattices

Define R = Fs|z],

ro = (101000); = z°> + z3 € R,
ri = (10011), =z*+z+1€ R,
L=(0,79)R+(1,71)R.

What i1s the shortest
nonzero vector in L?

L = (0,101000)R + (1,10011)R
= (10, 1110)R + (1, 10011)R
— (10, 1110)R + (111, 1)R.

Polynomial lattices

Define R = Fs|z],

ro = (101000); = z°> + z3 € R,
ri = (10011), =z*+z+1€ R,
L=(0,79)R+(1,71)R.

What i1s the shortest
nonzero vector in L?

L = (0,101000)R + (1,10011)R
= (10, 1110)R + (1, 10011)R
— (10, 1110)R + (111, 1)R.

(111, 1): shortest nonzero vector.
(10,1110): shortest
independent vector.

Degree of (q,7) € Folz] x F>[z]
is defined as max{deg q,degr}.

Can use other metrics,
or equivalently rescale L.

e.g. Define L C Fy[\/z] x Fo[+/z]
as (0, r0v/Z)R + (1, r1/Z)R.

Successive generators for L:
(0,101000+/z), degree 5.5.
(1,10011+/z), degree 4.5.
(10,1110+4/z), degree 3.5.
(111, 1\/z), degree 2.

Warning: Sometimes
shortest independent vector Is
after shortest nonzero vector.

e.g. Define
ro = 101000, 1 = 10111,

L = (0,79v/Z)R + (1,71V/Z)R.

Successive generators for L:
(0,101000+/z), degree 5.5.
(1,101114/z), degree 4.5.
(10, 1104/z), degree 2.5.
(1101, 114/z), degree 3.

For any ro, 71 € R = Fy|z]
with degrg > degry:

Euclid/Stevin computation:
Define ro = rg mod 71,
r3 = r1 mod 7o, etc.

Extended: g9 = 0; q1 = 1;
gi+2 = q; — [ri/Ti+1] gi+1.
Then g;71 =1r; (mod 7g).

| attice view: Have

(0, 70v/Z)R + (1, 71/Z)R =
(95, 7ivVZ)R + (¢it1, Ti+1VE)R.

Can continue until ;.1 = 0.
gcd{rg, r1} = r;/ leadcoeff r;.

Reducing lattice basis for L
is a "half gcd” computation,
stopping halfway to the gcd.

deg r; decreases; deg g; increases;
degg;11 + degr; = degry.

Say 7 is minimal with
degr;+/z < (degrg)/2.
Then degq; < (degrg)/2 so

deg(q;,rj+/z) < (degro)/2.
Shortest nonzero vector.

(95 75+¢/E) has degree
deg ro\/z — deg(q;, 75/)
for some € € {—1, 1}.
Shortest independent vector.

Proof of “shortest’ :

Take any (g, r+/z) in lattice.

(9. 7/z) = u(gj, rj/T)
+ U(qj1e, Tj+e\/5)
for some u,v € R.

qiTj+e — 45+ — LTTQ
SO U = __('rqj — q'rj)/'ro
and u = £(g7j1¢ — 79j4¢)/70-

If deg(q, r/)
< deg(gj+e. Tj+eV/T)
then degv < 0 so v = 0;

l.e., any vector In lattice

shorter than (¢j.t¢, 7j1+ev/T)
is a multiple of (g, 7;\/).

Higher-rank lattices

If M € Fy[z]**¢ has det M # 0
then the columns of M have

a nonzero linear combination @
with deg @ < (degdet M) /4.

Can compute (with

similar speed to matrix mult.
(2003 Giorgi—Jeannerod—Villard
+ small fix from 2011 Bernstein)

M € Z8*¢: loosen bound on Q.
(1982 Lenstra—Lenstra—Lovasz:
polynomial time; .. .;

2011 Novocin—5Stehlée-Villard:
almost as fast as F,|z| case)

Divisors in intervals

Classic problem: Find all
divisors of N in [A— H, A+ H],
given positive integers N, A, H
with A > H.

Reformulation: In Q[y| define
g=Hyand f =(A+ Hy)/N.
Want all r € Q with |r| <1,
g(r) € Z, numerator(f(r)) = 1.

Classic solution for many cases:

Find small nonzero polynomial

peZ+Zf+ZfgC Qy].
For each rational root r of ¢,

check whether A + Hr divides NV.

Understanding this solution
for H< (A— H)/6N/3:;

Understanding this solution
for H< (A— H)/6N/3:;

f=---+Hy/N,

fo ="+ H%/N.

so det(1, f, fg) = H3/N?.
Lattice-basis reduction finds
¢ with coeffs < 2H/N?/3.

Understanding this solution
for H< (A— H)/6N/3:;

f=---+Hy/N,

fo ="+ H%/N.

so det(1, f, fg) = H3/N?.
Lattice-basis reduction finds
¢ with coeffs < 2H/N?/3.

Take divisor of N in [A—H, A+H].
Write as A+ Hr; r € Q, |r| < 1.
Then |p(r)| < 6H/N?/3.

Understanding this solution
for H< (A— H)/6N/3:;

f=---+Hy/N,

fo ="+ H%/N.

so det(1, f, fg) = H3/N?.
Lattice-basis reduction finds
¢ with coeffs < 2H/N?/3.

Take divisor of N in [A—H, A+H].
Write as A+ Hr; r € Q, |r| < 1.
Then |p(r)| < 6H/N?/3.

L, f(r), f(r)g(r) € ((A+Hr)/N)Z
so p(r) € (A+ Hr)/N)Z.

But (A+ Hr)/N > 6H/N?/3

so ¢(r) must be 0.

Classic generalization: Find all

given positive integers NV, A, B, H
with A > BH.

Mediocre approach: Detfine
g=Hyand f =(A+ BHy)/N.
Proceed as before.

Loses factor B? in det.

Classic generalization: Find all

given positive integers NV, A, B, H
with A > BH.

Mediocre approach: Detfine
g=Hyand f =(A+ BHy)/N.
Proceed as before.

Loses factor B? in det.

Much better approach: Define
g=Hyand f = (UA+ Hy)/N,
assuming U € Z, UB —1 € NZ.
If Hr € Z and A+ BHr divides N/
then f(r) € ((A+ BHr)/N)Z.

Linear combinations as divisors

Further generalization: Find all
divisors As + Bt of N with
1 <s< J;|t| < H; gcd{s, t} =1.

Generalization of classic solution:

Define g = (H/J)y; U as before;
f=WUA+(H/J)y)/N.

As before find small nonzero
wecl+2LZf+2Lfg.

Write each rational root of @ as
Jt/Hs with gcd{s,t} =1, s > 0.
Check whether As + Bt divides N
with s < J and |t| < H.

Understanding this solution
for HJ < (A— BH)/6N1/3:

det(1, f, fg) = H3/J3N?.
Lattice-basis reduction finds
¢ with coeffs < 2H/JN?/3.

If1<s<Jand|t| < H

and r = Jt/Hs then ‘5290(?")‘ =
‘goos2 + @15t/ H + g02t2J2/H2‘
< 3(2H/JN?/3)J2 = 6HJ/N?/3.

If also As + Bt divides N

then sf(r) = (UAs+t)/N €
((As + Bt)/N)Z and sg(r) € Z
so s°¢(r) € ((As + Bt)/N)Z.

1984 Lenstra: A+ Bt algorithm,
for proving primality.

1986 Rivest—=Shamir: A+ ¢
for attacking constrained RSA.

Many subsequent generalizations.

2003 Bernstein: projective view,
but only affine applications.

Projective applications:
2007 Wu, 2008 Bernstein

(including this As+ Bt algorithm),
2009 Castagnos—Joux—
Laguillaumie—Nguyen.

Higher multiplicities

Generalization of A 4 t algorithm:

Choose a multiplicity &
and a lattice dimension 4.

Find small nonzero ¢ €
Z+Zf+Zf°+ -+ ZfF
+ZfRg+Zfrg?+ - +ZfFgt L
det =

(H/N)Z(ﬁ—l)/Z NE—k)({—k—1)/2

so |¢| <
L (HINYED/2 g (k) (E—k—1)/2¢,

But ¢(r) € (divisor/N)*Z.

Optimize: large £ with k ~ 6/
if A—H=N°.
#{t possibilities searched} = NO*

Same for A + Bt etc.

1996 Coppersmith:

A + t with multiplicities; N92;
various generalizations.

But algorithm was slower:
identified lattice via dual.

1997 Howgrave-Graham:
this algorithm; skip dualization;
simply write down f* etc.

The gcd tweak

t

Minor twea

: Find all A4+ ¢t with

< H anc

gcd{A+t, N} > NY.

These t's include previous t's:
if A+t divides N and A+t > N
then gcd{A +t, N} > N

Solution: Compute the same ¢

from the same lattice as before.

For each rational root r of ¢,
check gcd{A + Hr, N} > NY.

1997 Sudan:

F,|z] instead of Z,
N=(z—a1) (z—an),
multiplicity 1, dual algorithm,
for list decoding.

1999 Guruswami—-Sudan:
same with high multiplicity.

1999 Goldreich—Ron—-Sudan:
Z, multiplicity 1, dual.

2000 Boneh:
Z, high multiplicity.

“The GS decoder’:

Reconstruct ¢ € Fg[z] given
(t(a1), ..., t(an)) + errors;

distinct aq, ..., an € Fg;
#errors < (1 — 0)n;
degt < 6%n.

Reconstruct ¢ € Fg[z] given
(Bit(aq), ..., Bnt(an)) + errors;
distinct ag, ..., an € Fq;
nonzero (1, ..., Gn € Fyq;
#errors < (1 — 0)n;
degt < 6%n.

Higher-degree polynomials

ged{N, p(t)} > N°.
#{t possibilities searched}
R~ N‘92/d if » monic, degp = d.

1988 Hastad: 6 =1, £k =1.

1989 Vallée—Girault—Toffin:
=1 k=1, dual.

1996 Coppersmith:
¢ = 1, high multiplicity, dual.

1997 Howgrave-Graham:
¢ = 1, high multiplicity.

2000 Boneh:
any 6, high multiplicity.

Gaussian divisors In intervals

New (7) problem: Find all
te{—-H,..., -1,0,1,..., H}
with Ag+t-+Aqs dividing No+ Nyi
in Z[1]/(3° + 1); assume Ag > H.

One approach: Take norms.

(Ag +t)? + A? divides N3 + N?.
Use standard degree-2 algorithm.
Works for H as (N2 + N2)8°/2

if (Ap — H)? + A2 = (N3 + N2)°.
Worse: Find divisor of Ng — N12

in [(Ag—H)?+A2, (Ag+H)*+A9],

using degree-1 algorithm.
Works for AgH = (N2 + N2)8°.

Another approach:

lattice-basis reduction over Z[7].
Works, but searches t € Z|1],
again wasting time.

Another approach:

lattice-basis reduction over Z[7].
Works, but searches t € Z|1],
again wasting time.

Better approach:
(Ao +t)? + A7 divides
(Ao +1t — A12)(No + Nyi)

so It divic

Also d

IVIC

es (Ag +t)N1 — A1 .
es Ng — N12.

gcd{ (Ag + t)Ny — Ay Ng, N3 + N2}
> (NG + NP

Works for H s (N2 + N2)#*.
assuming gcd{ g, N1} = 1.

Jet divisors

Easily generalize:

Aops + Bpt, other algebras, etc.
My main interest today:

the 1-jet algebra Z[e] /€.

To search for small (s,t) € Z x Z
with (Ag + A1¢€)s + (Bg + Bie)t

dividing Ng + Nie in Z[e]/e: use
gcd{A, N§} > (Ng)e where A =
(AgN1—A1Ng)s+(BoN1—B1Ny)t.

#{(s,t) searched} ~ (Ng)‘gz,
assuming gcd{ Ng, BoN1} = 1.

Searching for Ags + Bgt dividing
No would search only Ngz.

Classical binary Goppa codes

Fix integers n > 0, m > 1;
distinct aq, ..., an € Fom;
monic g € Fom|z]

with g(a1) - - - g(an) # 0

The code: Define ' C F}
as set of (cq,..., Cn) with

2_ici/(z —ai) =0in Fom[z]|/g.

min{lc| :c €T —{0}} > degg+1;
lg#l > n —mdegg.

Better bounds in the BCH case

g = z* and in many other cases.

Say we receive v = ¢ + e.
Define D, E € Fom|[z]| by
D =1 l.e;20(z — a;) and
E = Zz De,,;/(a; — CLZ').

Say we receive v = ¢ + e.
Define D, E € Fom|[z]| by
D =1 l.e;20(z — a;) and
E = Zz De,,;/(a; — CLZ').

Lift) . v;/(z—a;) from Fom|z]/g
to s € Fom|[z]| with degs < degg.
Find shortest nonzero

(g5, 75+/z) in the lattice L =

(0, gv/z)Fom[z] + (1, si/z)Fom|z].

Say we receive v = ¢ + e.
Define D, E € Fom|[z]| by
D =1 l.e;20(z — a;) and
E = Zz De,,;/(a; — CLZ').

Lift) . v;/(z—a;) from Fom|z]/g
to s € Fom|[z]| with degs < degg.
Find shortest nonzero

(g5, 75+/z) in the lattice L =

(0, gv/z)Fom[z] + (1, si/z)Fom|z].

Fact: If |e] < (degg)/2
then E/D =1r;/q; so
D is monic denominator of 7;/q;.

Say we receive v = ¢ + e.
Define D, E € Fom|[z]| by
D =1 l.e;20(z — a;) and
E = Zz De,,;/(a; — CLZ').

Lift) . v;/(z—a;) from Fom|z]/g
to s € Fom|[z]| with degs < degg.
Find shortest nonzero

(g5, 75+/z) in the lattice L =

(0, gv/z)Fom[z] + (1, si/z)Fom|z].

Fact: If |e] < (degg)/2
then E/D =1r;/q; so
D is monic denominator of 7;/q;.

e; =0 if D(a;) # 0.
e; = E(a;)/D'(a;) if D(a;) = 0.

Why does this work?

> .ei/(x—a;) =E/D anc

> s¢/(x—a;) =0in Fom
so s =E/D in Fom|z]/g
so (D, E\/z) € L.

z|/g

Why does this work?

> sei/(x—a;) =E/D anc
> ici/(z —a;)=0in Fom[z]/g
sos=E/D in Fom|z]/g

so (D, E\/z) € L.

(D, E/z) is a short vector:
deg(D, Ev/z) < |e|] < (degg)/2
< degg +1/2 —deg(q;,7;1/x).

Why does this work?

> sei/(x—a;) =E/D anc
> ici/(z —a;)=0in Fom[z]/g
sos=E/D in Fom|z]/g

so (D, E\/z) € L.

(D, E/z) is a short vector:
deg(D, Ev/z) < |e|] < (degg)/2
< degg +1/2 —deg(q;,7;1/x).

Recall “shortest” proof:

(D, Ev/z) € (95, 7j/z)Fom|z],
so E/D =r;/q;. Donel

Euclid decoding: 1975 Sugiyama-—
Kasahara—Hirasawa—Namekawa.

List

decoding for these codes

What if |e| > (degg)/27

Find shortest nonzero (Dg, Eg\/z)

and

independent (D1, E1+/z) in

(0, gvz)Fom[z] + (1, s/z)Fom|[z],
with degrees (degg)/2 — ¢

daNnd

(degg)/2+1/2+46

for some § € {0,1/2,1,3/2,...}.

Know that (D, E+/z) =
u(Do, Eov/z) + v(D1, E1v/Z);

v = “(EDO — DEyp)/g € Fom|z],

Q

+(DE1 — ED1)/g € Fom|z],

degv < |e| — (degg)/2 —1/2 -4,
degu < |e| — (degg)/2+ 9.

Critical facts about D:
o D =uDg+vDy wit

Do anc

o D divic

D1, bounded
es known

N=]||.(z—a;)

n known

% and v.

Critical facts about D:
o D =uDgy+ vD1 with known

Do and D1, bounded u« and v.

e [divides known
N=]||.(z—a;)

This Is exactly the
“linear combinations as divisors”
problem! Solve with lattices.

Reach same |e| as GS,
but much smaller k.

(2007 Wu: dual of
essentially this algorithm; see

2008 Bernstein for coprimality)

Jet list decoding

Recall D =];.. 20(z — a;)
and £ =) , De;/(z — a;).

e; € {0,1}
so E=Y ,D/(z—a;)=D"

One consequence:
[2(g) = I2(g?) if g is squarefree.
This doubles deg g, drastically
increasing # errors decoded.

But M5(¢?) decoders vary
in effectiveness and efficiency.

1968 Berlekamp decodes

deg g errors for [»(g?).
1975 Patterson: same, faster.

1998 Guruswami—Sudan:
~ deg g + (deg ¢g)?/2n errors.
2007 Wu: same, faster;
the “rational” speedup.
2008 Bernstein: even faster;
“rational” + Patterson.

1968 Berlekamp decodes

deg g errors for [»(g?).
1975 Patterson: same, faster.

1998 Guruswami—Sudan:
~ deg g + (deg ¢g)?/2n errors.
2007 Wu: same, faster;
the “rational” speedup.
2008 Bernstein: even faster;
“rational” + Patterson.

2001 Koetter—Vardy:

~ deg g + (deg g)?/n errors.
Can “rational” algorithms
correct this many errors?

1968 Berlekamp decodes

deg g errors for [»(g?).
1975 Patterson: same, faster.

1998 Guruswami—Sudan:
~ deg g + (deg ¢g)?/2n errors.
2007 Wu: same, faster;
the “rational” speedup.
2008 Bernstein: even faster;
“rational” + Patterson.

2001 Koetter—Vardy:

~ deg g + (deg g)?/n errors.
Can “rational” algorithms
correct this many errors?
Yes! Jet list decoding.

Works for arbitrary I'2(g).
Notation: N, D, E, ... as before.

D divides N so the jet
D(z+¢)=D+eD' =D+ ¢E
divides N(z +¢) = N + elN'.
D+ eE =

u(Do + €Eg) + v(D1 + €eEq).

Apply the jet-divisors idea:
find large gcd{N'D — NE, N?}.

2007 Wu reaches same |e]
in one special case, BCH. Jet list
decoding is faster, more general.

Generalize Fy to Fy: use
gcd{(N'D)?~1 — (NE)I~1, N9}

