
From now on: non-binary field k;

non-square d ∈ k.

E(k) = {(x; y) ∈ k× k :

x2 + y2 = 1 + dx2y2}

is a commutative group with

(x1; y1) + (x2; y2) = (x3; y3)

defined by Edwards addition law:

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 − x1x2

1− dx1x2y1y2
.

Birationally equivalent to

(1=e)v2 = u3 + (4=e− 2)u2 + u

where e = 1− d.



Represent (x; y) ∈ E(k)

by (X : Y : Z) ∈ P2(k);

i.e., (X; Y; Z) ∈ k3 with Z 6= 0

and (X2 + Y 2)Z2 = Z4 + dX2Y 2

represents (X=Z; Y=Z) ∈ E(k).

10M (10 field mults)

+ 1S (1 field squaring)

+ 1D (1 field mult by d)

+ 7add (7 field additions)

to obtain sum (X3 : Y3 : Z3)

of (X1 : Y1 : Z1), (X2 : Y2 : Z2).

Don’t have to make distinctions

for equal inputs, negatives, etc.



What if we want to make

distinctions to gain speed?

For example, speed up doubling?

2(x; y)

=

„

xy + yx

1 + dxxyy
;

yy − xx

1− dxxyyy

«



What if we want to make

distinctions to gain speed?

For example, speed up doubling?

2(x; y)

=

„

xy + yx

1 + dxxyy
;

yy − xx

1− dxxyyy

«

=

„

2xy

1 + dx2y2
;

y2 − x2

1− dx2y2

«

save
mults!



What if we want to make

distinctions to gain speed?

For example, speed up doubling?

2(x; y)

=

„

xy + yx

1 + dxxyy
;

yy − xx

1− dxxyyy

«

=

„

2xy

1 + dx2y2
;

y2 − x2

1− dx2y2

«

save
mults!

=

„

2xy

x2 + y2
;

y2 − x2

1− dx2y2

«

low deg
(Joye)



What if we want to make

distinctions to gain speed?

For example, speed up doubling?

2(x; y)

=

„

xy + yx

1 + dxxyy
;

yy − xx

1− dxxyyy

«

=

„

2xy

1 + dx2y2
;

y2 − x2

1− dx2y2

«

save
mults!

=

„

2xy

x2 + y2
;

y2 − x2

1− dx2y2

«

low deg
(Joye)

=

„

2xy

x2 + y2
;

y2 − x2

2− x2 − y2

«

even
lower



What if we want to make

distinctions to gain speed?

For example, speed up doubling?

2(x; y)

=

„

xy + yx

1 + dxxyy
;

yy − xx

1− dxxyyy

«

=

„

2xy

1 + dx2y2
;

y2 − x2

1− dx2y2

«

save
mults!

=

„

2xy

x2 + y2
;

y2 − x2

1− dx2y2

«

low deg
(Joye)

=

„

2xy

x2 + y2
;

y2 − x2

2− x2 − y2

«

even
lower

=

„

(x+ y)2

x2 + y2
− 1;

y2 − x2

2− x2 − y2

«



3M (3 field mults)

+ 4S (4 field squarings)

+ 6add (6 field additions)

to double (X1 : Y1 : Z1):

B = (X1 + Y1)
2,

C = X2
1 ,

D = Y 2
1 ,

E = C +D,

H = Z2
1 ,

J = E − 2H,

X3 = (B − E)J,

Y3 = E(C −D),

Z3 = EJ.



Comparison of doubling costs

if curve parameters are small:

System Cost
Projective 5M+ 6S
Projective if a = −3 7M+ 3S
Hessian 7M+ 1S
Doche/Icart/Kohel 3 2M+ 7S
Jacobian 1M+ 8S
Jacobian if a = −3 3M+ 5S
Jacobi quartic 2M+ 6S
Jacobi intersection 3M+ 4S
Edwards 3M+ 4S
Doche/Icart/Kohel 2 2M+ 5S

EFD! EFD! EFD! EFD! EFD!

e.g. Doche/Icart/Kohel paper says

3M+4S for Doche/Icart/Kohel 2.



Jacobian a = −3 vs. Edwards:

Jac-3 Edwards
Double 3M+5S 3M+4S
Triple 7M+7S 9M+4S
Add 11M+5S 10M+1S+1D
Readd 10M+4S 10M+1S+1D
Mixed 7M+4S 9M+1S+1D
Unified unclear 10M+1S+1D

Jac-3 speedup for readd:

Chudnovsky/Chudnovsky 1986;

“Chudnovsky coordinates” etc.

Edwards tripling:

Bernstein/Birkner/Lange/Peters

2007; independently

Hisil/Carter/Dawson 2007.



A sensible ElGamal-type system

(van Duin, sci.crypt, 2006):

Everyone knows standard point B,

prime order q, on “Curve25519”:

Z=(2255 − 19); d = 1− 1=121666.

Signer has 32-byte secret key n.

Everyone knows signer’s 32-byte

public key: compressed nB.

To verify (m; compressed R; t):

verify tB = H(R;m)R + nB.

To sign m: generate a secret s;

R = sB; t = H(R;m)s+n mod q.

Notes: 1. No inversions mod q.

2. Send R, not H(R;m).



Batch verification of many

tiB − hiRi = Si : check
P

i vi tiB −
P

i vi hiRi −
P

i viSi
= 0 for random 128-bit vi .

(Naccache et al., Eurocrypt 1994;

Bellare et al., Eurocrypt 1998)

Use subtractive multi-scalar

multiplication algorithm:

if n1 ≥ n2 ≥ · · · then

n1P1 + n2P2 + n3P3 + · · · =

(n1 − qn2)P1 + n2(qP1 + P2) +

n3P3 + · · · where q = ⌊n1=n2⌋ .

(credited to Bos and Coster by

de Rooij, Eurocrypt 1994;

see also tweaks by Wei Dai, 2007)



Verifying 100 signatures

requires a 201-scalar mult

with 101 256-bit scalars

and 100 128-bit scalars.

Subtractive algorithm then uses

≈ 24:4 · 256 readds and

≈ 0:8 · 256 mixed adds.

S=M = 0:8, small parameters:

≈ 845M/signature with Jacobian;

≈ 695M/signature with Edwards.

Use Edwards coordinates!

Can similar speeds be achieved

by genus-2 hyperelliptic curves?

Current attempts seem very slow.



We’ve counted mults

(with various S=M;D=M) for

Edwards, Jac-3, Hessian, et al.

in NAF; width-4 sliding windows;

JSF; accelerated ECDSA;

batch verification, as above;

fixed-point scalar mult; and

several side-channel situations.

Edwards consistently wins!

Should even beat Montgomery

for big single-scalar mult.

Need to measure overheads too.

Planning new Edwards software.

Expect new speed records.



Dimitrov/Imbert/Mishra 2005,

Doche/Imbert 2006:

Mix doublings with triplings to

gain speed for single-scalar mult.

Bernstein/Birkner/Lange/Peters

2007: Have analyzed

Edwards, Jac-3, et al.

with 5423 combinations of

bit size, doubling/tripling ratio,

windowing strategy.

Planning more combinations.

Conclusions: Triplings are useful

for Jac-3, 3DIK, et al.

But Edwards wins solidly.







New directions in ECC

We’re working on several items:

cr.yp.to/newelliptic.html



New directions in ECC

We’re working on several items:

Edwards for precomputation!

cr.yp.to/newelliptic.html



New directions in ECC

We’re working on several items:

Edwards for precomputation!

Edwards for pairings!

cr.yp.to/newelliptic.html



New directions in ECC

We’re working on several items:

Edwards for precomputation!

Edwards for pairings!

Edwards for president!

cr.yp.to/newelliptic.html



New directions in ECC

We’re working on several items:

Edwards for precomputation!

Edwards for pairings!

Edwards for president!

Edwards implementations!

cr.yp.to/newelliptic.html



New directions in ECC

We’re working on several items:

Edwards for precomputation!

Edwards for pairings!

Edwards for president!

Edwards implementations!

Edwards standardization!

cr.yp.to/newelliptic.html



New directions in ECC

We’re working on several items:

Edwards for precomputation!

Edwards for pairings!

Edwards for president!

Edwards implementations!

Edwards standardization!

And beyond ECC:

Edwards for ECM!

cr.yp.to/newelliptic.html



New directions in ECC

We’re working on several items:

Edwards for precomputation!

Edwards for pairings!

Edwards for president!

Edwards implementations!

Edwards standardization!

And beyond ECC:

Edwards for ECM!

Edwards for ECPP!

cr.yp.to/newelliptic.html



New directions in ECC

We’re working on several items:

Edwards for precomputation!

Edwards for pairings!

Edwards for president!

Edwards implementations!

Edwards standardization!

And beyond ECC:

Edwards for ECM!

Edwards for ECPP!

Edwards for ECXYZ!

cr.yp.to/newelliptic.html



New directions in ECC

We’re working on several items:

Edwards for precomputation!

Edwards for pairings!

Edwards for president!

Edwards implementations!

Edwards standardization!

And beyond ECC:

Edwards for ECM!

Edwards for ECPP!

Edwards for ECXYZ!

Return of the Hyperelliptic!

cr.yp.to/newelliptic.html




