The number-field sieve
Finding small factors of integers
Speed of the number-field sieve

D. J. Bernstein
University of lllinois at Chicago

Prelude: finding denominators

817/366 ~ 2.23224044 in R.

Easily compute digits 2.23224044
given 817, 366.

Can we work backwards: find
817,366 given digits 2.232240447
“2-dim integer-relation finding”;

“2-dim lattice-basis reduction”;
“half-gcd computation™; etc.

Yes, via continued fractions.

Compute successively
1/(2.23224044 — 2) ~ 4.3058823;
1/(4.3058823 — 4) ~ 3.269231;
1/(3.269231 — 3) ~ 3.71428;
1/(3.71428 — 3) ~ 1.4000;
1/(1.4000 — 1) = 2.500;

1/(2.500 — 2) ~ 2.00 =~ 2.

Evidently 2.23224044 s very close
to the continued fraction

1 - 3817
41 L 366

34+ :

1+ —
2+ 5

Can obtain y-digit numerator
and y-digit denominator
from 2y digits of quotient.

y(lg y)O(l) bit operations
using fast multiplication,

fast continued fractions.

Analogous polynomial algorithms
find two y-coefficient polynomials
from 2y coefhicients of their
power-series quotient.

y(lg y)O(l) coefficient operations
using fast algorithms.

Linear algebra

y X y matrix M over F»
P . y y
specifies linear map F5 — F3.

0 1 1
/O 1 O\
1 1 0
\1 0 1 1/

specifies (v1, V2, U3, Vs) —

eg. M=

(Ovy + 1vp + luz + lug,

Ovy + lvo 4+ 1vz + Owyg,

lvy + 1vo + 1vz + Owg,
lv; 4+ Ovp + luz + 1lug).

Subroutine in Q sieve etc.,
combining smooth congruences

to form a square:

“Find linear dependency” =
“find nonzero kernel element”’ =

“find nonzero nullspace element”:
find nonzero v € Fg with Mv = 0.

e.g. previous M(v1, vo, v3, vs)
is 0 only if (v1,v2,v3,v4) =0,
so can't find linear dependency.

“Solve linear equations”:
given w € Fg,
find some v € Fg with Mv = w.

e.g. given w = (1,1,0,0) and

/0111\

0 1 1 0
1 1 1 O

\1 0 1 1/.

find (v, v2, v3, v4) with

N =

(Ovy + 1vy + lvs + lva,

Ovy + lvo + 1vz + Ouyg,

lvy + 1lvo 4+ 1vz + Ouyg,
lv; + Ovp + 1uz + 1lug) = w.

We have fast methods

to solve linear equations.

Easily apply those methods
to find linear dependencies,
if any dependencies exist.

Choose uniform random r € FZ:
compute w = Mr;

use linear-equation solver

to find v with Mv = w.

This produces uniform random
kernel element, namely v — 7.
Try again if v =1.

“Elimination”
solves linear equations
using O(y>) bit operations.

“Series denominators”

solve linear equations

using y21o(1) bit operations
if the equations are sparse.

“Sparse”: can evaluate v — Muv
using y1T°(1) bit operations.
Certainly true in Q sieve

with usual choices of y.

Series denominators
i
e.g. Given w = and
0
\o/
0 1
[o\
1 0 |
\1 1/
Have magic equation

w + M3w + M*w = 0 implying
w = Muv for v = —M?w — M3w.

O = = =

How did | find magic equation?
First explore its consequences.

Consider the power series
S = w+ (Mw)t+(M?*w)t°+- - =

(0
ottt ot
\g/ \1/0 \o/1
/}\m /(1)\t4+ /}\m
\o/ \o/ \1/
0

. to + 5 t 4+ in F3[[t]].
\1/ \1/

S is rational:

SR
SA+t+t*) = » o | Tt
1 1 \o/ \1/
/g\tz+ /g\tB_
\1/ \o/

For n > 4, coefficient of t"
in (> .>g MPwt') (1 +t +t*) is
M7 w _;Mn—l,w L M

= M (M*w + M3w +w) =0
by magic equation.

Squeeze S by projecting
from Fg[[t]] to Fol[t]].

e.g. Definer=(0001).

rS = rw+ rMwt + rM2wt? + - -
— ¢+ttt 8 10

Have rS(1 4t +t*) =t + t°.

Similar for every r Fg — F».
The series rS € F>|[t]] is rational,
specifically a poly of degree < 4
divided by 1+t + t*.

Can use continued fractions to
quickly find denominator 1+ ¢+ t*,
and thus to find magic equation.

In general, given w € Fg
and M : F3 — F3,
find magic equation as follows.

Pick 7 : F — Fp.

Compute first 2y terms of series
rw + rMwt + rM?wt? + - - in
F>[[t]]. Use continued fractions

to find denominator of series.

Repeat for a few random 7's,
compute lcm of denominators.
With very high probability
obtain denominator of series
w + Mwt + M2wt? + - - ..

If final denominator is
potY + p1t¥ =1 + - + pyt? then
pow +p1tMw +--- +pyMYw = 0.

If pg = 1 then w = Mwv where
U= —p1w — - — pyMy_lw.

If pg = 0 then use slightly more
complicated algorithm to solve
linear equation. But still easy to
find linear dependency.

Overall there are

O(y) applications of M.
Total y21°(1) bit operations
if M Is sparse.

Asymptotic cost exponents

Number of bit operations
In number-field sieve,

with theorists’ parameters,
ic [1.90...4+0(1) \where | —

exp((log n)1/3(log log n)?/3).
What are theorists’ parameters?

Choose degree d with
d/(log n)/3(log logn)~1/3
€1.40...+0o(1).

Choose integer m ~ nl/d.

Write n as

m®+ fg1m® 1+ + fim+ fo
with each f; below n(lto(l))/d
Choose f with some randomness

in case there are bad f's.

Test smoothness of 1 — 1m
for all coprime pairs (z, 7)

with 1 < 3,5 < L0:95..+o(1)
using primes < [0:95-.Fo(1)

Conjecturally
smooth values of 1 — 9m.

Use L0-12--40(1) humber fields.

For each (z, 7)
with smooth 7 — 3m,
test smoothness of 7 — Ja

and 2 — 908 and so on,
using primes < [0-82...40(1)

Each ‘]df(z/])‘ < m2-80...4+0(1)
Conjecturally [0-95--+0o(1)

smooth congruences.

in the exponent vectors.

Three sizes of numbers here:

(log n)/3(log log n)?/3 bits:
Y2 7

(log n)%/3(log log n)1/3 bits:
m, i —jm, j*f(i/3)

log n bits: n.

Unavoidably 1/3 in exponent:
usual smoothness optimization
forces (log y)? ~ log m;
balancing norms with m
forces dlogy ~ log m;

and dlogm =~ logn.

The number-field sieve

is asymptotically much faster
than the quadratic sieve

and the elliptic-curve method.

Also works well In practice.

Latest record: NFS found

two prime factors =y 2332

of "RSA-200" challenge, using
~ 5 - 1018 Opteron cycles.

Batch NFS

The number-field sieve used
[1.90..+0(1) it operations
finding smooth 7 — 9m; only
[1.77..+0(1) it operations
finding smooth 5% f(3/7).

Many n's can share one m;
[1.90..+0(1) it operations
to find squares for all n's.

Oops, linear algebra hurts;
fix by reducing y.

But still end up factoring
batch in much less time than

factoring each n separately.

Polynomial selection

Many choices of NFS polynomial.
Which choices are best?

Consider, e.g., poly degree d = 5.
Select integer m € [n1/0, nl/3];
find integers f5, f4,..., fo

with n = fsm?® 4+ fam* + - + fo;
for various integers 1, 7 inspect

(21— 3m)(f5%° + fas*s +- -+ fo7°).

Practically every choice of m
will succeed in factoring n.
For speed want smallest possible

(1—3m)(f5i° + fais + -+ fo5°).

e.g. n = 314159265358979323:
Can choose m = 1000,

fs = 314, f4 = 159, f3 = 265,
fo =358, f1 =979, fo = 323.

NFS succeeds in factoring n

by inspecting congruences

(¢ — 10007)(3144°
for various integer

But NFS succeeds
using m = 1370, |
(¢ — 13707)(65%° -

+ -+ 3235°)
pairs (2, 7).
more quickly

nspecting
- 130545 +

384352 + 3774253 4 127454 + 337°).

Consider, e.g.,

24 possible choices of m.
Quickly identify, e.g.,

225 attractive candidates.
Will choose one m later.

If |5 < SR and |5] < S!R then
(2 — gm)(fs2 + -+ + fo5°)| <
u(m, S)R® where u(m, S) =

(mS™1+S)(|f55°|+- -+ [foS|)

Attractive m, S: small u(m, S).

Choosing one typical m ~ nl/0

produces u(m, 1) ~ n2/°.

Question: How much time do we
need to save factor of B—to find

m, S with u(m, S) ~ B~ 1n2/07

This has as much impact as
chopping ~ 3 lg B bits out of n.

Searching for good values of m
takes noticeable fraction of
total time of optimized NFS.
(If not, consider more m's!)
End up with rather large B.

Conjectured time B7-5+o(1).
Enumerate many possibilities
for m near B0-25,1/6

Have f5 ~ B—1-2° nl/®

fa, f3. f2., f1, fo could be

as large as B0-25p,1/6

Hope that they are smaller,
B—1.25,n1/6

on scale of
so u(m,1) ~ B~ 1n2/6

Conjecturally this happens

within roughly B’ trials.

Conjectured time Boto(1).
Skip through m's with small f4.

Say n = fsm> + fam*+ -+ fo.

Choose integer k ~ f4/5f5.
Write n in base m + k:

n = fs(m + k)’
+ (fa = 5kfs)(m + k)* +- -

Now degree-4 coefficient
Is on same scale as fs.

Hope for small f3, f2,f1, f().

Conjectured time Bg4+-5+o(1).

Increase S.

Enumerate many possibilities

for m near Bnl/0.

Have f5 ~ B—5nl/6

fa, f3. f2, f1., fo could be

as large as Bnl/6

Force small f4. Hope for

f3 on scale of B—2nl/0,
fo on scale of B—0-5,1/6
Then u(m, BY") ~ B~ 1n2/6.

Conjectured time B3-5+0o(1).
Partly control f3.

Say n = fsm® + fam® +--- + fo.

Choose integer k ~ f4/5f5
and integer £ ~ m/5f5.

Find all short vectors

in lattice generated by
(m/B3,0,0,10f5k® — 44k + £3),
(0, m/B*, 0,205kl — 4f44),

(0,0, m/B>, 10f5¢?),

(0,0,0 ,m).

Hope for v below B1

with (10fsk?® — 4 fak + f3)
+ (20 fskl — 4 f4d)v

+ (10f5£%)v?

below m /B3 modulo m.

Write n in base m + k + v4.
Obtain degree-5 coefficient
on scale of B—°n1/6.
degree-4 coefficient

on scale of B~4n1/6;
degree-3 coetficient

on scale of B—2n1/6.

Hope for good degree 2.

After selecting attractive m's,
how to identify best (m, y)?

Could check smoothness of
some congruences for each m
to estimate smoothness chance.

But this Is expensive:
Smooth congruences are rare;

need quite a few of them
before estimate is reliable.

Want something faster,
to test more (m, y)'s.

Quickly and accurately estimate
number of small congruences
by numerically approximating

a “superelliptic integral.”

Quickly and accurately estimate
congruence smoothness chance
by approximating distribution of
a "Dirichlet series.”

So can estimate cost of

finding more smooth congruences
than exponent-vector length.

In practice: Fewer required.
Open: Estimate how many.

Given H,m, fs, ..., fo:
How many congruences
survive Initial selection
of small congruences?

Consider integer pairs (z, 7)
with 1Z + 7Z = Z and 7 > 0.
How many congruences

(2 — gm)(f52° + - - + fog°)
are in [—H, H]|?

1 bound Is quite crude.
Can instead enumerate j's,
count 2's for each 7.

Faster: Numerically
approximate the area of

{(2,7) e RxR:--- €[—H, H]|}

Number of qualifying pairs

Is extremely close to
(3/m*)H?/0 [0 da/(F(z)?)!/°
where

F(z) = (z — m)(fsz> + - + fo).

Evaluate superelliptic integral
by standard techniques:
partition, use series expansions.

What 1s chance that a

uniform random integer in [1, H]
is, e.g., 1000000-smooth?

Define S as the set of
1000000-smooth integers n > 1.

The Dirichlet series for S
is > [n € S|z'e™ =

(1__$|g2__$2|g2__$3|g2_____)

1 o lg3 o R21g3 4 L31g3 .
(1+x T T)
(1__$Ig5__$2|g5__m3|g5_____)

(1 4+ 718999983 + 7218999983 4.)

Replace primes 2, 3,5, ..., 999933
with slightly larger real numbers
2=11%3=11% 5=11%
.., 999983 = 1.1

Replace each 2630, .. in S with
§a§b ..., obtaining multiset S.

The Dirichlet series for S
is > [n € S|z'e™ =

(1 i $|g§ n 3:2 Ig§ i x3|g§ 0)

n Ig§__ 2Ig§__ 3|g§_____
(1+z °+ 8% 1782)
(1__$Ig5__$2lg5__$3|g5_____)

(1 4+ 718999983 + 7218999983 4.)

This I1s simply a power series
coy’ + eyt + - =

(1498 + 428 4+ 438 £ ..))
(14912 + 4212 1 4312 4)
(1417 + 4217 44317 L)
(14 Y145 2185)

in the variable y = z'81-1.

Compute series mod (e.g.) y°1Y;

l.e., compute cg, c1, ..., €2909.
S has cg + - - - + coggg elements
< 1.12999 2400 55 S has

at least that many elements

Can modify Dirichlet series
to modify notion of smoothness.

Use 1 + 28999983 jnstead of
(1 4+ mlg 099983 + $2 lg 999983 4.

v

to throw away n's having
more than one factor 999983.

Multiply coy® + - - - + c2909y>%%
g 1000003 ... 4 ,18999999937

by
to allow n's that are
1000000-smooth integers < 2400

times one prime in [10°, 107].

Number-field smoothness: replace
1 + mlgp 4+ a;2|g‘P 4+ ... with
1 _|_a;|g/V(P) + $2IgN(P) 4 ...

where P is ideal, N is norm.

In all of these situations,

can compute an upper bound
on number of smooth values
to check tightness of lower bound.

If looser than desired,
move 1.1 closer to 1.
Achieve any desired accuracy.

Smoothness chance for 1 — J&
in Q(a) is, conjecturally,

very close to smoothness chance
for ideals of the same size.

Same for (2 — jm, 71 — ja)
in Q x Q(a).

Integrate size distribution
of (2 —7m)(z — ja) against
smoothness distribution of ideals.

