A software implementation
of NIST P-224

D. J. Bernstein
University of lllinois at Chicago

NSF CCR-9983950

cr.yp.to/nistp224.html



NIST P-224 is the elliptic curve
y? = x3 — 3x + cg over Z/p.

Here cg = 18958286285566608
00040866854449392
64155046309636793
21075787234672564

and p = 2224 — 2% 4 1,

Multiply (10(2%%4—1)/(28—-1),...)
by n on the curve to get (Kj,...),
for n € (Z/#curve(Z/p))*.



Compressed Diffie-Hellman

Secret K,p <
A

Alice's
secret g

Y
Alice’s
public key Kj

Brian's

public

ey Kp
A

Brian's
secret b

Y

> Secret K,



What nistp224 does

nistp224 i1s a new program
to compute K, given a, K.

Alice puts 28 random bytes into A,
28 newlines into K1.

cat A K1 | nistp224 > KA
cat A KB | nistp224 > KAB




Also a C-language library:

unsigned char a[28];
unsigned char kb[28];
unsigned char kab[28];
nistp224(kab,kb,a) ;

58612 bytes for library on PIII.



Speed of version 0.76

Typical cycle counts, typical a's:

X X,y

505683 522639 Athlon
785900 668566 UltraSPARC
835530 734731 Pentium |l
043244 827360 Pentium 4
1120824 985097 Pentium
1166080 1019027 RS64-III



X, y time does not ¢
Depends on a, I-cac

923556,
864336,
864340,
864340,
864552,
864340,
8738656,
864340,

864600,
864536,
864340,
864340,
864343,
864552,
864340,
864140,

864340,
864330,
881720,
864544,
864340,
864340,
8384640,
864140,

epend on Kp.
ne state, etc.

864564,
864540,
879350,
864340,
864340,
864544,
864312,
864140



Floating-point arithmetic

A 64-bit fp number
is a real number 2¢f
with e, f € Z and |f| < 2°%.

Round each real number z to

closest 64-bit fp number, fpg, z.
Round halves to even.



Given 64-bit fp numbers r, s
(subject to limits on e),
x86 chips can quickly compute

fP64(r T 5), fP64(I’ — S), fp64 rs.

|t ro, So, M1, S1 € Z
;| <231, |s;| <23 then
ros1 = fpga rosi,

riso = tpes riso,
sy + rnsp = fp64(r051 + rlso).



Carrying

Say r = 31415926228 + 53589793,
Define a = 3 - 299
ri = fpea(fpea(r + ) — ).

Then r; = 31415926 - 223
and fpgsa(r — r1) = 53589793.

(Kahan 1965, et al.)



Arithmetic mod p

Can build big-integer arithmetic

using floating-point operations.
(Veltkamp 1968; Dekker 1971)

nistp224 uses Z[22%t] =
{Yisogit - g €2®Z}.
Z[2?%t] — Z/p by g — g(1).



Normally use small polynomials:
r = ro——rlt—l—r2t2+---+r7t7
with |r;| < 228227 .1.01.

If r and s are small:
Using fp can compute rs and

reduce mod Ker(Z[228t] — Z/p)
to a small polynomial.

Also r? — 8s, r(4s — u) — 8v?, etc.



Z[100t] — Z/(10° — 4 - 10% — 1).
3100002 + 4100t + 51 s 314151,
140000t% — 1500t - 45 — 138545

Multiply and reduce:

434 109 1494

4 34 109 1494
34 125 1498

35 25 1498

25 16338

25 1649

41 49

49

49

b1

1030
1080
1030
1030
1115
15
15
179
202
2

2295
2295
2295
2295
2295
2295
2295
2336

36

36



Elliptic-curve arithmetic

Use Jacobian coordinates.
(Miller 1985, et al.)

(x,y,z) € (Z/p)3, with z #£ 0
and with y? = x3 — 3xz* + ¢52°,

represents (x/z°, y/z3) on curve.

Use small polynomials g, r, s
to represent X, y, Z.



Elliptic-curve doubling

Given (x1, y1,21) with z; # 0:
2(X1/2121)/1/Z13) = (Xz/Zzz')/z/ZS)
where 0 = 212, v = y12, b = x17,
o= 3(X1 — 5)(X1 + 5),

x) = a’ — 8B, z2=2y121,

y2 = a(4B — x2) — 8v°.

4 squares, 4 mults, 8 reduces.



nistp224 computes

0 = reduce 512,

_ 2
¥ = reduce ry,

B = reduce g1y,
o = reduce3(q; — d)(q1 + 9),
g> = reduce(a® — 8B)

so = reduce((r; + 51)% — v — 6),
ry = reduce(a(4B8 — qo) — 8v2).

5 squares, 3 mults, 7 reduces.



Elliptic-curve addition

Given (x1, y1,21) and (x2, y2, 20)
with z1 # 0, zo # 0, and
(X1/2121)/1/213) 7 (x2/222,y2/223):
Use 4 squares and 12 mults

to obtain sum (x3, y3, z3).

Again eliminate one reduction.
Could again trade mult for square.



Some of the intermediate results

2 3 2 _3
are zy, 77, Z5, Z5.

When reusing (x1, y1, 21),

also reuse 212, 213.

(Chudnovsky, Chudnovsky 1987;
Cohen, Miyaji, Ono 1998)



Elliptic-curve multiplication

ao, ..., a7 € {0,1,..., 255%.
Define a = 221%(ap + 120) +
2298(a; — 136) + - - - + (ap7 — 136).

nistp224 uses simplest base-16
chain for a, coeffs {—8, —7,...,7}.
225 doubles, < 59 adds.
Could eliminate a few adds.
Could exploit initial z = 1.



Reciprocals mod p

nistp224 computes p — 2 power
with obvious addition chain:
223 squares, 11 mults.

Simpler than Euclid, and
time independent of input.

However, Euclid is faster.
Could use randomized Euclid.



Plans: better primes

Use prime in 3 + 4Z
for easier square root.

Use prime near power of 2
to chop carries in half.

Example of good prime: 2226

Can use radix 228-22



Plans: better curves

Shape y2 = x3 + cx? + x allows
fast compressed multiplication.
(Montgomery 1987)

x-coords of 2R, Q@ + 2R, 2Q + 2R
are very simple functions of

x-coords of Q, R, @ + R,
when none of these points are oo.



y? = x347530x%2+x, p =220 —5
Curve order p +1 — 1200040326 - - -
s 16 - prime. Use a's in 16Z.

Base (53(22%* —1)/(28 —1),...).
Can force 0 < K, < 2224,

Twist has order 8 - prime,
so don't need to check whether
compressed Input Kp IS on curve.



Given Kp: For various n find

Xn, Zn With K,p = Xn/zn.

From Kp, Xn, Zn, Xp+1, Zn+1
obtain Kp, xon, 220, X2n+1, Z2n+1

or Kp, Xon+1, Z2n+1, X2n+2: Z2n+2
using 4 squares, b mults,

and one easy mult by 1883.

No need for square roots.



Perhaps better to choose curve
with another fast endomorphism.

(Gallant, Lambert, Vanstone 2000)

In some cases can still use
fast x-coordinate addition.



