
189

Detecting Nondeterministic Payment Bugs in Ethereum
Smart Contracts

SHUAI WANG∗, The Hong Kong University of Science and Technology, China

CHENGYU ZHANG, East China Normal University, China

ZHENDONG SU, ETH Zurich, Switzerland

The term łsmart contractsž has become ubiquitous to describe an enormous number of programs uploaded to
the popular Ethereum blockchain system. Despite rapid growth of the smart contract ecosystem, errors and
exploitations have been constantly reported from online contract systems, which has put financial stability at
risk with losses totaling millions of US dollars. Most existing research focuses on pinpointing specific types of
vulnerabilities using known patterns. However, due to the lack of awareness of the inherent nondeterminism
in the Ethereum blockchain system and how it affects the funds transfer of smart contracts, there can be
unknown vulnerabilities that may be exploited by attackers to access numerous online smart contracts.

In this paper, we introduce a methodical approach to understanding the inherent nondeterminism in the
Ethereum blockchain system and its (unwanted) influence on contract payments. We show that our new
focus on nondeterminism-related smart contract payment bugs captures the root causes of many common
vulnerabilities without relying on any known patterns and also encompasses recently disclosed issues that are
not handled by existing research. To do so, we introduce techniques to systematically model components in the
contract execution context and to expose various nondeterministic factors that are not yet fully understood.
We further study how these nondeterministic factors impact contract funds transfer using information flow
tracking. The technical challenge of detecting nondeterministic payments lies in discovering the contract
global variables subtly affected by read-write hazards because of unpredictable transaction scheduling and
external callee behavior. We show how to augment and instrument a contract program into a representation
that simulates the execution of a large subset of the contract behavior. The instrumented code is then analyzed
to flag nondeterministic global variables using off-the-shelf model checkers.

We implement the proposed techniques as a practical tool named NPChecker (Nondeterministic Payment
Checker) and evaluate it on 30K online contracts (3,075 distinct) collected from the Ethereum mainnet.
NPChecker has successfully detected nondeterministic payments in 1,111 online contracts with reasonable
cost. Further investigation reports high precision of NPChecker (only four false positives in a manual study of
50 contracts). We also show that NPChecker unveils contracts vulnerable to recently-disclosed attack vectors.
NPChecker can identify all six new vulnerabilities or variants of common smart contract vulnerabilities that
are missed by existing research relying on a łcontract vulnerability checklist.ž

CCS Concepts: · Software and its engineering→ General programming languages.

Additional Key Words and Phrases: Program Analysis, Smart Contracts, Security, Blockchain

ACM Reference Format:
Shuai Wang, Chengyu Zhang, and Zhendong Su. 2019. Detecting Nondeterministic Payment Bugs in Ethereum
Smart Contracts. Proc. ACM Program. Lang. 3, OOPSLA, Article 189 (October 2019), 29 pages. https://doi.org/
10.1145/3360615

∗This work is done while Shuai Wang was working at ETH Zurich.

Authors’ addresses: ShuaiWang, The Hong Kong University of Science and Technology, China, shuaiw@cse.ust.hk; Chengyu
Zhang, East China Normal University, China, dale.chengyu.zhang@gmail.com; Zhendong Su, ETH Zurich, Switzerland,
zhendong.su@inf.ethz.ch.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/10-ART189
https://doi.org/10.1145/3360615

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

189:2 Shuai Wang, Chengyu Zhang, and Zhendong Su

1 INTRODUCTION

Blockchain is a computing platform where computers run in a decentralized fashion and are
coordinated by consensus among the underlying miners. Ethereum is the world’s second largest
cryptocurrency (behind Bitcoin) bymarket cap, and allows users to write and upload smart contracts,
which are general-purpose programs that execute on the blockchain. Thus far, a variety of smart
contracts applications have been launched on Ethereum, including financial services, supply chain
systems, and games. Users of Ethereum can execute smart contracts by sending money to them. As
of March 2019, the total value of Ethereum currency has reached over 15 billion US dollars.1

Despite this prosperity, investment in Ethereum is still considered speculative and unregulated.
The market fluctuates frequently, and the security of Ethereum smart contracts is also of general
concern. Due to strategic motives of contract developers (i.e., łtime-to-marketž requirements) and
blockchain system constraints, smart contracts are generally perceived as prone to exploitation and
security breaches. Massive attacks have been launched to exploit online smart contracts, causing
severe threats to financial stability. For instance, the DAO attack successfully stole over 3.6M
Ether and caused a hard fork (a rule-violating change in the blockchain) in order to revert the
attack [Siegel 2016]. Even worse, smart contracts are difficult to update after release, which means
that contract developers are mostly unable to ensure that their contracts will be iteratively fixed
for security flaws. Hence, a large number of both known and unknown defects could exist in smart
contracts (as has been confirmed by recent research and industrial hackers [evm 2018b; Code4Block
2018; Luu et al. 2016; SECBIT 2018; Tsankov et al. 2018]). These defects present a serious challenge
to both contemporary security and blockchain research.

Among current efforts in this demanding field, static analysis is used to flag several specific types
of vulnerabilities, given the source code or binary code of contract programs. Meanwhile, abnormal
behaviors are monitored during online execution by instrumenting the Ethereum Virtual Machine
(EVM). Most of these existing approaches utilize appropriate predefined vulnerability patterns which
can only be found by experts [ConsenSys 2018; Jiang et al. 2018; Kalra et al. 2018; Luu et al. 2016;
Rodler et al. 2018; Tsankov et al. 2018]. Hence, our capability of finding defects and identifying
contract vulnerabilities is limited by the currently known patterns.

A systematic methodology is yet to be found to understand the root causes of many well-known
vulnerabilities. This work aims at analyzing nondeterminisms in the smart contract execution
context (e.g., unpredictable transaction scheduling, as discussed in [Sergey and Hobor 2017]; see
Sec. 2.3 for the clarification of łnondeterminismsž in our research context) that cause unpredictable
payments and potential financial loss. Rather than searching for likely buggy payments with the
help of predefined patterns, our approach is unique and performs systematic modeling to expose
various nondeterministic factors in the contract execution context Ð such nondeterminism indicates
the root cause of common vulnerabilities and helps detect presumably exploitable payment bugs
without querying any patterns.
To this end, we formulate the contract in an intermediate language and use information flow

analysis to identify contract payments influenced by nondeterministic factors existing in the
contract execution context. We aim to flag the usage of certain nondeterministic system properties
and external call returns in contracts. More importantly, we aim to comprehensively identify
program global variables under read-write hazards (and hence becoming łnondeterministicž) due
to the unpredictable transaction scheduling and external callee behaviors. To this end, we apply
systematic instrumentation and promote the contract language with various runtime components:
the enhanced language is able to model a large subset of the contract behaviors, and enables us to
identify program global variables that may be nondeterministically updated.

The proposed techniques are implemented as a practical tool named NPChecker that analyzes
the EVM bytecode compiled from the contract source code. From the 30K smart contracts that we
used for evaluation (including 3,075 unique contracts, as per their sha256sum), NPChecker has

1As of this writing, the price of each Ethereum token, called Ether, is worth 162.3 US dollars.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

Detecting Nondeterministic Payment Bugs in Ethereum Smart Contracts 189:3

successfully found 1,111 buggy contracts. Comparing with existing research in this field, we show
that NPChecker reveals payment bugs in a highly precise manner (only four false positives in
our manual inspection of 50 contracts) and therefore making bug confirmation and rectification
much easier. We also show that NPChecker unveils subtle issues in real-world contracts that are
unknown to existing research. NPChecker can identify all six recently-disclosed vulnerabilities or
variants of common vulnerabilities that are missed by existing research relying on predefined bug
patterns. In summary, we make the following contributions:

• We introduce and advocate a new focus on the inherent nondeterminism of Ethereum Ð the
root cause of various common smart contract vulnerabilities. We strive to detect nondeter-
minism that lead to unpredictable funds transfer which are presumably vulnerable (referred
as payment bugs in the rest of the paper) without using any predefined patterns. Our research
captures a large set of payment bugs beyond the well-known ones: some subtle vulnerabilities
disclosed in recent studies are as well exposed.
• We use information flow tracking as a unified approach to study how nondeterministic con-
tract variables can affect funds transfer. We formulate the contract program in a well-defined
language as the basis of the information flow tracking. To expose nondeterministic global
variables, we propose systematic instrumentations to take runtime components (e.g., miner)
that can potentially affect the contract execution into account. The instrumented language
practically models contract execution and is linked with model checkers (Smack [Rakamarić
and Emmi 2014]) to pinpoint contract global variables suffering from read-write hazards.
• We implement the proposed technique into a practical tool named NPChecker to detect
payment bugs in EVM bytecode. Out of the 30K online contracts (of which 3,075 were unique)
collected from the Ethereum mainnet, NPChecker successfully flagged 1,111 buggy contracts.
Further manual investigation shows that NPChecker is high accurate.

2 BACKGROUND

2.1 Ethereum Blockchain and Transaction Pending Pool

Ethereum is a decentralized peer-to-peer network which maintain and secure a shared ledger
called blockchain [Wood 2014]. Typical actors in Ethereum include miners and Ethereum accounts.
Miners are computers residing on nodes of this peer-to-peer network to construct and maintain
the underlying blockchain. Ethereum accounts are the primary łusersž of Ethereum for various
(commercial) purposes. Typically, each account could be controlled by private keys (i.e., łexternally
owned accountž) or controlled by its own code (see Sec. 2.2). Each account, indexed by a unique
address, can interact with other accounts on Ethereum by creating transactions. Each transaction
can be an arbitrary message, payment, or contract creation command.

Hash Block 63

Proof of Work

Timestamp

Transaction 2231

Transaction 2232

Transaction 2233

…

BLOCK 64

Hash Block 64

Proof of Work

Timestamp

Transaction 2262

Transaction 2263

Transaction 2264

…

BLOCK 65

Hash Block 65

Proof of Work

Timestamp

Transaction 2297

Transaction 2298

Transaction 2299

…

BLOCK 66

Time

Pending Trans 1 Pending Trans 2

Pending Trans 3 Pending Trans 4

Pending Trans 5 Pending Trans 6

...

Pending Trans 5521 Pending Trans 5525

Hash Block 66

Proof of Work

Timestamp

Transaction 2322

Transaction 2323

Transaction 2324

…

New BLOCK

Miners pick transactions

from the pool

✓

Accounts

users online contracts

Accounts submit

transactions

Fig. 1. The Ethereum blockchain and the transaction pending pool. Miners are free to include any transactions
into the new block in any order, which entails a primary source of nondeterminism (see Sec. 2.3.2 for details).

As shown in Fig. 1, the ledger is organized as a hash-chain of blocks ordered by time, and each
block contains a set of transactions. To create a new block, each miner selects certain transactions
from a transaction pending pool and add them to a new block. Then, the miner starts to solve a

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

189:4 Shuai Wang, Chengyu Zhang, and Zhendong Su

cryptographic puzzle (i.e., łminingž [Nakamoto et al. 2008; Wood 2014]), and when a miner first
solves the puzzle, it will broadcast its result across the entire network and the result is verified
by other miners. Once consensus is reached, the winner miner will receive a reward and add its
proposed new block to the blockchain.
Fig. 1 also depicts how a miner selects transactions from the pending pool. In general, when a

transaction is created by an account, the sender can specify a limit to the gas they are willing to
spend for the transaction (called the łgas pricež). The transaction then waits in the transaction
pending pool, until it gets picked and executed by an miner. Miners tend to pick valid transactions
to fill a block in a way that maximizes profits. Therefore, transactions that are assigned higher gas
prices are usually prioritized. After a miner successfully generates a new block, all the transactions
in the block are appended to the end of the chain. Also, while the pending pool can contain plenty
of transactions, the number of transactions that can be injected into one block is limited by the
bounded maximum gas cost per block. Hence, a transaction may stay in the pool for a considerable
amount of time before being executed.

2.2 Ethereum Smart Contracts

A smart contract is a program which defines and enforces agreements between Ethereum users.
Smart contract programs (usually written in Solidity) are compiled into bytecode and deployed
to the Ethereum blockchain. Fig. 2 shows how contracts (in terms of bytecode) fit into Ethereum.
Ethereum virtual machine (EVM) is deployed to every node and executes contract bytecode. EVM
bytecode has a very succinct representation that includes approximately 70 different opcodes for
computations and communication with the underlying blockchain infrastructure. While the source
code of smart contracts is usually not available, the EVM bytecode of every online contract is
publicly accessible on the blockchain.

Ethereum Virtual Machine Layers

Hardware

PC Non-persistent

Memory

Smart Contract Transaction State

Persistent Memory

Balance

Available

Gas

Blockchain

Virtual

Machine

EVM

Bytecode

Fig. 2. Ethereum blockchain layers.

All contracts deployed on EVM can access
its own account balance (i.e., the amount of
Ether it has), its private storage, and its EVM
bytecode. In general, there are two types of
private storage a contract bytecode can access:
the non-persistent storage that discards its con-
tent after one transaction is completed, and the
persistent storage retaining a key-value store
persisted across transactions. Every EVM in-

struction costs a certain amount of gas. In general, accessing non-persistent storage causes far less
overhead (less than five gas) than accessing persistent storage (usually between 200 to 20,000 gas).
A Contract Example. Fig. 3 presents a sample contract DigitalGoods, which acts as an interme-
diary to purchase goods from owner for user, by taking certain amount of fee from the user’s
purchase. To deploy this contract, the contract owner schedules a contract creation transaction,
including the contract bytecode. When the creation transaction is accepted, a unique address will be
assigned for this contract, its persistent storage will be allocated (e.g., fee), and further initialized
by calling the constructor function (Intermediary()). Note that for a contract transaction, the
information of the sender (the amount of transferred Ether, sender’s address, etc.) are all kept in
variable msg. After acquiring the purchase fee which is publicly accessible (i.e., $10), users can
submit the purchase transaction, by calling the purchase function, which issues a payment call
(via transfer). Also, the setFee function can be used to adjust the fee, in case the transaction
sender is the contract owner.
While the contract looks normal, the owner can indeed trap contract users, by forcing them to

accept a higher fee. In fact, the malicious owner of this contract could actively monitor transactions
in the pending pool and schedule a transaction towards the setFee function to increase fee. By
raising the miner reward higher to the value of the user’s transaction, the setFee transaction
will be executed first (e.g., raise the purchase fee from $10 to $100), forcing the user to send less

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

Detecting Nondeterministic Payment Bugs in Ethereum Smart Contracts 189:5

contract Intermediary {

uint256 public fee;

address public seller;

address public owner;

function Intermediary () {

owner = msg.sender;

// seller initialization is omitted

fee = 10;

}

A sample smart contract.

function purchase () {

// msg.value is how much Ether was sent by user

// transfer pays (msg.value -fee) to the seller

owner.transfer(msg.value - fee);

}

function setFee(uint256 _fee) {

if (msg.sender == owner)

fee = _fee;

}

}

A sample smart contract (cont’d).

Fig. 3. Sample Contract.

money to the seller. Overall, due to the unpredictable selection of transactions in the pending
pool (see Fig. 1), the persistent storage of the callee contract becomes łnondeterministicž from the
perspective of end-users, and sample code in Fig. 3 has shown the feasibility of exploiting such
nondeterminism to cause end-user’s financial losses. This work aims to pinpoint contract payments
that can be affected by malicious contract users, owners or even the underlying miners via the
exploitation of nondeterminism. We start by discussing potential sources of nondeterminism in the
following section.

2.3 A Nondeterministic Perspective of the Contract Execution Context

In this section, we present a nondeterministic perspective of the contract runtime system. We
believe the lack of an in-depth understanding of such unique execution context leads to improper
handling of various types of nondeterminism in Ethereum-involved scenarios. By formulating the
contract execution context and the latent nondeterminism comprehensively, we point to the root
causes of various common contract vulnerabilities (see Sec. 3).
Nondeterminism. It is worth noting that łnondeterminismž discussed in our research context
is highly inspired by people’s classical idea of how nondeterminism works in multi-threading
programming. Indeed, existing research has shed light on the łConcurrent Perspective on Smart
Contractsž [Sergey and Hobor 2017], where Ethereum transactions using the persistent storage of
a contract (e.g., the fee variable in Fig. 3) is analogical to threads accessing concurrent objects in
the shared memory. Overall, in Ethereum, the outcome of a transaction is nondeterministic from
the perspective of the end-user because a lot can happen between when a transaction is dispatched
and when it’s incorporated in the blockchain. These unexpected behaviors are directly controlled
by self-interested individuals in Ethereum. More specifically, malicious parties can manipulate the
state of the contract to their benefit and cause a party to lose out. Miners can reorder transactions
and set block properties (e.g., Timestamp; explained soon in Sec. 2.3.1) and other users can broadcast
malicious transactions.
The present work takes a systematic and unified focus on the inherent nondeterminism of

Ethereum (discussed in this section) and explain why they are the root causes of various common
smart contract vulnerabilities (discussed in Sec. 3). As illustrated in Fig. 4, besides transaction
scheduling, this research further extends and discusses two other key nondeterministic factors:
external callee behaviors and Ethereum system properties.

2.3.1 Nondeterministic Block and Transaction States. As discussed in Sec. 2.1, a submitted trans-
action is usually retained in the pending pool for some time before being executed. The direct
consequence of this delay is that the block state (e.g., the block number or timestamp) of the
Ethereum blockchain becomes nondeterministic, since the expected value at the time of uploading
the transaction could be drastically different from the obtained value during transaction execution.

Similarly, the transaction state property (tx.origin) is provided by the EVM for smart contracts
to manage transaction logics and to check the identity of its caller. However, the frequently ignored
fact is that tx.origin always refers to the contract originally initiating the transaction. Hence, a
callee contract cannot verify the identity of its latest caller, given a chain of contract calls within a
transaction. tx.origin is a source of nondeterminism in Ethereum, and as suggested [evm 2018b],

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

189:6 Shuai Wang, Chengyu Zhang, and Zhendong Su

Hash Block 66

Proof of Work

Timestamp

Transaction 2322

Transaction 2323

Transaction 2324

…

New BLOCK

Gas

inputs Balance

Caller Contract

Other Contract

Balance -= Send

Storage

cross-contract call

trigger caller’s func?

succeed or failed?

EVM

Blockchain
Hardware

TIMESTAMP

BLOCKHASH

...

Mining Transaction 2322

3: Nondeterministic

transaction execution

scheduling

delegation call

Online Library

creation call

New Contract

Callee Contracts

1: Nondeterministic system properties

2: Nondeterministic external callee behaviors

Transaction

State

Fig. 4. A nondeterministic perspective of the smart contract execution context. We highlight three key
nondeterministic factors that could introduce lurking nondeterministic payment bugs.

that contract developers should not rely on this value to guard any critical program logics such as
issuing a payment. See Sec. 3.1 for working examples to exploit nondeterministic system properties.

2.3.2 Nondeterministic Transaction Execution Scheduling. As aforementioned, miners are free to
pick transactions from the pending pool and determine the order of transaction execution. As
a result, the assumptions concerning the program global variables of an online contract could
be misleading due to the transaction execution races. Recall that, in general, each transaction
dispatched to a smart contract invokes a function. Therefore, multiple transactions towards the
same contract are comparable to threads accessing shared memory [Sergey and Hobor 2017].
Contract global variables, including all the data in the persistent storage region of a contract, could
suffer from such read-write hazards. For instance, when the contract user of the Intermediary
contract shown in Fig. 3 creates a buy transaction, what can really happen could be the following
transaction execution sequence:

setFee→ buy

where the setFee transaction front-runs the buy transaction and changes the fee. Indeed, there are
real-world attacks who affect the transaction execution order by squeezing in a transaction with a
higher miner reward or by conspiring with the miner (see Sec. 3.4 for exploitations)

2.3.3 Nondeterministic External Callee. Another major issue is the unpredictable (malicious) be-
haviors of external callees. While a fundamental tenet of defensive programming suggests that we
should not assume anything involving an external call outside of our code will work as claimed,
most online smart contracts drift from this golden principle, presumably due to unawareness of the
fact that a malicious callee can exploit the caller contract and thus control the transferred fund. A
number of real-world attacks have been launched and led to severe financial losses.
As shown in Fig. 4, cross-contract function calls (referred to as łexternal callsž from this point

onwards) lead to a new form of nondeterminism. Because external calls are synchronized, in order
to transfer the execution flow, the miner will pause the execution of the current contract and switch
to another contract. However, the behaviors of the callee contract are an obstacle to the caller: its
nondeterministic actions could lead to financial losses by calling its caller and manipulating the
caller’s persistent storage. For example, suppose a user can withdraw money from his deposit in a
Bank contract by calling the withdraw function of the contract. While this action seems normal,
what can possibly happen is the following transaction execution sequence:

withdraw→ withdraw→ withdraw→ . . .

where the malicious user keeps issuing new withdraw transactions to drain Ether from the Bank
contract’s balance when receiving the transferred money, and before the bank (which is paused and
waiting for user’s response) deducts the withdrawn amount from the user’s deposit (see Sec. 3.3 for

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

Detecting Nondeterministic Payment Bugs in Ethereum Smart Contracts 189:7

working examples of such attacks). Real world attacks have shown the feasibility to reenter such a
payment function and drain all the balance of carelessly designed contracts [Siegel 2016].

In addition, external calls are designed in such a way that developers need to confirm manually
that the operation indeed succeeds. In other words, the returned value of an external call is
nondeterministic as well. The caller’s execution will be reverted and all the funds are frozen, in case
a failed external call is not properly handled. Case studies will be given shortly in Sec. 3.2.

3 NONDETERMINISTIC PAYMENT BUGS AS THE ROOT CAUSE OF COMMON
CONTRACT VULNERABILITIES

In this study, we aim to capture unpredictable funds transfer due to the inherent nondeterminism
of the Ethereum blockchain system. In the rest of this section, we will show that the awareness of
nondeterminism (see Sec. 2.3) actually enables a more principled and unified way to describe a set
of common vulnerabilities, such as the TOD and reentrancy bugs [evm 2018b; Siegel 2016]. For the
ease of understanding, we will also discuss defenses programmers can employ to guard against
these attacks. We will then scope the detectable vulnerabilities of NPChecker in Sec. 3.5, including
many well-known issues as well as much subtler defects. Before introducing typical attacks, we
first introduce the threat model of this research.
Threat Model. Some system-level design choices of the Ethereum blockchain lead to subtle
nondeterminism in the contract execution context, which can cause logical errors between a
contract’s intended behavior and its implementation. In this research, attackers are assumed to
be able to access the online smart contract and identify logical bugs of this kind. As a result, the
attacker can deliberately exploit these logical bugs, by directly manipulating a malicious miner
or using an adversarial contract to interact with the target contract. Attackers can also schedule
front-running transactions toward the target contract to alert its intended behavior. Successful
attacks will lead to undesired payments (i.e., łnondeterministic payment bugsž) and cause potential
financial losses for normal users.

3.1 System Property Dependence

As discussed in the best practices of Ethereum programming [evm 2018b], attackers can manipulate
various system properties, including both block and transaction states, to exploit a contract. For
instance, malicious miners can adjust block states such as the block timestamp and gas limit to
manipulate the generation of randomness in a contract. Online contracts can tweak the transaction
state properties (i.e., transaction origins) to hide its identity and bypass ownership checks of the
target contract. Overall, all direct and indirect dependencies of the these nondeterministic properties
should be taken care of cautiously, especially when funds transfer is involved. Consider a simple
gambling game below:

contract RandomReward {

uint256 constant private salt = block.timestamp;

uint256 constant private threshold = 1000;

function buggy_reward(uint256 bet) public {

uint256 t = salt * block.timestamp /(salt % 5) ;

if (t > threshold)

msg.sender.send.value(bet * 100)().

}

}

where the block.timestamp is used to compute a łrandomž number and further reward the
message sender when the random number is larger than a threshold. While such a system state
is fundamentally nondeterministic (as we have discussed in Sec. 2.3.1), using it as the seed for
randomness entails insecure design because the block timestamp can be tweaked by miners, who
can thus indirectly control the reward value and łbeat the crowd.ž
Recommended Practice. Instead of depending on system properties which could be manipulat-
able, contracts can leverage the third party oracle service [ora 2019] that provides an audit trail to

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

189:8 Shuai Wang, Chengyu Zhang, and Zhendong Su

fetch random numbers from random.org. Besides, a decentralized scheme called RANDAO [ran
2019] is proposed to generate random numbers via crowdsourcing. For instance, each participant of
a lottery-style gambling game generates her own random number offline and submit to a RANDAO
contract. Then, the RANDAO contract performs user identity checks and computes the exclusive
or of all submitted random numbers as the final result. While this scheme does not require a
centralized oracle service that is łtrustworthyž, it imposes notable cost since extra transactions are
needed to generate each random number.

3.2 Failed External Calls

As discussed in Sec. 2.3.3, external calls require developers themselves to take on responsibility
for the success of operations. However, as suggested in the best practices of Ethereum program-
ming [evm 2018b], improper handling of external call failure will likely result in exploitable contract
behaviors, in case the failure is not isolated. Consider a simple crowdfunding contract below:

address [] private refundAddresses;

mapping (address => uint256) public refunds;

function refundAll () public {

for(uint256 x; x < refundAddresses.length; x++) {

// now a single failure on send will hold up all funds

require(refundAddresses[x].send(refunds[refundAddresses[x]]))

}

}

where the contract iterates through an array to refund the supporters of this crowdfunding project.
The issue is that one supporter, when conspiring with the project coordinator, can deterministically
cause this refund call to fail, for example, by crafting the fallback function of his contract inten-
tionally runs out of gas. As a result, the refund loop can never complete and funds are locked. No
one gets paid because of the nondeterministic outcomes of this external call and its non-isolated
influence on further funds transfer.2

mapping (address => uint256) refunds;

function refundOne () external {

uint256 refund = refunds[msg.sender];

refunds[msg.sender] = 0;

msg.sender.send(refund);

}

Recommended Practice. Intuitively, the con-
tract can be amended such that each external
call is isolated within a single transaction and
therefore can minimize its (accidental or delib-
erate) damage. A commonly used design pat-
tern is called łfavor pull over pushž, where users

will have to withdraw funds rather than wait for the the contract to push funds. Consider the
revised crowdfunding contract on the left, where instead of sending refunds to all the crowdfunding
supporters, the crowdfunding contract waits each user to claim the refund by calling refundOne.
Each payment is handled within one transaction, which eliminates the possibility of locking funds.

3.3 Contract Reentrancy

Here we show that the well-known reentrancy bugs are actually due to the nondeterministic
behaviors of the callee in a contract call. Consider a simple digital bank contract below:

contract Attack {

function attack () { bank.withdraw (); }

function () public payable { bank.withdraw (); }

}

contract Bank {

mapping (address => uint256) private userBalances;

function withdraw () public {

uint256 amountToWithdraw = userBalances[msg.sender];

msg.sender.call.value(amountToWithdraw)();

// the attacker 's code is executed , and calls withdraw again

userBalances[msg.sender] = 0;

}

}

2This bug is also referred as łnon-isolated callsž or łunexpected revertž in some articles [evm 2018b; Grech et al. 2018].

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

Detecting Nondeterministic Payment Bugs in Ethereum Smart Contracts 189:9

where the contract Attack creates a transaction, and contract Bank, in turn, calls the withdraw
function and sends attacker its deposit. This payment triggers the fallback function of Attack (the
function with no name; when a contract issues a payment without specifying which function to
call, the fallback function will be called by default) that repeatly invokes the withdraw function.
However, because the balance of Bank has not yet been deducted, the second (and later) invocations
will still succeed. With a deliberately crafted set of loops, attackers could deplete all the Ether in the
digital bank. Due to the nondeterministic behavior of external callees, functions within the digital
bank could be re-executed within a normal withdraw transaction, causing read-write hazards of
contract Bank’s global variables and further influence funds transfer.
Recommended Practice. As previously discussed (see Sec. 2.2), every EVM instruction execution
costs certain amount of gas and in fact call will invoke the callee with almost all the gas the caller
has. Therefore to fix the reentrancy issue, one common suggestion is to reduce the available gas the
callee can use, by replacing call with two other external call methods transfer and send, which
do not delegate enough gas for the malicious contract to change caller states.3 Also, Ethereum
recently supports a new opcode STATICCALL, which disallows modifications to caller states even if
there are enough gas and prevents the reentrancy attacks in the first place.

3.4 Transaction-Ordering-Dependence

Due to the miner’s nondeterministic scheduling of transactions (Sec. 2.3.2), program global variables
are subject to read-write hazards as well. Consider the contract below:

contract Raffle {

mapping(uint256 => address) reserved;

function reserve(uint256 value) public payable {

// check whether corresponding entry has been initialized or not

if (reserved[value] == 0) {

// can only enter once when uninitialized (0)

reserved[value] = msg.sender;

}

}

}

where the buggy contract example presents an inconsistent program state affected by front running.
This example acts as part of a simple raffle game, where users transfer certain amount of Ether
to the payable function reserve and also reverse a number as the function input. Suppose a user
(i.e., the łvictimž) aims to reserve a number 23, then anyone can see the scheduled transaction
in the pending pool before it is committed. An attacker can schedule a transaction reserving the
same number, and by raising the miner reward higher to the value of the victim’s transaction,
the malicious transaction will be executed first, initializing the corresponding entry in reserved.
Hence, the victim’s reverse will fail, leading to the loss of transaction fee and the paid Ether.
Recommended Practice. To defend TOD attacks, one common practice is to use a łpre-commitž
scheme. Consider a revised raffle contract below (due to the limited space, this code is simplified):

contract Raffle {

mapping(address =>bytes32) hashes;

mapping(uint256 =>address) reserved;

function commit(bytes32 hash){

require(commits[msg.sender] == 0);

hashes[msg.sender] = hash;

}

function reveal(uint256 v) public {

bytes32 d = sha3((v, msg.sender));

// verify the hash

require(hashes[msg.sender] == d);

require(reserved[v] == 0);

reserved[v] = msg.sender;

}

}

where the user first computes and sends a hash instead of his data by calling commit. Note that
since hashes stores the submitted hash by user addresses, an attacker can send the same hash via
commit but it will not prevent others from reserving the hash. Then, the victim reveals the data

3However, we note that the recent Constantinople upgrade of Ethereum enables low-cost state changes and therefore
transfer and send can be vulnerable as well [ChainSecurity 2019].

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

189:10 Shuai Wang, Chengyu Zhang, and Zhendong Su

that produces the committed hash by calling reveal, and update reserved with v. At this step,
although the scheduled transaction (e.g., reserve a number 23 by calling reveal) can be seen by the
malicious user from the pending pool, he is unable to exploit the reveal function because reverse
engineering hash functions like sha3 is very difficult.

3.5 Overview of Payment Bugs Detectable by NPChecker

We have discussed several common smart contract vulnerabilities and their root cause because
of the inherent nondeterministic factors in the contract execution context. In this section, we
introduce two kinds of payment bugs (NP I and NP I I) that are derived from the nondeterminism
as follows:

• NP I : payment bugs belonging to this category describes contract local variables initialized
by nondeterministic system properties or external call status. The affected local variables are
checked on whether they can influence contract payments.
• NP I I : payment bugs belonging to this category describes contract global variables under
read-write hazards due to nondeterministic Ethereum transaction scheduling or interactions
of other contracts. We check the affected global variables on whether they can influence
contract payments.

Table 1. Classification of contract vulnerabilities. Note
that łsystem propertiesž include usage of both nondeter-
ministic block and transaction states.

NP I Bug NP I I Bug
System property dependence ✓

Failed external call ✓

Reentrancy ✓

Transaction-order dependence (TOD) ✓

We summary vulnerabilities and their cor-
responding categories in Table 1. It is worth
noting that each category of łvulnerabilityž
can subsume multiple variants. For instance,
reentrancy attacks include the aforemen-
tioned single-function reentrancy, as well as
cross-function reentrancy which exploits in-
consistent program states by reentering dif-
ferent functions of a contract to launch the

attack. In addition, while the classic TOD attacks exploits a pair of transaction calls to attack a
contract, recent studies also show the feasibility to exploit the so-called łevent-orderingž (EO) bugs
during which a contract can be exploited by deliberately crafting a long sequence of transaction
calls [Kolluri et al. 2018]. The initiating cause of EO bugs is the nondeterministic scheduling as well.
There could exist even tricker reentrancy attack vectors by crossing different contracts [Rodler
et al. 2018]. For instance, EVM enables łcontract delegationž for a contract to outsource its global
storage and computations to some online library contracts with common reusable functionalities.
While this feature allows more flexible development, it can also enable subtle reentrancy bugs,
such that the delegatee library first calls an attacker contract, and the attacker contract further
reentering the delegator contract (i.e., the łcallerž of the library). In addition, a contract is allowed
to create another contract, where the constructor function of the newly-created contract is called
for initialization. However, a newly-created contract could perform (malicious) reentrancy by
redirecting the execution flow from its constructor to functions of its creator [Rodler et al. 2018].
As studied in recent research, such cross-contract reentrancy attacks can impede existing static bug
detectors, because it is not feasible to analyze individual contracts to reveal such hidden defects.
However, shortly we will show that NPChecker can catch all such subtle issues.

3.6 Application Scope

The ability to directly analyze EVM bytecode (see the design and implementation sections in Sec. 5
and Sec. 9) implies a broader application scope of NPChecker compared to existing source code-
based approaches [Kalra et al. 2018]. However, it is challenging to determine the intended behaviors
of a contract because its true intention is generally obscure without public documents and with
anonymous deployment. Hence, it is possible that some bugs reported by NPChecker are actually
desired in the contract. Overall, we acknowledge the difficulty of łconfirmingž the existence of a bug.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

Detecting Nondeterministic Payment Bugs in Ethereum Smart Contracts 189:11

Following the convention of previous studies, we aim to provide a tool that can assist developers
or third-party analysts by flagging potential NP I and NP I I defects. Users can then leverage the
analysis results to minimize their manual inspection efforts. To emphasize the difference from
previous studies which adopt relatively weak threat model by capturing vulnerabilities that lead to
inconsistent program states, our threat model is more practical in the sense that we focus on funds
transfer of nondeterministic amounts which presumably is undesired and indicate financial losses.

Our technique performs extensive modeling of nondeterministic factors in the Ethereum contract
execution context which are the root causes of many common vulnerabilities (e.g., the reentrancy
attack has recorded millions of dollars in losses [Siegel 2016]). Conceptually, we admit that there
exist some łlanguage-levelž nondeterminism as well. For instance, the inputs of an online contract
are unpredictable, and loops whose behavior is determined by user input could simply iterate too
many times and become economically unrealistic (since every instruction of a contract costs certain
amount of fee to execute). In this work, we do not consider such łlanguage-levelž uncertainty
because we assume it is straightforward to provide sufficient validation checks to guarantee the
legitimacy. Our major focus here is on more subtle system-level nondeterminism issues hidden in
the contract execution context and runtime that are often ignored and mistaken by programmers
due to the unique execution model of smart contracts. Also, deprecated/historical attacks (e.g., call
depth attack [evm 2018b]) are also not considered, because they are no longer feasible due to
improvements made in the protocol or Ethereum language.

3.7 Soundness and Completeness

This research aims to present a practical tool to detect bugs from online contracts in bytecode
format. Our tool roots the same assumption with previous techniques [Luu et al. 2016; Nikolić et al.
2018; Rodler et al. 2018; Tsankov et al. 2018] that aim to find bugs rather than rigorous verification,
which would come with its own set of challenges, such as the typical lack of nontrivial and complete
contract-specific properties.

A strong distinction of our work from the previous łvulnerability checklistž-based bug detection
is that our work is the first to provide a comprehensive summary of several nondeterministic
factors in Ethereum and explain that they are the root causes of many existing attacks. In contrast,
the łvulnerability pattern matchingž-based techniques require a constantly-updated check list,
which is likely to be defeated by new vulnerabilities or variants of known issues, as we will show
in Sec. 10.1.
Soundness. As discussed in Sec. 3.6, we acknowledge that there exist certain łlanguage-levelž
uncertainties such as integer overflow/underflow issues that our work does not consider (existing
research has proposed techniques to pinpoint such issues [Grech et al. 2018]). In contrast, we
propose a principled modeling of subtle system-level nondeterminism, and perform information
flow tracking to reveal the influence of nondeterminism on contract payments. Conceptually, we
have modeled all the system-level nondeterminism, and our information flow tracking shall expose
any payments that are potentially affected by these nondeterministic factors. In this sense, our
technique is sound since we model the łupper boundž of potentially undesired payment influenced
by the analyzed nondeterminism.
From an implementation perspective, our prototype is not sound. Inspired by how a multi-

threaded program is instrumented into a sequential representation for model checking [Qadeer and
Wu 2004], wemodel nondeterministic transaction schedulingwith a sequential representationwhere
the instrumented program simulates a practical subset of possible contract executions. Besides, our
model checker performs bounded model checking (see Sec. 9), meaning that in principle we may
miss some findings.
Completeness. From the design perspective, our threat model assumes, in general, that any
funds transfer influenced by nondeterminism is undesired and presumably łvulnerable.ž However,
tentative studies show that there exist certain cases where this is actually the intended behavior,
i.e., there are legitimate situations where łnondeterministicž behavior seems intentionally used

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

189:12 Shuai Wang, Chengyu Zhang, and Zhendong Su

to influence payments. We will present relevant cases in Sec. 10.3 and Sec. 11 to enable a more
thorough understanding. Overall, we acknowledge the difficulties in comprehending the intended
behavior of a contract (see Sec. 3.6), since smart contracts are usually deployed anonymously in its
bytecode format without any public documentations. Therefore, our analysis could lead to false
positives (i.e., incomplete). The main users of our work are contract developers or third-party
security analysts Ð they can use our technique to łdebugž contracts and fix suspicious program
locations that may be exploited.
Regarding the implementation of our prototype NPChecker, we found several decompilation

errors for the employed decompiler which largely inflate the decompiled programs with irrelevant
code fragments. This would led to some false positives in our findings as well (discussed in Sec. 10).
Also, since we do not differentiate STATICCALL and CALL in our prototype implementation (see
Sec. 6), this may also lead to false positives.

4 RELATED WORK

We now review existing work in detecting vulnerabilities in smart contracts. Symbolic execution
has been widely used to analyze program paths and capture some predefined vulnerability pat-
terns [ConsenSys 2018; Feng et al. 2019; Luu et al. 2016]. We will compare our work with Oyente
and Mythril’s and demonstrate how NPChecker catches much more defects. Securify [Tsankov
et al. 2018] extracts Datalog facts from EVM bytecode and perform sound analysis to decide the
presence of bugs regarding predefined patterns. FSolidM [Mavridou and Laszka 2018] allows users
to define contracts as finite state machines, thus enabling the verification of contract semantics
and eliminating several common vulnerabilities in the first place. MAIAN [Nikolić et al. 2018] uses
symbolic analysis to flag specific vulnerable code patterns that can lead to funds locking indefinitely
or being drained by arbitrary users. ZEUS [Kalra et al. 2018] performs sound abstract interpretation
to verify the correctness of contracts with respect to several bug patterns. ContractFuzzer [Jiang
et al. 2018] utilizes fuzz testing on smart contracts, with testing oracles defined for several known
issues. Some other research, including MADMAX, which focuses on a set of gas-focused vulnerabil-
ities associated with denial-of-service attack [Grech et al. 2018], and TeEther [Krupp and Rossow
2018], which synthesizes exploitation towards online contracts, is orthogonal to our work. In
addition, some runtime monitoring techniques enforce data-flow integrity to defeat reentrancy
attacks [Rodler et al. 2018]. We also notice a line of research work verifying smart contracts with
formal methods [Amani et al. 2018; Bhargavan et al. 2016; Grishchenko et al. 2018; Hildenbrandt
et al. 2018; Hirai 2017]. However, this kind of approach usually requires the interaction with human
when proving, and also focuses on functionality specifications instead of security properties.

Some recent studies laid a good foundation on revealing the concurrent execution model of the
Ethereum blockchain system [Kolluri et al. 2018; Sergey and Hobor 2017]. While their analysis of
transaction interference is more comprehensive, a systematic modeling of nondeterminism that
could induce various attacks is still absent. Moreover, their research over aggressively treated any
program states that can be changed by reordering transactions as łbuggy.ž We take a step back in
this regard and perform a more practical analysis by pinpointing transferred funds that can be
affected nondeterministically.

To demonstrate the expressiveness of our tool, we now give an overview of the existing tools in
this field ordered by the publication date, focusing on common vulnerabilities found in research
and public media. Table 2 presents the summary of existing research. In contrast to the pattern
matching-based approach, the principled modeling of Ethereum nondeterminism in NPChecker
naturally captures a comprehensive set of common vulnerabilities. More importantly, NPChecker
is much more inclusive in terms of new issues (see Sec. 10.1 for empirical studies of new issues).
In contrast, most of existing works are based on predefined bug patterns and therefore is difficult
to direct flag new variants of known vulnerabilities (marked with diamond in Table 2). It is worth
mentioning that although the current release does not support to find dependencies on system
properties [sec 2019], Securify provides a DSL that users can use to specify new patterns (e.g.,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

Detecting Nondeterministic Payment Bugs in Ethereum Smart Contracts 189:13

Table 2. A comparison of existing smart contract bug detectors w.r.t. the expressiveness of common vulner-
abilities. ⋄ represents limited support. Sereum [Rodler et al. 2018] instruments the EVM to flag suspicious
online transactions while the rests perform static analysis.

Tool
General to Flag
New Bugs

Common Vulnerabilities

Reentrancy
System

TOD
Failed Unbounded

Arithmetic
Properties External Calls Loop Operations

OYENTE [Luu et al. 2016] ⋄ ⋄ ⋄

Mythril [ConsenSys 2018] ⋄ ⋄

Zeus [Kalra et al. 2018] ⋄ ⋄

Sereum [Rodler et al. 2018]
MADMAX [Grech et al. 2018] ⋄

ContractFuzzer [Jiang et al. 2018] ⋄ ⋄

Securify [Tsankov et al. 2018] ⋄ ⋄

EthRacer [Kolluri et al. 2018] ⋄

NPChecker

dependencies on timestamp). Nevertheless, their flexibility to flag new bugs depends on new
patterns proposed by experienced security analysts, and presumably new patterns would not be
created, unless certain real-world attacks have occurred to draw the community’s attention. Also,
not all the properties analyzed by NPChecker can be encoded into their DSL, for instance, to
analyze cross-contract reentrancy attacks, as discussed in Sec. 3.5, two contracts need to be taken
into consideration simultaneously.
Similarly, to detect the Transaction-Ordering Dependency (TOD) bug, current studies mostly

place emphasis on detecting program states subject to read-write hazards by reordering the execu-
tion of two functions. In contrast, our work (and also another recent work [Kolluri et al. 2018])
unearths a much larger pool of attack possibilities by systematically modeling the interference of
an arbitrary number of functions.

Yet there are some vulnerabilities thatNPChecker does not support well. For instance,NPChecker
is not designed to symbolically interpret the program execution. Therefore, arithmetic issues such
as overflow are beyond the scope of this work. We refer readers to some orthogonal research which
analyzes such issues [Grech et al. 2018].

LLVM IR with

Function Info

Decompiler
Instrumented IR

with Checkers

Nondeter. Global

Variable Flagged
Instrumented IR

Information Flow

AnalysisCheck forND
I
bugs

Check forND
II

bugs

EVM Bytecode

NDeReum

Model

checking

Nondeter. Local

Variable Flagged NP
!

NP
!!

NPChecker

Fig. 5. Workflow of NPChecker.

5 DESIGN OF NPCHECKER

We now present NPChecker, a tool that uses static analysis to detect payment bugs in smart
contracts. Fig. 5 summarizes the workflow of NPChecker. Given the EVM binary code collected
from the Ethereum mainnet, we first disassemble the EVM bytecode and lift the assembly in-
structions to LLVM IR using an off-the-shelf LLVM IR lifter (EVMJIT [evm 2018a]). In short, each
EVM instruction is translated into one or multiple lines of LLVM IR statements. All the EVM
instructions that are specific to smart contracts, such as external contract calls, get translated into
LLVM external calls. The salient features of the LLVM IR code for smart contracts will be given in
Sec. 6. In addition, NPChecker recovers the control flow structures with the help of a commercial
decompiler. Given this retrieved high-level program information, we augment the LLVM IR with
functions. The technical details concerning the reverse engineering process are discussed in Sec. 9.

We then seek to check whether the recovered IR code contains NP I and NP I I . As shown in Fig. 5,
to check the existence of NP I , we identify local variables that are initialized with nondeterministic
values (i.e., system properties and external call status). We then perform information flow tracking

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

189:14 Shuai Wang, Chengyu Zhang, and Zhendong Su

Algorithm 1: Detecting nondeterministic payment bugs. Line 1ś11 detects NP I bugs and line
12ś32 detects NP I I bugs.
Input: LLVM IR program p lifted from EVM bytecode
Output: (Has NP I bugs?, Has NP I I bugs?)

1 V ← nondeter_taint_source(p); /* flag local variables initialized with nondeterministic values. */
2 F ← fund_transfer(p); /* flag all the fund transfer statements. */
3 VulI ← false;
4 VulI I ← false;
5 for each v in V do
6 taint_propagation(v);
7 if check_taint_sink(F) then
8 VulI ← true; /* if any funds transfer depends on v . */
9 break;

10 end

11 end

12 p′← instrumentation(p); /* instrumentation to simulate the potential runtime behaviors of a contract. */
13 p′′← insert_checkers(p′); /* insert checkers to detect read-write hazards. */
14 execution_t ime ← 0; /* check for timeout */
15 S ←∅;
16 while execution_t ime < THRESHOLD do
17 /* model checking to find read-write hazards of a global variable; variables in S are excluded. */
18 v ← find_counterexample(p′′, S);
19 if v == null then
20 /* no counterexample indicates the safety of the checked program. */
21 VulI I ← false;
22 break;
23 end

24 add v in S ;
25 taint_propagation(v);
26 if check_taint_sink(F) then
27 VulI I ← true; /* if any funds transfer depends on v . */
28 break;
29 end

30 update_executed_time(execution_t ime);
31 end

32 return (VulI , VulI I);

to analyze their influences on the funds transfer (i.e., detecting NP I bugs). To check the existence
of NP I I , we instrument and augment the IR code with extra components to model the contract
execution context. We further insert checkers and employ a model checking engine to flag program
global variables (i.e., data in persistent storage) under read-write hazards. The pinpointed program
variables are deemed to have nondeterministic values and they are as well fed to the information
flow tracking module to study their influences on payments.
Alg. 1 specifies the detailed workflow of NPChecker (the grey box in Fig. 5). Given an LLVM

IR program p lifted from a piece of EVM bytecode, we first collect all the local variables that are
initialized with nondeterministic values (line 1) and all the funds transfer statements (line 2). Taint
analysis (line 5ś11) serves to check if any payments depend on the system properties or external
call returns. Dependencies found at this step constitute NP I . We further check bugs belonging to
NP I I by identifying funds transfer that depends on nondeterministic program global variables.
To do so, we instrument the IR code by modeling nondeterministic transaction scheduling and
external callee behaviors. As a result, we practically simulate a large subset of the contract execution
behaviors (line 12). We further insert checkers (line 13) and leverage model checking techniques
to detect global variables suffering from read-write hazards (line 18ś23). After flagging program
global variables whose value are nondeterministic, we perform taint analysis (line 25ś29) with
the flagged nondeterministic global variables as the taint source, and the payment statements (see
Sec. 6 for the definition of łpayment statementsž) as the taint sink.
Our taint analysis module keeps track of all the tainted variables (with a LLVM DenseSet) and

their propagations. taint_propagation inserts a new element in the set and starts to propagate

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

Detecting Nondeterministic Payment Bugs in Ethereum Smart Contracts 189:15

Property pty ::= GasPrice | TxOrigin | Miner | BlockNum | TimeStamp

| GasLimit | Difficulty

TxID tid ∈ N
Products prods ::= define f (tid){c} | declare f (tid) | global v
Address addr ::= addr0 | addr1 | addr2 | . . .
Ops ⊗ ::= add | sub | mul | udiv | sdiv | shl | lshr | and | or | xor | . . .

Variable v ::= v0 | v1 | . . . | l
Expression e ::= n | v | e1 ⊗ e2 | ¬e
Command c ::= v := e | c1; c2 | v1 = load(v2) | store(v1,v2) | v3 = icmp(cond,v1,v2)

| ret(v) | v2 = malloc(v1) | free(v) | v2 = alloca(v1) | br(v, c1, c2)
| v1 = sload(v2) | sstore(v1,v2) | call(addr ,v1,v2) | v2 = delegate(addr ,v1)
| create(addr ,v1,v2) | destruct(addr) | pty = blockchain(v1)

Fig. 6. Syntax of LLVM IR lifted from smart contracts. Note that we only specify the core components in a
terse way to present the main idea behind NPChecker. We simply omit some LLVM syntax definitions (e.g.,
phi node) as well as some EVM components for the sake of space and readability. We highlight EVM specific
code and properties with blue and purple respectively.

its information flow following the pre-defined taint policy (see Sec. 8). check_taint_sink checks
each external call and sees whether the amount of any payment is tainted or not. As emphasized,
the łtaintedž funds transfer is presumably spurious, indicating potential financial losses.
In the following sections, we start by formulating the recovered LLVM IR in Sec. 6. In Sec. 7,

we introduce how the LLVM IR code is instrumented to expose contract global variables under
read-write hazards (line 12-13 in Alg. 1). We describe information flow tracking in Sec. 8.

6 LANGUAGE DEFINITION

This section introduces a succinct IR language to demonstrate the core components of a smart
contract. Sec. 7 and Sec. 8 further specifies our instrumentation and analysis rules with respect
to the defined language. NPChecker is capable of handling LLVM IR code lifted from real-world
smart contracts. To concisely present the main ideas behind NPChecker, we formalize its analysis
to a simplified representation that is capable of modeling the essential parts of LLVM IR code lifted
from EVM bytecode. Fig. 6 shows the syntax of LLVM IR language for Ethereum. We primarily
extend a conventional LLVM IR core with various EVM and smart contract specific components.
In general, each LLVM IR file is a module that includes data, an information layout (omitted in

our definition), and a list of prods ∈ Products that can be function declarations, function definitions,
or global variables. In the context of our research, functions in Products represent public methods
defined in each smart contract, including the anonymous łfallbackž function. In our definition, each
function takes a transaction id tid ∈ N as input. We note that although in reality, each contract
function actually takes some other inputs containing the caller information (e.g., function call
inputs), they are omitted because they do not affect the presentation of our key idea.
Address denotes a unique 128-bit contract address on the Ethereum mainnet. OPs are standard

LLVM IR operators, and Expression stands for an expression. The essential features of the LLVM in-
struction set are recorded in Command, such as assignment (v := e), sequential composition (c1; c2),
block terminators (br and ret), heap operations (malloc and free), stack allocation (alloca), and
comparisons (icmp). For EVM specific commands, call (i.e., the payment statement) transfers a
certain amount of Ether v1 to a recipient (callee) with the address addr and the function call input
(if exists) v2.

4 destruct terminates the current contract and transfers its balance to a given address
addr (usually its owner). delegate performs delegation calls and dispatch the caller’s program state

4Note that after lifting EVM bytecode into LLVM IR (see Sec. 9), payment related opcodes (CALL, STATICCALL, DELEGATECALL,
CREATE, CALLCODE) are subsumed into a unified interface and differentiated by a parameter of this interface. In our prototype
implementation, we instrument this unified interface, and therefore, all these opcodes are taken into account. For ease of
presentation, we use call to subsume CALL, STATICCALL, and CALLCODE in the rest of the paper.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

189:16 Shuai Wang, Chengyu Zhang, and Zhendong Su

to an library smart contract withv1 as the input andaddr as the library address. Additionally, create
creates another contract online with addr as the contract address,v1 as the transferred Ether, andv2
as the input value for the new contract’s construction function. The contract global memory region,
storage, are accessed via sload and sstore. v2 and v1 represent the index of the accessed global
variable in sload and sstore, respectively. In addition, we create an extra global variable l indicat-
ing the aliveness of a contract. The default value of l is true for every online contract, but l will be
set as false after the contract is self-destructed (by calling EVM destruct instruction). Note that by

Table 3. The system properties accessible by a contract
during runtime.

Index Notation Explanation
0 GasPrice The transaction gas price.
1 TxOrigin The transaction origin account.
2 Coinbase The the beneficiary address of the block.
3 BlockNum The block number.
4 Timestamp The block timestamp.
5 GasLimit The block gas limit.
6 Difficulty The block difficulty.

explicitly representing the contract aliveness
via a global variable, subtle transaction races be-
tween normal transactions and łsuicidež trans-
actions can be modeled as well (see Sec. 7.3.2
for the implementation).
As discussed in Sec. 2.3.1, the nondetermin-

istic system properties are provided by the
blockchain system. Here we use Property to
denote information accessible by smart con-

tracts when a transaction is being executed, including a comprehensive set of transaction state and
block states. We further define blockchain : Integer→ Property as a partial function that maps
an integer to one system property (recall łsystem propertiesž subsume block and transaction states
in Sec. 3.1) that can be accessed during transaction execution. The accessible runtime properties by
a contract are specified in Table 3, including its corresponding index and explanations.

7 EXPOSE NONDETERMINISMWITH INSTRUMENTATION

In this section, we perform systematic instrumentation for the IR defined in Sec. 6. We aim to
expose various nondeterministic program global variables hidden in the IR.

7.1 Modeling Transaction Scheduling

We start by defining a mining function to describe how transactions within one block will be sched-
uled for computation. Given a nondeterministic choice statement that chooses among different
functions and an iteration statement iter{s} that executes an unbounded number of times, we
formulate the miner decision into a mining function as follows:

mining() = iter{choice{ f0∥ f1∥ . . . ∥ fn }}

Note that exactly one function is executed nondeterministically in each iteration. This function
simulates the behavior of a miner selecting transactions from the pending pool and executes each
transaction by following certain mining strategies defined in choice. For instance, one common
approach [Geth 2018] is to sort transactions by the gas price they are willing to pay.
Implementation of the mining Function. We now propose an implementation to approximate
the nondeterministic mining function defined above. Enlightened by how multithreading programs
are instrumented into a sequential representation for model checking [Qadeer and Wu 2004], we
transform the mining function into a representation that practically simulates a large subset of the
behaviors of contract execution.
The schedule function in Fig. 7 helps model the transaction scheduling policy of the miner

(i.e., the mining function). $ is a nondeterministic value that leads to unpredictable iterations of
the while loop. The variable tid as the transaction id is used to distinguish function execution in
different transactions. The schedule function simulates an arbitrary number of method calls to a
particular smart contract, and function get randomly picks a function from all the public functions
defined in that contract. Note that each entry in fl maintains a tuple of a function pointer and a
counter (initialized as N) to track the number of function invocations within a contract. That is,
per definition we allow the execution of each function at most N times.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

Detecting Nondeterministic Payment Bugs in Ethereum Smart Contracts 189:17

// transaction ID

var tid = 1;

schedule() {

while ($) {

// f is a method reference

var f = get();

f(tid);

tid++;

}

}

The schedule function.

get() {

var idx = $ % len(fl);
// fl: keeps track of all the public

// functions of a particular contract

var t = fl[idx];

// each fl.counter is initialized as N

if (fl[idx]. counter == 0)

delete fl[idx];

else
fl[idx]. counter -= 1;

return t.fp;

}

The get function.

Fig. 7. Implementation of the mining function.

In the implementation, N is set to 2. This is empirically decided to reduce the analysis overhead
by allowing the model checker to re-execute each function at most twice. Overall, the schedule
function, which encapsulates the scheduling policy of the miner and interprets all functions for
nondeterministic iterations, explores all the possible combinations of functions, while each function
is used at most twice. The current modeling sufficiently explores practical attack vectors including
single-function and cross-function reentrancy, while neglects cases where a function is invoked
for more than twice (but unlikely to unveil new issues). In addition, while this implementation
assumes a completely nondeterministic scheduler, a more sophisticated strategy could be provided
by changing get, for instance, one that prioritizes transactions with higher miner rewards.

7.2 Instrumentation

We now specify a set of instrumentation rules for the IR language defined in Sec. 6. The instrumented
program forms a practical basis for rigorous formal analysis and vulnerabilities detection.

(v = call(a,v1,v2))
I → schedule();v = call(a,v1,v2)

(v = delegate(a,v1))
I → merge(a); schedule();v = delegate(a,v1)

(v = create(a,v1,v2))
I → schedule();v = create(a,v1,v2)

(c)I → c otherwise

Fig. 8. Definition of instrumentation function I .

Given the definitions of functions schedule and get to approximate transaction scheduling of a
miner, Fig. 8 illustrates our instrumentation rules with respect to the IR program defined in Fig. 6.
To model nondeterminism in external calls and to capture the underlying issues (e.g., reentrancy
attacks), we insert the schedule function before every call to simulate the nondeterministic
behaviors of a callee contract. Since the schedule function practically models the execution of
every public function within the contract (including the caller function fi), the consequence is that
we systematically explore the situations to reenter fi and other functions within the same contract.

By providing a utility function merge which merges functions of the caller contract and its
callee (i.e., an online library) together, we take the library contract into account and track down
subtle cross-library issues (see Sec. 9 for the implementation of merge). In addition, create is
instrumented to invoke the schedule function, which indicates the nondeterministic behaviors of
the newly-created contract and the potential attack vector (e.g., creation-based reentrancy attacks).
As aforementioned, every public function of a smart contract could serve as the entry point of

a transaction. In contrast, at this step we extend the instrumented code with the following main

function as a unified entry point of a contract program.

main() = {schedule (); }

For every contract function fi , schedule can model an arbitrary amount of łfront-runningž
transactions in front fi . As we introduced in Sec. 3.4, the order of transactions is prone to manipula-
tion within one block on the blockchain. In addition, it is easy to see that main function translates

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

189:18 Shuai Wang, Chengyu Zhang, and Zhendong Su

the contract program into a nondeterministic albeit sequential representation, which forms the
basis to be checked by any sequential model checkers.

7.3 Expose Program Global Variables of Nondeterministic Values

As aforementioned, the major challenge is to expose program global variables that suffer from
both read/write and write/write hazards due to unpredictable transaction scheduling and external
callee behaviors. Enlightened by conventional research in detecting race conditions, we use model
checking to discover global variableswhose values are nondeterministic. The flagged global variables
at this step will be sent to the information flow module to check NP I I .

7.3.1 Implementing Checkers. We first define a set of auxiliary variables that act as indicators
of accesses to program global variables. Specifically, we define accessi ∈ Z where accessi = 1
indicates that a read access has occurred. For a write access from a transaction with id tid , we will
update accessi with tid + 1. Each accessi is initialized to 0. We now introduce a pair of checkers
to find program states suffering from read-write hazards.

checkw (дi , tid) {

accessi = get_auxiliary_var(дi);
assert(!(accessi > 1)

|| accessi == tid+1);

accessi = tid+1;

}

The checkw function.

checkr (дi , tid) {

accessi = get_auxiliary_var(дi);
assert(!(accessi > 1)

|| accessi == tid+1);

accessi = 1;

}

The checkr function.

Function checkw takes a global variable дi and a transaction id tid as input, and then computes
the index i of дi and fetches the corresponding variable accessi (see Sec. 9 for the implementation
of get_auxiliary_var). Before writing to a global variable дi , function checkw check whether дi
has been written or read before. When the assertion succeeds, accessi is set to tid + 1 to indicate
that a write access has occurred within transaction tid . Similar to checkw , checkr checks for the
occurrence of write accesses before reading дi . The corresponding accessi variable will be set
to one whenever the assertion succeeds. It is easy to see that an assertion in one of these calls
is violated only if there are conflicting read/write accesses from two different contract function
calls invoked by schedule. That is, we allow read accesses to дi simultaneously within multiple
transactions, while write accesses are allowed only within the same transaction.

7.3.2 Inserting Checkers. Given the checkers for read and write accesses, Fig. 9 specifies the
statements which we insert the checkers to. In general, we insert checkers to flag program global
variables (including global variables and the ghost variable l representing the contract aliveness)
that can be affected by nondeterministic contract executions. In the given example, we show how
we do this for sload and sstore statements. To capture the potential self-destruction races of
two transactions, we place checkers in front of each payment statement and destruct statement
to check read-write hazards on l . The destruct function will cause a write access to the ghost
aliveness variable.

(v = sload(v1))
A → checkr (v1, tid);v = sload(v1)

(sstore(v1,v2))
A → checkw (v1, tid); sstore(v1,v2)

(v = call(a,v1,v2))
I → checkr (l , tid);v = call(a,v1,v2)

(v = create(a,v1,v2))
I → checkr (l , tid);v = create(a,v1,v2)

(destruct(addr))A → checkw (l , tid); destruct(addr)

(c)A → c otherwise

Fig. 9. Definition of A: augmented instrumented IR code with assertions. Note that the program global
storage is accessed via sload and sstore, and therefore we capture the read-write hazards by instrumenting
all the occurrence of these two sload and sstore statements. l represents the aliveness of the contract, and
we add its corresponding assertions in front of payment statements and the destruct statement.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

Detecting Nondeterministic Payment Bugs in Ethereum Smart Contracts 189:19

7.3.3 Model Checking. With the instrumented program we leverage an off-the-shelf model checker
to identify program global variables that may be affected by nondeterminism (we use Smack [Raka-
marić and Emmi 2014]; see Sec. 9 for implementation details). Flagged global variables (except the
contract aliveness variable l) are sent to the information flow tracking module and check their
influences on contract funds transfer. In case l is flagged as nondeterministic, the contract is deemed
vulnerable regarding NP I I without information flow checking, because a suicided contract trivially
affect the funds transfer.

8 CAPTURING NONDETERMINISTIC PAYMENT BUGSWITH INFORMATION FLOW
TRACKING

We now identify spurious funds transfer liable to nondeterminism. As defined in Alg. 1, the taint
analysis module serves to analyze information flow of local variables initialized with nondeter-
ministic values and global variables under read-write hazards. Payments that depend on these two
types of nondeterministic variables constitute NP I and NP I I , respectively.

8.1 Taint Checking

We first enumerate the policies for information flow checking defined in Fig. 10. To pinpoint
nondeterministic system properties that can lead to NP I , we taint the local variable holding the
output of the blockchain function (recall blockchain subsumes the block and system states
accessible during a transaction). In addition, we taint the local variable holding the return value of
call, create, and delegate statements to model the nondeterministic external call status. When
checking NP I I , we use the counterexmaples generated by the model checker to flag program global
variables under read-write hazards. Such global variables will be tainted when they are accessed by
sload and sstore statements.

We use is_tainted to check the amount of Ether (denoted by v1) sent out by call and create:
a tainted v1 indicates that the amount of a payment is nondeterministic. Such nondeterminism is
presumptively unwanted and deceptive.
Our taint analysis module is implemented as an LLVM pass and maintains an LLVM DenseSet

to keep track of all the tainted variables. taint function extends the dense set by inserting a new
element. Similarly, is_tainted checks the existence of a variable in the dense set, which indicates
this variable is "tainted."

(v = blockchain(v1))
T → v = blockchain(v1); taint(v)

(v = call(a,v1,v2))
T → is_tainted(v1);v = call(a,v1,v2); taint(v)

(v = delegate(a,v1))
T → v = delegate(a,v1); taint(v)

(v = create(a,v1,v2))
T → is_tainted(v1);v = create(a,v1,v2); taint(v)

(v2 = sload(v1))
T → v2 = sload(v1); taint(v2)

(sstore(v1,v2))
T → taint(v2); sstore(v1,v2)

(c)T → c otherwise

Fig. 10. Definition of T : augmented IR code with information flow tainting and checking routines. Tainting
of sload and sstore are performed only if the accessed global variable (v1 is the global variable index) is
flagged as under read-write hazards by the model checker.

8.2 Taint Propagation Policy

The taint propagation policies in our study follow the convention to model both explicit and implicit
information flows. Explicit information flow is modeled in a straightforward way: we propagate
the variable-level (i.e., registers and memory cells) information flow within a contract function.
We also model the implicit information flow such that all the accessed variables will be tainted
in a LLVM code branch, in case its guarded condition depend on the taint source. In addition,
when the memory is accessed via a tainted memory address (either base address or the index),
NPChecker taints the accessed memory content, indicating the information propagation from
the tainted address to the memory cell. While our taint analysis is essentially intra-procedural,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

189:20 Shuai Wang, Chengyu Zhang, and Zhendong Su

when encountering the usage of some LLVM or EVM auxiliary functions (e.g., the LLVM intrinsics
functions), we will conservatively taint the function return value, whenever any of its parameters
is tainted. As for external calls, the taint propagation will follow the definitions presented in Fig. 10.

9 IMPLEMENTATION

Most of the online contracts provide only EVM bytecode. Therefore, we implement NPChecker to
directly process EVM bytecode and capture contract vulnerabilities in a łdown-to-earthž manner.
Different contract languages (e.g., Solidity and Vyper) are supported by NPChecker as long as they
can be compiled into EVM bytecode. Contracts with source code available are of course analyzable
once they have been compiled into bytecode.

NPChecker is written primarily in Python and C++ in about 4,800 lines of code. We lift the EVM
bytecode of a contract into LLVM IR code with the off-the-shelf JIT compiler (EVMJIT [evm 2018a])
and further build our analysis framework on top of LLVM IR. EVM bytecode does not contain any
function information. After being lifted into LLVM IR, the EVM bytecode forms one monolithic
LLVM IR code block. Therefore, we recover information of function starts from the EVM bytecode
(including the anonymous łfallbackž function) using a commercial decompiler, JEB3 [PNF 2018].
The acquired function starts are then used to traverse the intra-procedural CFG of the LLVM IR
code and split basic blocks within the monolithic code block into functions.
We then perform instrumentation towards LLVM IR with the aforementioned techniques. We

also implement our taint analysis module as one LLVM IR pass to keep track of information flow
propagation. We use Smack [Rakamarić and Emmi 2014], a LLVM IR-based software model checker
for the model checking tasks. Smack (develop branch; git commit 71e0ad02) performs bounded
model checking and generates counterexamples. The loop unroll number is five.
Alias Analysis. Data and code pointers are used in the lifted LLVM IR code. In particular, LLVM
IR jump tables are frequently leveraged since EVM supports indirect jump with opcode JUMPI.
During the intra-procedural CFG recovery stage, we conservatively put all the legit successors of a
jump table into a function, whenever JEB3 alerts us this function may use indirect jumps (in such
cases jump statements can be found in the decompiled functions of JEB3). We note that the current
implementation, while being sound, could lead to false positives (i.e., merging irrelevant jump table
successors into one function; see our evaluation and discussion related to Fig. 12).
Some indirect memory accesses in LLVM IR (e.g., representing the sload and sstore EVM

opcodes) would take a register to access memory. During the taint analysis stage, we do not
perform any expensive point-to analysis. As for the model checking stage, the model checker itself
(Smack) has a basic support for static pointer reasoning. Overall, we leave it as one future work to
perform static analysis and precisely infer the possible value set of data and code pointers.
Speedup Model Checking. We use bounded model checking, where the schedule (Sec. 7.1)
complexity is proportional to the number of public functions in the contract. Our observation
is that the model checking takes more time when the contract program becomes more complex,
which is intuitive. In Sec. 10, we explore the effects of code complex (code size, number of functions,
etc.) on the performance of NPChecker.
Model checking leads to noticeable performance overhead for our analysis. Indeed, we spent

considerable effort selecting and tuning the model checker; from all the model checkers we tenta-
tively experimented, Smack [Rakamarić and Emmi 2014] fits our need best given its integration
into the LLVM ecosystem and relatively mature support. The Smack front-end takes LLVM IR as
the input and links with two well-developed engines, Boogie [Lahiri et al. 2009] and Corral [Haran
et al. 2015], for verification tasks. Our empirical evidence shows that the Boogie backend is usually
much faster than Corral, but Boogie does not have good support for generating counterexamples
since it does not leverage debug annotations in LLVM IR.
And for Smack with the Corral [Haran et al. 2015] backend, we experimented with different

configurations to speed up model checking, including the default counter example-guided abstrac-
tion refinement (CEGAR) which starts from a coarse abstraction by tracking a small subset of

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

Detecting Nondeterministic Payment Bugs in Ethereum Smart Contracts 189:21

program variables and gradually adds more variables when encountering infeasible counterexam-
ples, and also the łtrackAllVarsž option which keeps track of all the variables in the first place. Our
empirical studies show that the later configuration is much faster in analyzing smart contracts,
although sometimes it is slower than CEGAR. Without further insight on how to fine tune the
model checker engine and make it ładaptivež, NPChecker is implemented to use Corral with the
łtraceAllVarsž configuration for all the cases. Our experimental studies (and also suggested by the
Smack developers) show that this configuration usually can lead to more efficient modeling.
Implementing the get_auxiliary_var Function. We now discuss the implementation of the
get_auxiliary_var function used in the read/write checkers (Sec. 7.3.1). As mentioned before,
EVM provides a persistent region to keep track of the global storage. In particular, fixed-size
variables are laid out contiguously in the storage starting at zero while dynamically-sized data
structures such as maps and arrays use sha3 to find the starting position. As shown in the following
case, the index of the statically-allocated variable x is fetched directly while the index of elements
in array is computed with sha3. To compute the memory address for nested data structures, sha3
function can be used for multiple times.

contract C {

uint256 x; // memory address is 0

uint256 [][] array;

array [0]. length; // memory address is sha3 (1)

array [1][1]; // memory address is sha3(sha3 (1)+1)+1

}

Storage Indices. sha3 is the keccak256 hash function.

We create a ghost variable accessi for each global variable. When a global variable is accessed via
sload or sstore, we fetch its corresponding ghost variable and check for read-write hazards (see
Sec. 7.3). We do this by creating a separate array to maintain all the ghost variables and searching
for a corresponding ghost variable by mapping its storage index (the index can be acquired from
the operand of sload and sstore) into our array index. The mapping algorithm is given below.

In general, we map all the variable indices (of fixed-size ones and sha3 computed ones) into an ar-
ray of 256 elements. In particular, we preserve the indices of fixed-size arrays (index starting at zero),
while for indices of dynamic arrays (i.e., the sha3 computed output), we only

get_auxiliary_var(idx) {

// sha3 output is a 32-byte value

if (idx is 32 bytes) {

// we get the highest 8 bits

idx = idx >> 248;

return aux_array[idx];

}

// index of fixed -sized variable

else return aux_array[idx];

}

take the highest 8 bits. Although this approach may
potentially lead to false positives, the collision rate
is assumed low, given the limited number of global
variables in each contract (usually much smaller
than 256) and the good pseudo randomness of the
crypto hash function sha3. Some related research
has proposed techniques to recover the index of
global variables [Grech et al. 2018]. We leave it as
one future work to integrate their technique into

NPChecker with additional engineering efforts.
Implementing the merge Function. To detect nondeterministic payments derived from cross-
contract issues, we analyze the corresponding destination of each delegate call and extract the
library smart contracts. The user and the library contracts are put together (see Fig. 8 for the usage
of merge) and coordinated by one schedule function. We use JEB3 to infer the library address of
a contract delegation. We note that for the delegation cases encountered during the evaluation,
almost all the instances hard-code the delegation addresses in the code: we found 12 contracts
(out of 3,075 distinct contract programs evaluated in this research) takes user-provided or dynamic
computed address to access a library. We leave it as one future work to investigate these spurious
contracts. Nevertheless, in case NPChecker cannot find the hard-coded address, it will resort to
treat delegate as a normal call.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

189:22 Shuai Wang, Chengyu Zhang, and Zhendong Su

Table 5. Evaluation of new vulnerabilities or variants of common vulnerabilities. ✓ means the vulnerability is
successfully detected while ✕ indicates the opposite.

NPChecker Securify Oyente Mythril
Constantinople reentrancy [ChainSecurity 2019] ✓ ✓ ✕ ✕

cross-function reentrancy [evm 2018b] ✓ ✓ ✕ ✕

delegation reentrancy [Rodler et al. 2018] ✓ ✕ ✕ ✕

created-based reentrancy [Rodler et al. 2018] ✓ ✕ ✕ ✕

funds transfer depends on BlockNum ✓ ✕ ✕ ✕

funds transfer depends on TxOrigin ✓ ✕ ✕ ✓

10 EVALUATION

We now present the evaluation of our research. Our dataset contains EVM bytecode of 30,000 online
contracts. To collect the dataset, we randomly collected 10,000 contracts created in 2016, 2017, and
2018, respectively. We further deduplicated this dataset (as per their sha256sum) and obtained a set
of 3,075 contracts.

Table 4. Statistics of the dataset used in evaluation.

Total # of distinct contracts 3,075
Total lines of LLVM IR code 34,484,470
Total # of functions 32,606
Total # of call statements 39,260
Total # of accesses of system properties 11,671
Total # of sstore statements 91,255
Total # of sload statements 392,611

To collect online contracts from the Ethereum
mainnet, we use Google BigQuery to fetch ad-
dresses of all the contracts created in the past
three years. We then iterated each contract ad-
dress and downloaded its EVM bytecode from
Etherscan [eth 2018]. Fig. 4 presents some statis-
tics of the dataset used in evaluation, in terms

of the code size, number of functions (we only count the contract public functions recovered by
JEB3). We also measured the number of external contract call statements, the accesses of system
properties and global storage (via sload and sstore statements).
Comparisonwith ExistingWork. Table 2 lists related work in this field, and we are able to access
five of these tools, which are Oyente [Luu et al. 2016], Mythril [ConsenSys 2018], Securify [Tsankov
et al. 2018], MadMax [Grech et al. 2018], and ContractFuzzer [Jiang et al. 2018]. We take the
first three tools since they are also static bug detectors which aim to detect similar bugs like our
work does. MadMax has a different focus comparing to NPChecker, and ContractFuzzer [Jiang
et al. 2018] conducts dynamic fuzz testing. ContractFuzzer generates test inputs based on the ABI
specifications of smart contracts. Therefore, it is limited to contracts with ABI present, which will
drastically reduce the number of available contracts.
Oyente makes its exact version used in its paper available (via a docker container), and we use

the latest version of Securify maintained on Github (git commit 7b2d3c5a on March 30, 2019).
Mythril [ConsenSys 2018] is actively maintained by the Ethereum community, and we use its
official docker image version (a snapshot released on March 20, 2019). Regarding our threat model,
Oyente supports to check classic TOD and single-function reentrancy bugs (belonging to NP I I). It
also supports to check timestamp dependence (one kind of NP I bug). Mythril checks reentrancy
bugs (NP I I bug) but does not support TOD bugs. It can check NP I bugs by capturing dependencies
on multiple system properties. Securify has a comprehensive support for NP I I including several
TOD and reentrancy variants. However, it does not support any NP I .

While none of the available tools can check łFailed Callž bugs (see Sec. 3.2 for a description of
this pattern), we note that both Mythril and Securify feature a bug pattern named łUnchecked Callž
to check whether the return value of an external call is used by a branch condition. In general, we
consider that these two bug patterns are correlated, since violating either pattern entails the return
value is not properly handled. To present a fair comparison at our best effort, Securify and Mythril
are deemed to find one NP I bug whenever they report a finding of łUnchecked Call.ž

10.1 Case Study

Before launching experiments towards the real-world dataset, we start by implementing sample
contracts containing recently-disclosed vulnerabilities or variants of common issues. As shown in
Table 5, we report that NPChecker successfully identifies all vulnerabilities.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

Detecting Nondeterministic Payment Bugs in Ethereum Smart Contracts 189:23

1 contract PaymentSharer {

2 mapping(uint256 => uint256) deposits;

3 mapping(uint256 => address payable) first;

4 mapping(uint256 => address payable) second;

5

6 function updateSplit(uint256 id, uint256 split) public {

7 splits[id] = split;

8 }

9 function splitFunds(uint256 id) public {

10 address payable a = first[id];

11 address payable b = second[id];

12 uint256 depo = deposits[id];

13 deposits[id] = 0;

14

15 a.transfer(depo * splits[id] / 100);

16 b.transfer(depo * (100 - splits[id]) / 100);

17 }

18 }

Fig. 11. A (simplified) benign contract which becomes vulnerable after the Ethereum Constantinople upgrade.

Constantinople-reentrancy is a recently disclosed attack enabled by the Ethereum Constantino-
ple upgrade [ChainSecurity 2019]. Consider the contract in Fig. 11. After the Constantinople
update, it is feasible to perform a low-cost sstore to update program global state (line 7) during
reentrancy from the external function call (line 16) and accordingly cause inconsistent program
states [ChainSecurity 2019]. In contrast, existing pattern matching based detector [Tsankov et al.
2018] finds reentrancy bugs by only checking sstore after external calls (which does not appear in
Fig. 11), since sstore was believed infeasible in the reenterred function before the Constantinople
upgrade. NPChecker successfully flags a sample contract risky towards Constantinople reentrancy
without any knowledge regarding this attack vector. Securify (the same team who first reported
Constantinople reentrancy) is able to pinpoint this issue since Securify is presumably updated
with this new pattern. In contrast, Oyente and Mythril do not feature knowledge to capture this
reentrancy variant.
We also evaluate three advanced reentrancy attack vectors by implementing sample contracts

of such vulnerabilities. As introduced in Sec. 3.5, subtler cross-function or even cross-contract
reentrancy attacks are possible, and are generally ignored by existing static bug detectors since
it requires more patterns to model. Indeed, besides Securify, which captures cross-function vul-
nerabilities, none of the vulnerabilities were detected by these tools. In contrast, we report that
NPChecker can successfully flag bugs within these sample contracts since we systematically
explore the feasibility of reentrancy attacks that can use contract delegation call and creation call.
We also use two simple contracts which compute the amount of funds transfer by using either block
properties BlockNum or transaction state TxOrigin. Since the per-block mining time varies, and
contract (e.g., refunding within certain time frame) may cause confusions by using block number
to decide a time frame. Also, as mentioned in Sec. 2.3.1, transaction origin is manipulable by an
attacker.NPChecker provides comprehensive modeling of all the system and transaction properties
and their influence on funds transfer. In contrast, besides Mythril, which features a pattern to flag
dependencies on TxOrigin, other tools failed in pinpointing these two cases as vulnerable.

10.2 Evaluation of Real-World Smart Contracts

Table 6 presents the overview of the evaluation results. In summary, we found a total of 1,111 buggy
contracts, with only 113 (3.5%) analysis timeouts. We further categorize vulnerabilities found from
this dataset into NP I and NP I I bugs. NPChecker finds considerable amount of bugs belonging to
both categories. We also report that NPChecker skips the analysis of 120 cases for which JEB3
throws decompilation exceptions.5 Overall, we interpret the evaluation results as promising and

5We have reported our findings to the JEB3 developers and wait for their confirmation.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

189:24 Shuai Wang, Chengyu Zhang, and Zhendong Su

Table 6. Evaluation results overview. We report results on in total 3,075 unique contract programs out of
30K online contract instances. We have confirmed all the 120 analysis failure of NPChecker is due to
decompilation error of JEB3 [PNF 2018]: no function information is recovered from the EVM bytecode. Note
that a vulnerable contract reported in the second column could contain NPI bug (the sixth column), NPI I
bug (the seventh column), or both. The percentage is calculated by taking "3075" as the divisor.

Tool
of Vulnerable # of Safe # of Analysis # of Analysis # of Contracts # of Contracts

Contract Contract Timeout Failure with NP I Bugs with NP I I Bugs
NPChecker 1,111 (36.1%) 1,731 (56.4%) 113 (3.5%) 120 (3.9%) 738 (24.0%) 887 (28.8%)
Securify [Tsankov et al. 2018] 990 (32.2%) 1,667 (54.2%) 0 418 (13.6%) 418 (13.5%) 909 (29.6%)
Oyente [Luu et al. 2016] 353 (11.5%) 2,722 (88.5%) 0 0 39 (1.3%) 346 (11.3%)
Mythril [ConsenSys 2018] 1,111 (36.1%) 1,964 (63.9%) 0 0 654 (21.3%) 580 (18.9%)

reasonable; many online contracts contain payment bugs due to the developers’ unawareness of
the unique Ethereum execution model.

As aforementioned, we compare NPChecker with two state-of-the-art analyses and the de facto
static contract analyzer developed by the Ethereum community. We report their evaluation results
in Table 6 as well. JEB3 reports decompilation error for 418 cases, while Mythril do not throw any
exception. We note that when analyzing certain contracts with Oyente, we observed a large number
of łunknown instructionž messages. However, it seems that Oyente can still give analysis results
even with such error messages (it never crashed). Hence we still consider Oyente has zero failure
and report its evaluation results in this section. NPChecker outperforms all the other tools by
finding more NP I bugs. This is reasonable since Security cannot support to capture dependencies
on Ethereum system properties (i.e., the block and transaction states), while Oyente only flags
dependence on block property Timestamp. Mythril provides more bug patterns to help identify the
Timestamp and TxOrigin dependence.

As for the comparison of NP I I bugs, we report to find comparable amount of NP I I bugs with
Securify which features comprehensive sets of vulnerability patterns to check reentrancy and TOD
related bugs, although some of their findings do not actually influence payments (hence would be
deemed łsafež by NPChecker). Mythril cannot detect TOD related bugs and therefore potentially
missed a number of issues. Oyente performs highly inconsistent with the other tools on our dataset
since it is designed to pinpoint only single-function reentrancy and TOD issues of only one pair of
two functions.
Processing Time. Our evaluation was conducted on a server machine with an Intel Xeon E5-2680
v4 CPU at 2.40GHz and 256GB of memory. The machine runs Ubuntu 18.04. We set the timeout
for NPChecker as 60 minutes, and when executing other tools, we use their default settings and
timeout threshold.

Table 7. Processing time.

Tool
Processing Time
(CPU hours)

NPChecker 300.9
Securify 572.5
Oyente 111.5
Mythril 149.9
NPChecker with early termination

169.6
condition on finding NP I

Table 7 reports the processing time of each tool.
NPChecker takes over 300.9 CPU hours to process
the whole dataset: on average NPChecker takes
5.8 CPU minutes to process one contract. We also
report processing time of the other tools. Securify
takes 572.5 CPU hours to finish the analysis. The
other tools are relatively faster, given they are not
comprehensive enough to capture relevant bug vari-

ants. Our observation is that the model checking tasks are computationally costly: the model
checker becomes observably slower with the code size growing. Nevertheless, we consider it is
reasonable to terminate the analysis and raise implications for manual investigation, whenever
the more efficient analysis of NP I bugs (recall only taint analysis is used to flag NP I bugs) have
reported positive findings. Therefore, we refine the Alg. 1 and add an early termination condition
whenever a NP I bug is found. We re-launched the whole experiments in terms of this new setting
and we report that NPChecker takes 169.6 CPU hours to finish: actually the analysis of 738 contract
programs can be finished earlier since they have NP I bugs.
Our analysis adopts bounded model checking towards the lifted LLVM IR code, which could

be slow when the analyzed programs become too complex. Fig. 12 reports breakdowns regarding

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

Detecting Nondeterministic Payment Bugs in Ethereum Smart Contracts 189:25

0

20000

40000

60000

80000

100000

120000

0 1000 2000 3000 4000

Li
n

e
s

o
f

LL
V

M
 I

R
 C

o
d

e

Processing Time (s)

0

10

20

30

40

50

60

0 1000 2000 3000 4000

N
u

m
b

e
r

o
f

E
xt

e
rn

a
l C

a
lls

Processing Time (s)

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000

N
u

m
b

e
r

o
f

Fu
n

ct
io

n
s

Processing Time (s)

Fig. 12. Model checking performance breakdown.

how model checking performance changes w.r.t. the size of the code, the number of functions, and
call operations. We interpret the results as intuitive: with the IR code becomes more complex, the
model checking takes longer time. Particularly, the model checking time grows superlinearly to the
number of public functions in the contract. As mentioned in Sec. 9, the complexity of the schedule
function (Sec. 7.1) is proportional to the number of public functions in the contract.
At this step, we only report execution time where model checking returns unsat (see line 18 of

Alg. 1). For such cases, model checking needs to comprehensively explore paths and therefore can
paint a more accurate picture on the performance changes w.r.t. code complexity, comparing to
łsatž cases where model checking can rapidly finish. Also, as discussed in Sec. 9, when recovering
functions from the lifted LLVM IR, NPChecker does not perform expensive point-to analysis to
resolve jump table destinations; instead, we conservatively put all valid successors of a jump table
into a function whenever the decompiler implies indirect jumps are used in the function. As a
result, irrelevant code blocks will be put into a function to inflate the generated IR code. Without
knowing the ground truth, we leverage a simple strategy to remove presumably łinflatedž IR code:
given the observation that smart contracts are primarily succinct, we check the number of external
calls in a contract’s IR code and if there were over 50 external calls (highly unlikely; indicating an
imprecise analysis of jump tables), we skip this contract. This step helps to eliminate 94 contracts
from in total 1,305 contracts of łunsatž model checking results.

10.3 Manual Inspection

We perform further studies to confirm the findings of NPChecker. From our dataset, we randomly
select 50 contracts with Solidity source code available on Etherscan (there are in total 409 contracts
with source code available). We manually inspected the source code of each contract and confirmed
whether they have vulnerabilities or not regarding our threat model. Similar to [Tsankov et al.
2018], we selected contracts with up to 300 lines of code to simplify the manual effort. Table 8
presents the comparison results. In general, we interpret the result as very promising; the proposed
technique can faithfully flag buggy contracts with very low false positive and negative rates.

As aforementioned, Mythril and Securify use a different vulnerability pattern to analyze external
call returns. NPChecker essentially tracks łFailed Callž pattern while both Mythril and Securify
use a bug pattern named łUnchecked Callsž to detect whether the call return value is used as a
branch condition. To present a fair comparison, we inspect each contract and use łUnchecked Callž
to evaluate Mythril and Securify. Also, in Table 8, false positives (second row) are not necessarily
equal to false positive NP I (fourth row) plus false positive NP I I (sixth row), and similarly for
false negatives. Consider a contract containing one NP I bug but no NP I I bug, and a bug detector
(e.g., Mythril) reports one NP I bug from this contract, we will then consider it makes a true
positive in flagging buggy contract (since it deems the contract as łvulnerablež and alerts users for
investigation), but will have one false positive and one false negative forNP I I andNP I , respectively.
We observe that for both NP I and NP I I bugs, Oyente missed many positive results. Indeed,

Oyente only flagged one contract as vulnerable within our dataset. Mythril has a high false negative
regarding NP I I ; this is reasonable since it does not analyze TOD bugs. Both Mythril and Securify
have a number of false positives in NP I bugs. Generally speaking, a contract is likely vulnerable,
when it updates its storage after an external call, but is unaware whether the external call succeeds

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

189:26 Shuai Wang, Chengyu Zhang, and Zhendong Su

Table 8. Manual inspection results. We report that out of 50 randomly selected and investigated contracts,
we have 13 vulnerable cases and 37 safe cases. The full textual description of these inspected contracts can be
found at https://www.dropbox.com/sh/90tm5drmeep9bqy/AAB0jKxkIevNct2eIvsYb7Oqa?dl=0.

NPChecker Oyente Mythril Securify
false positive 3 0 11 6
false negative 0 13 3 2
false positive (NP I) 2 0 7 5
false negative (NP I) 0 7 3 4
false positive (NP I I) 2 0 6 5
false negative (NP I I) 0 11 10 2

or not. Our manual study shows that the employed łUnchecked Callž pattern, checking whether the
external call return is used by a path condition, leads to false positives. For instance, we find multiple
cases where the external call is the last statement of a function. Although no path condition checks
the call return (thus deemed as łvulnerablež regarding the łUnchecked Callž pattern), this actually
does not lead to attack vectors.

We manually studied four false positives of NPChecker and we report that for those two false
positives of NP I I bugs, they are due to the imprecise jump table analysis. Again, the lifted LLVM
IR becomes łinflatedž because the decompiler incorrectly guide us to merge a jump table which
does not actually belong to this function. This increases the statements within the function (e.g., a
function of three lines of Solidity code are translated into an IR function of over 1,500 statements).
The inflated function generates incorrect read-write hazards on global variables.

Our manual investigation shows that there are two NP I bugs (false positives), that were vul-
nerable, given our threat model, but are actually intended behavior of the contract. We show one
example below (the other case has a similar pattern).

function sweepToken(address tokenContractAddress) returns (bool success) {

ERC20 token = ERC20(tokenContractAddress);

uint256 bal = token.balanceOf(this);
require(bal > 0);

return token.transfer(owner , bal);

}

where the łvulnerablež contract is a wallet which helps the contract owner to manage his ERC-20
tokens and sweepToken sweeps the full balance of a token to the owner’s account. The first external
call balanceOf gets the balance of addressed by tokenContractAddress. whose return value (i.e.,
balance) is checked by require. The second external call transfer will be executed to send bal

amount of tokens to address owner, only when the token balance is not zero. While the given
contract exposes łnon-isolatedž external transfer statements, and therefore entails a positive
finding regarding our threat model (Sec. 3), this contract should be safe, by comprehending the
intent of the given contract. Indeed, it is reasonable to stop token transfer and save transaction
fee, in case the token balance is zero. Overall, our observation shows that for some cases, branch
conditions or assertions which affect the execution of external calls are intended. We leave it as
one future work to distinguish unintended non-isolation (presumably locks funds, as discussed in
Sec. 3.2), or intended non-isolation. We present further discussion soon in Sec. 11.

11 DISCUSSION

“Failed Call” vs. “Unchecked Call”. This research analyzes common vulnerabilities that can
lead to nondeterministic payments in Ethereum smart contracts. In particular, the łFailed Callž
pattern checked by the present and previous works [evm 2018b; Grech et al. 2018] asserts whether
each payment is isolated and does not get affected by other payments (Sec. 3.2). In contrast, the
łUnchecked Callž simply search for code fragments where the return value of external payments
are checked by branch conditions which (arguably) indicates the return value is properly handled.

While the adopted threat model successfully helped to flag vulnerable contracts where the failure
of one external payment łlocksž the balance for further payments, still, we find cases where this
pattern seems too aggressive and causes false alarms (see Sec. 10.3). Considering another example
below, which forwards contract balance stored in mainDAO contract to the caller of withdraw:

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

Detecting Nondeterministic Payment Bugs in Ethereum Smart Contracts 189:27

contract WithdrawDAO {

function withdraw () public {

uint balance = mainDAO.balanceOf(msg.sender);

if (! mainDAO.transferFrom(msg.sender , this , balance) ||

!msg.sender.send(balance))

throw;
}

}

NPChecker reports to find NP I bug, since the first payment call transferFrom determines
the execution of send (i.e., violating łFailed Callž). However, as a payment forwarding contract,
this pattern is actually intended, and the łUnchecked Callž pattern would entail this contract as
łsafe.ž Overall, both łFailed Callž and łUnchecked Callž seem to be vaguely defined, and to some
extent, they assert contradict facts. As discussed in Sec. 3.6, the primary usage of NPChecker is to
assist users by flagging potential defects for manual investigation. In addition, we leave it as one
future work to explore the feasibility of rigorously defining the łFailed Callž pattern to promote
bug detection or verification.
Agreement on Findings. Smart contract bug detectors could have a low agreement on their

Mythril

NPChecker

Securify

298

474 259

342248

166

223

Fig. 13. Agreement among tools for flagging vulnerable
contracts. We skip the analysis of Oyente since it is a
bit more inconsistent with others.

findings (due to the drifting of vulnerability pat-
terns or threat models). A recent study [Perez
and Livshits 2019] shows that when running Se-
curify and Zeus [Kalra et al. 2018] regarding the
same dataset to identify reentrancy bugs, their
agreement is less than 1% (Securify and Oyente
are reported to have 23.9% overlaps). To un-
derstand the analysis agreement, we also mea-
sured how many vulnerable contracts flagged
by different tools can overlap and reported our
results in Fig. 13. In summary, NPChecker and
Securify agree on 36.7% of the findings, while

NPChecker and Mythril agree on 26.9%. Security and Mythril have a relatively low agreement of
22.7%. We interpret NPChecker can outperform the other tools by achieving a higher agreement,
although none of these tools can extensively subsume others’ findings. We admit that it is challeng-
ing to propose a unified threat model, given the diverse and obscure intention of contracts in the
wild. NPChecker is currently implemented to detect payment-related issues. We leave it as one
future work to explore other threat models within the proposed framework.

12 CONCLUSION

The goal of this work is to detect payment bugs in smart contracts due to the inherent nondeter-
minism of Ethereum and could presumably be leveraged by attackers and cause financial losses. We
pinpoint nondeterministic variables and employ information flow tracking to check their influence
on funds transfer. To expose various global variables under read-write hazards, we propose system-
atic instrumentation techniques to practically model a large subset of contract runtime behaviors.
Our evaluation of 3,075 distinct contract programs resulted in promising findings; we identified
1,111 contracts containing payment bugs with reasonable cost.

ACKNOWLEDGMENTS

We thank the anonymous SPLASH/OOPSLA reviewers for their valuable feedback. Our special
thanks go to the JEB3, Smack, and EVMJIT developers who provided us with much help, insight
and advice. Chengyu Zhang was partially supported by the China Scholarship Council, and NSFC
Projects No. 61572197 and No. 61632005.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

189:28 Shuai Wang, Chengyu Zhang, and Zhendong Su

REFERENCES

2018. Etherscan.IO. https://etherscan.io.
2018a. EVMJIT. https://github.com/ethereum/evmjit.
2018b. Known Attacks of Ethereum Smart Contract. https://consensys.github.io/smart-contract-best-practices/known_

attacks/.
2019. Provable: ProvableTM Random Number Generator. http://provable.xyz/.
2019. RANDAO: A DAO working as RNG of Ethereum. https://github.com/randao/randao/blob/master/README.md.
2019. Securify Git Issues. https://github.com/eth-sri/securify/issues/98.
Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. 2018. Towards verifying ethereum smart contract bytecode

in Isabelle/HOL. In Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs. ACM,
66ś77.

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi,
Natalia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, et al. 2016. Formal verification of smart contracts:
Short paper. In Proceedings of the 2016 ACMWorkshop on Programming Languages and Analysis for Security. ACM, 91ś96.

ChainSecurity. 2019. Constantinople enables new Reentrancy Attack. https://medium.com/chainsecurity/constantinople-
enables-new-reentrancy-attack-ace4088297d9.

Code4Block. 2018. CVE List Found by Team Code4Block. https://github.com/TEAM-C4B/CVE-LIST.
ConsenSys. 2018. Mythril Classic. https://github.com/ConsenSys/mythril-classic.
Yu Feng, Emina Torlak, and Rastislav Bodik. 2019. Precise Attack Synthesis for Smart Contracts. arXiv:cs.CR/1902.06067
Geth. 2018. Go Ethereum. https://geth.ethereum.org/downloads/.
Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2018. MadMax:

Surviving Out-of-gas Conditions in Ethereum Smart Contracts. Proc. ACM Program. Lang. 2, OOPSLA, Article 116 (Oct.
2018), 27 pages.

Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A semantic framework for the security analysis of ethereum
smart contracts. In International Conference on Principles of Security and Trust. Springer, 243ś269.

Arvind Haran, Montgomery Carter, Michael Emmi, Akash Lal, Shaz Qadeer, and Zvonimir Rakamarić. 2015. SMACK+Corral:
A Modular Verifier (Competition Contribution). In Proceedings of the 21st International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS) (Lecture Notes in Computer Science), Christel Baier and Cesare
Tinelli (Eds.), Vol. 9035. Springer, 450ś453.

Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip Daian, Dwight Guth, Brandon Moore,
Daejun Park, Yi Zhang, Andrei Stefanescu, et al. 2018. Kevm: A complete formal semantics of the ethereum virtual
machine. In 2018 IEEE 31st Computer Security Foundations Symposium (CSF). IEEE, 204ś217.

Yoichi Hirai. 2017. Defining the ethereum virtual machine for interactive theorem provers. In International Conference on
Financial Cryptography and Data Security. Springer, 520ś535.

Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: Fuzzing Smart Contracts for Vulnerability Detection. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering (ASE 2018). 259ś269.

Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS: Analyzing Safety of Smart Contracts. In
Proceedings of the 2018 Network and Distributed Systems Security (NDSS) Symposium (NDSS ’18).

Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek Saxena. 2018. Exploiting The Laws of Order in
Smart Contracts. arXiv:cs.CR/1810.11605

Johannes Krupp and Christian Rossow. 2018. teEther: Gnawing at Ethereum to Automatically Exploit Smart Contracts. In
27th USENIX Security Symposium (USENIX Security 18). USENIX Association, 1317ś1333.

Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamarić. 2009. Static and Precise Detection of Concurrency Errors in
Systems Code Using SMT Solvers. In Proceedings of the 21st International Conference on Computer Aided Verification (CAV
’09). 509ś524.

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016. Making Smart Contracts Smarter. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS ’16). ACM, 254ś269.

Anastasia Mavridou and Aron Laszka. 2018. Tool demonstration: FSolidM for designing secure Ethereum smart contracts.
In International Conference on Principles of Security and Trust. Springer, 270ś277.

Satoshi Nakamoto et al. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. 2018. Finding the greedy, prodigal, and

suicidal contracts at scale. In Proceedings of the 34th Annual Computer Security Applications Conference. ACM, 653ś663.
Daniel Perez and Benjamin Livshits. 2019. Smart Contract Vulnerabilities: Does Anyone Care? arXiv:cs.CR/1902.06710
PNF. 2018. JEB Decompiler. https://www.pnfsoftware.com/.
Shaz Qadeer and DinghaoWu. 2004. KISS: Keep It Simple and Sequential. In Proceedings of the ACM SIGPLAN 2004 Conference

on Programming Language Design and Implementation (PLDI ’04). ACM, 14ś24.
Zvonimir Rakamarić and Michael Emmi. 2014. SMACK: Decoupling Source Language Details from Verifier Implementations.

In Computer Aided Verification, Armin Biere and Roderick Bloem (Eds.). 106ś113.
Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. 2018. Sereum: Protecting Existing Smart Contracts Against

Re-Entrancy Attacks. CoRR abs/1812.05934 (2018).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

Detecting Nondeterministic Payment Bugs in Ethereum Smart Contracts 189:29

SECBIT. 2018. Awesome Buggy ERC20 Tokens. https://github.com/sec-bit/awesome-buggy-erc20-tokens.
Ilya Sergey and Aquinas Hobor. 2017. A Concurrent Perspective on Smart Contracts. In Proceedings of the 1st Workshop on

Trusted Smart Contracts.
David Siegel. 2016. Understanding The DAO Attack. https://www.coindesk.com/understanding-dao-hack-journalists.
Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli, and Martin Vechev. 2018. Securify:

Practical Security Analysis of Smart Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’18). 67ś82.

D. Wood. 2014. Ethereum: a secure decentralised generalised transaction ledger.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 189. Publication date: October 2019.

	Abstract
	1 Introduction
	2 Background
	2.1 Ethereum Blockchain and Transaction Pending Pool
	2.2 Ethereum Smart Contracts
	2.3 A Nondeterministic Perspective of the Contract Execution Context

	3 Nondeterministic Payment Bugs as the Root Cause of Common Contract Vulnerabilities
	3.1 System Property Dependence
	3.2 Failed External Calls
	3.3 Contract Reentrancy
	3.4 Transaction-Ordering-Dependence
	3.5 Overview of Payment Bugs Detectable by NPChecker
	3.6 Application Scope
	3.7 Soundness and Completeness

	4 Related Work
	5 Design of NPChecker
	6 Language Definition
	7 Expose Nondeterminism with Instrumentation
	7.1 Modeling Transaction Scheduling
	7.2 Instrumentation
	7.3 Expose Program Global Variables of Nondeterministic Values

	8 Capturing Nondeterministic Payment Bugs with Information Flow Tracking
	8.1 Taint Checking
	8.2 Taint Propagation Policy

	9 Implementation
	10 Evaluation
	10.1 Case Study
	10.2 Evaluation of Real-World Smart Contracts
	10.3 Manual Inspection

	11 Discussion
	12 Conclusion
	Acknowledgments
	References

