
SmartUnit: Empirical Evaluations for Automated Unit Testing of
Embedded So�ware in Industry

Chengyu Zhang1, Yichen Yan1, Hanru Zhou1, Yinbo Yao2

Ke Wu2, Ting Su3∗ , Weikai Miao1∗, Geguang Pu1∗
1School of Computer Science and So�ware Engineering, East China Normal University, China

2National Trusted Embedded So�ware Engineering Technology Research Center, China
3School of Computer Science and Engineering, Nanyang Technological University, Singapore

dale.chengyu.zhang@gmail.com,sei yichen@outlook.com,hanruzh@gmail.com,snowingsea@gmail.com
bukawu@126.com,suting@ntu.edu.sg,wkmiao@sei.ecnu.edu.cn,ggpu@sei.ecnu.edu.cn

ABSTRACT
In this paper, we aim at the automated unit coverage-based testing
for embedded so�ware. To achieve the goal, by analyzing the
industrial requirements and our previous work on automated unit
testing tool CAUT, we rebuild a new tool, SmartUnit, to solve the
engineering requirements that take place in our partner companies.
SmartUnit is a dynamic symbolic execution implementation, which
supports statement, branch, boundary value and MC/DC coverage.

SmartUnit has been used to test more than one million lines of
code in real projects. For con�dentiality motives, we select three
in-house real projects for the empirical evaluations. We also carry
out our evaluations on two open source database projects, SQLite
and PostgreSQL, to test the scalability of our tool since the scale of
the embedded so�ware project is mostly not large, 5K-50K lines of
code on average. From our experimental results, in general, more
than 90% of functions in commercial embedded so�ware achieve
100% statement, branch and MC/DC coverage, more than 80% of
functions in SQLite and more than 60% of functions in PostgreSQL
achieve 100% statement and branch coverage. Moreover, SmartUnit
is able to �nd the runtime exceptions at the unit testing level. We
also have reported exceptions like array index out of bounds and
divided-by-zero in SQLite. Furthermore, we analyze the reasons
of low coverage in automated unit testing in our se�ing and give
a survey on the situation of manual unit testing with respect to
automated unit testing in industry.

CCS CONCEPTS
•So�ware and its engineering→ So�ware testing and debug-
ging; Dynamic analysis; Empirical so�ware validation;

KEYWORDS
Dynamic Symbolic Execution, Automated Unit Testing, Embedded
System

∗Geguang Pu, Weikai Miao and Ting Su are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’18, Gothenburg, Sweden
© 2018 ACM. 978-1-4503-5659-6/18/05. . . $15.00
DOI: 10.1145/3183519.3183554

ACM Reference format:
Chengyu Zhang, Yichen Yan, Hanru Zhou, Yinbo Yao, Ke Wu, Ting Su,
Weikai Miao, Geguang Pu. 2018. SmartUnit: Empirical Evaluations for
Automated Unit Testing of Embedded So�ware in Industry. In Proceedings of
40th International Conference on So�ware Engineering: So�ware Engineering
in Practice Track, Gothenburg, Sweden, May 27-June 3, 2018 (ICSE-SEIP ’18),
10 pages.
DOI: 10.1145/3183519.3183554

1 INTRODUCTION
Embedded so�ware widely exists in various control systems, which
is mostly specialized for the particular hardware it runs on and
have di�erent constraints, like time or memory. Manufacturers
have broadly developed all sorts of embedded so�ware in the elec-
tronics, e.g. cellphones, robots, digital TV etc. . Moreover, most of
the equipments in industrial infrastructure extensively use embed-
ded so�ware, for instance, control systems in cars, trains, power
plants, satellites, and so on. �us, how to ensure the reliability and
dependability of embedded so�ware is an ongoing challenge for
the safety-critical embedded systems.

So�ware testing is one of the most common ways to ensure the
so�ware quality. Many developers and researchers concentrate
on how to improve the e�ectiveness and e�ciency of the testing
methods to achieve higher coverage and �nd more faults. Unit
testing is an important step to ensure the so�ware quality during the
stage of so�ware development [3, 28]. For example, 79% of Microso�
developers use unit testing in their daily work [41]. Meanwhile,
unit testing is a mandatory task required in various international
standards for di�erent industrial systems, e.g. , IEC 61508, ISO26262,
RTCA DO-178B/C etc. . For instance, IEC61508, which is intended
to be designed as a basic functional safety standard applicable to all
kinds of industry speci�cations, such as Safety Integrity Level (SIL),
to provide a target to a�ain with respect to a system’s development.
If the so�ware is up to level SIL 3/SIL4, both branch and MC/DC
coverages have to be achieved to 100% during the unit testing stage.
If not achieved, engineers are required to explore the so�ware codes
and �nd the reasons.

In general, the main objective in unit testing is twofold. One is
to verify that the functionality is correct at the function level and
the other is to ensure the function is fully tested and all possible
branches and paths are taken. We call the former functionality
testing and the la�er coverage-based testing. Functionality testing is
carried out in almost every so�ware company as the basic quality



ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden C. Zhang, Y. Yan, H. Zhou, Y. Yao, K. Wu, T. Su, W. Miao, G. Pu

assurance means. So�ware engineers design the test cases manu-
ally in regards to the so�ware design speci�cation and then run
the test cases to check the �nal results by speci�cation or assertion.
For coverage-based testing, so�ware engineers may go through
the codes and compute the conditions on branches/paths to obtain
the test cases. During those activities, they usually utilize the com-
mercial unit testing tools like Testbed1, VectorCAST2 etc. , to help
them accelerate the task of test data design. Whatever functionality
testing or coverage-based testing is involved, the work of test data
design almost depends on manpower, which is a tedious job for
so�ware engineers.

In this paper, we aim at the unit coverage-based testing, and we
believe that with the great advance achieved in the �eld of auto-
mated testing [1, 13, 32], especially in symbolic execution [7, 16, 31,
35] and decision procedure [4], we are capable of fully automatiz-
ing coverage-based testing in order to largely save manpower. To
achieve this goal, �rstly, we have elaborately investigated the real
unit testing requirements from selected ten partner companies in
China Mainland, covering main safety-critical �elds like railway,
aerospace, nuclear plant, and automobile. Secondly, by analyzing
the collected requirements and based on our previous work on
automated unit testing tool CAUT [33, 35, 36], we rebuild a new
tool, SmartUnit, to meet the real engineering requirements that
take place in those companies.

We observed that most of the companies bought kinds of com-
mercial unit testing tools like Testbed or Tessy3, which can support
di�erent chip platforms. �ey totally design test data by hand. In
these ten companies, no one has used the automated testing tool
in their production departments, but two of them have tried test
data generation tools. �e main reason for not adopting them is
that existing commercial automated testing tools have achieved
very low coverage but large test suites, since most of the existing
tools are based on the random testing technology or simple branch
analysis while ignoring the path analysis. We will discuss this more
in section 5. For the tools from academia, like KLEE [7] or O�er [23]
are far from mature in industry. In a word, it is quite surprising that
NONE of the visited ten companies has adopted tools to help test
data design, they still use the most traditional approach, manpower,
to test the design for the safety-critical systems while the symbolic
execution technique has already achieved great success in other
�elds like security and veri�cation.

SmartUnit still follows the principle of symbolic execution ap-
proach [21] but has its novelty in the following points especially in
the aspect of practice engineering.

(1) It is a dynamic symbolic execution (DSE) implementation.
Based on the experience of developing CAUT [35], we
elaborately design the execution engine of SmartUnit and
make it robust enough since, in practice, an embedded
project involving 20K lines of code on average cannot stop
abnormally. We also design a new heuristic search strategy
for speeding up automated unit testing, which supports
statement, branch, boundary value, and MC/DC coverage.

1h�p://ldra.com/industrial-energy/products/ldra-testbed-tbvision/
2h�ps://www.vectorcast.com/
3h�ps://www.razorcat.com/en/product-tessy.html

(2) It can generate all the stubs automatically. One tedious
work for unit testing is to design stubs to replace the exist-
ing function calls or global variables etc., the same in using
commercial tools as well. SmartUnit makes it simpler. It
also provides the options to leave the decisions for so�ware
engineers in case of adapting di�erent application scenes.

(3) It is deployed as a private cloud-platform. Since the sym-
bolic execution engine consumes computing resources
heavily, it is designed as a private cloud-platform for in-
ternal use. Users only need to update the so�ware project
package by the web browser to the server, which will make
the whole analysis automatically including stubs genera-
tion, symbolic execution, test data report generation etc. .

(4) It can be seamlessly integrated into the existent develop-
ment environment, especially connecting to these commer-
cial unit testing tools. Developers get used to the tools at
hand, so one of the design philosophies for SmartUnit is to
make the existent testing process as short as possible. To
this end, SmartUnit can generate the test data input �les
for commercial tools like Testbed and Tessy. Once the test
data suite is generated, it can be used by users directly in
their unit testing tool at hand.

SmartUnit has been successfully applied in our four partner
companies at the �rst stage from May to September 2017. For
instance, our partners include China Academy of Space Technology,
which is the main spacecra� production agency in China (like
NASA in the United States); CASCO Signal Ltd., which is the best
railway signal corporation in China; and Guangzhou Automobile
Group, which is one of biggest car manufacturers in China.

SmartUnit has been used to test over one million lines of code in
real projects. For con�dentiality motives, we select three in-house
projects for the empirical evaluations, but we still cannot present
the code example for the same reason. �us, we carry out our
evaluations on two open source database projects SQLite and Post-
greSQL. We did not select open-source embedded so�ware because
we would like to test the scalability of our tool since the scale of the
embedded so�ware project is mostly not large, around 5K-50K lines
of code. On the other hand, database projects are more complex
than embedded so�ware. From our experimental results, in gen-
eral, more than 90% of functions in commercial embedded so�ware
achieve 100% statement, branch and MC/DC coverage, more than
80% of functions in SQLite and more than 60% of functions in Post-
greSQL achieve 100% statement and branch coverage. Moreover,
SmartUnit has the ability to �nd the runtime exceptions at the unit
testing level. We have also reported exceptions like array index out
of bounds and divided-by-zero in SQLite.

�e organization of the paper is as follows. Section 2 intro-
duces the background of our tools and techniques, Section 3 shows
the overview and the implementation details of our DSE-based
C program unit test generation framework and its private cloud-
platform, Sections 4 and 5 set up our evaluation and analyze the
results, Section 6 discusses some related work, and Section 7 gives
the conclusion.



SmartUnit: Empirical Evaluations for Automated Unit Testing
of Embedded So�ware in Industry ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

2 BACKGROUND
2.1 Industry Situation
Unit testing is an important engineering activity to ensure the
quality of so�ware in industry, especially for the manufacturers
of safety-critical systems, e.g. , the aerospace and railway signal
control companies. Although unit testing is a compulsory engineer-
ing activity requested by the standards, its application in industry
is still su�ering from low coverage and low e�ciency due to the
lack of automated tool. In most cases, test cases are �rst manually
generated by engineers and then executed on the program code by
some commercial third-party tools (e.g. Testbed, Tessy) to run the
program code. Since manual test generation is time-consuming,
the companies usually spend a lot of costs to employ test engineers
or outsource in producing the test case. According to our indus-
trial partners’ experience, a trained test engineer can produce test
case for 5-8 functions per day. One of our industrial partner spend
over $10,000 per month for hiring a group of unit testing engineers
while still su�ers from the low e�ciency and low fault detection.
To tackle these challenges, a powerful tool that can automatically
derive test cases of high coverage is highly desirable. Further, such
a tool needs to be seamlessly integrated with mainstream third-
party test execution tools. �at is, the generated test data can be
recognized by these tools to perform testing. It is ine�cient and
expensive, so they need e�cient automatic tools to generate the
test case for third-party tools.

2.2 Dynamic Symbolic Execution
Symbolic execution was �rst proposed by James C. King [21] in 1976.
Due to the limited computing resource and SMT constraint solver,
symbolic execution was not a practical technique in those years.
�anks to the recent computing resource improvement and a series
of fantastic SMT solvers, such as Z3 [11], STP [8, 14], CVC4 [5],
etc. , many symbolic execution engines have come into existence [9]
(e.g. KLEE [7, 8], DART [16], CAUT [35] for C, JPF-SE [2] for Java).
Researchers have also applied symbolic execution to so�ware test-
ing, including automatically generating test cases [22, 35].

Symbolic execution uses symbolic values as programs inputs to
simulate the execution of programs. When dealing with a control-
�ow fork, symbolic execution engine collects the conditional ex-
pressions along the path as path constraint. When reaching the
terminal of the program, SMT solver solves all the path constraint
to get a result. �e result is a test case that follows the path. �e
symbolic execution stops when all program paths are explored.

Dynamic Symbolic Executive (DSE) is a variant symbolic exe-
cution, which was proposed in 2005 [16, 31], also called Concolic
Execution. DSE uses concrete randomly generated values as input
to execute the program while collecting path constraints during
the execution. �en SMT solver solves a variant of the conjunction
of these symbolic constraints to output a new input value. �e new
input value will be used to execute a new program path.

Figure 1 is an illustrative example to explain the symbolic execu-
tion. �e code is a function named checkSign for checking signals,
with its control-�ow graph. If the input variable x is a positive
number, the function returns value 1; if x is a negative number,
the function returns value -1; otherwise 0;. �e right side part of
Figure 1 is the control-�ow graph of the function.

1 int checkSign(int x){

2 if (x > 0)

3 return 1;

4 else if (x == 0)

5 return 0;

6 else
7 return -1;

8 }

1: input x

2: x  > 0

3: return 1 4: x == 0

5: return 0 7: return -1

T F

T F

Figure 1: An example: checkSign function.

1

2

3

1

2

3 4

5 7

1

2

3 4

7

T F

F

F

T

step: 1 step: 2

step: 3

Randomly generated input: 11

Conjunction constraint: x<=0

New input: -7

Conjunction constraint: x<=0 & x==0

New input: 0

Conjunction constraint: none

New input: none

New input: -7

New input: 0

Figure 2: Process of dynamic symbolic execution.

Figure 2 describes the process of adopting the DSE. �e goal
is to cover line 7. DSE engine �rst randomly generates an input
value, e.g. 11. Using this input value, the program reaches line 3.
�en DSE engine negates the constraint collected from line 2 to
solve a new input value, e.g. -7. �erefore the statement of line
7 is triggered. �e DSE engine further negates the conjunction
constraint collected from line 2 and line 4, generating another new
input value, e.g. 0. Ultimately DSE engine can use value 0 as input
to reach the statement of line 5.

Recently, a variety of DSE-based tools have been proposed [6–
8, 16, 18, 24, 31, 38]. �ere are still some challenges for the DSE,
e.g. exponential growth paths, symbolic pointer, guided execution,
etc. . Section 3 will describe the implementation of our SmartUnit
DSE-based engine and explain how these problems are solved.

2.3 Coverage Criteria
SmartUnit is a coverage-driven unit testing tool. One of its major
goals is to generate the test suite towards a high coverage of code.
In this subsection, we will introduce some commonly used coverage
criteria in the industry.

2.3.1 Statement Coverage. Statement coverage requires all the
statements in the program code under test be executed at least once
by the test cases. Such coverage is easy to measure and the 100%
statement coverage is also easy to achieve. Statement coverage is
the most common used coverage criterion. For example, we can use



ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden C. Zhang, Y. Yan, H. Zhou, Y. Yao, K. Wu, T. Su, W. Miao, G. Pu

.c

.h
Parser

CFG (graph, expression)

AST

Memory modelSearcher Executor

CFG

Constraint solver

Constraint Expression

Test cases

Executor Module

Figure 3: �e architecture of SmartUnit.

it to detect the statements that are never executed. Since a large
number of faults may not be detected by the criterion, it is usually
not used alone.

2.3.2 Branch Coverage. Branch coverage is a stronger coverage
criterion than statement coverage [45]. It needs to con�rm all of
the possible branches from each decision are executed at least once.
�e branch coverage is also easy to achieve the 100% coverage.

2.3.3 MC/DC coverage. MC/DC is the abbreviation of Modi�ed
Condition/Decision Coverage. It is a stronger coverage criterion
than the branch coverage. In general, each decision is an atomic
condition or combined with more than one atomic condition. When
test cases satisfy each decision with value true and false, it obvi-
ously achieves branch coverage. However, MC/DC coverage further
demands that test cases satisfying an atomic condition should a�ect
decision independently with truth-value true and false, it is called
Modi�ed Condition/Decision Coverage. In practice, MC/DC-based
unit test is usually di�cult for the test engineer to write manually
because of the complex logic in decision condition. But MC/DC
coverage criterion is required in a variety of industrial standards.
�erefore, test engineers always spend a huge amount of costs and
time in designing the MC/DC test cases manually.

3 FRAMEWORK IMPLEMENTATION
3.1 Framework Architecture
Figure 3 shows the core framework of SmartUnit. �e basic process
of generating test cases in our approach is as follows:

SmartUnit accepts the .c and .h �les as its input. To deal with
macros and make sure some external symbols can be introduced
into the source �le, we use libclang4 as preprocessor to generate
processed .c �le. �en libclang is also used to parse the processed
�le to generate the AST (abstract syntax tree).

We establish the CFG (Control Flow Graph) model based on the
abstract syntax tree generated in the previous step. It consists of
the control �ow graphs generated from the proceeded �les and the
information of variables, expressions, functions etc. . Each node in
4h�p://clang.llvm.org/doxygen/group CINDEX.html

the control �ow graph represents a statement block in the source
code. �e sequential node contains exactly one incoming edge and
one outgoing edge. �e branch node contains one incoming edge
and more than one outgoing edge and indicates the condition of
the branch. �e branch node usually represents if-else statement,
while statement and switch statement etc. .

3.2 Executor Module
Executor module consists of the memory model, executor, and
searcher. �is part mainly processes the CFG model given by the
previous steps.

3.2.1 Executor. Executor executes the statement expressions
in the current node and drives the searcher to select next edge to
explore. �e executor does not really execute the C statements, it
actually transforms the C statement into blocks, declarations or ex-
pressions structures that are stored inside SmartUnit. �e executor
updates information in the CFG model and adds the constraints to
a path, a�er gathering them from the node statement. When the
executor reaches the end node, it collects all the constraints on the
path, and solves them by the constraint solver such as Z3.

3.2.2 Searcher and Search Strategy. To perform the search on
control �ow graph, we propose a new search strategy, named �ood-
search policy. Algorithm 1 describes the search algorithm. In our
CFG model, each node in the model represents a basic statement
block. �e branch edges of the branch node record the branch
condition and their truth values. If the input is G(edges, nodes)
which is a CFG model. �ere are two execution state lists, open and
close list. At the beginning, the algorithm starts with the initialized
node into the open list, while the close list is empty. �en the
algorithm executes the execution states in the open list in order.
For each execution state, the algorithm will execute the shortest
way from the current executed node to the exit node, and make
sure the constraints in this path will be collected. In order to cover
all branch edges in the graph, �ood-search policy forks a copy of
current execution state when it meets a fork, and adds the new
execution state to the list corresponding to open or close. If all
the succeeding nodes of a execution state have been visited, the
execution state will be added to the close list. Comparing with other
search algorithms such as breadth-�rst search (BFS) and depth-�rst
search (DFS), �ood-search is more suitable for dynamic symbolic
execution, since �ood-search in order to trigger the unvisited edges
and nodes as quick as possible, meanwhile, BFS or DFS may fall in
the loops.

3.2.3 Memory model. �e memory model is the key module to
track execution states and gather constraints, by simulating whole
memory allocation. Basically, memory model stores all variables of
basic types, such as int, char, including their names and values.
Dealing with complex types, such as pointers, is a challenge for
analysis tools. Our solution is below. For the array of basic types,
in addition to memory space needed by the variable in the array,
the total size of the array will also be stored, to perform plus/minus
on pointers, and check if the pointer is out of memory bound. Fur-
thermore, to deal with the member of struct, union or enum, the
total data structure and the start location in memory are recorded
to locate the variable by start location and the memory o�set.



SmartUnit: Empirical Evaluations for Automated Unit Testing
of Embedded So�ware in Industry ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

Algorithm 1: Flood-search for Control Flow Graph
Input: G(edдes, nodes): a control �ow graph

1 open← {State(Root(G ))}, close ← {}
2 repeat
3 SearchShortestToExit(Pop(open));
4 if open.size = 0 then
5 Discharge();

6 until open.size = 0

7 Procedure SearchShortestToExit(State s )
8 if s is on the end node of the graph then
9 return

10 next state ← Next(s );
11 if s has unvisited edge then
12 open ← open ∪ {s }
13 else if s has visited edge then
14 close ← close ∪ {s }
15 else
16 close ← close ∪ {s }
17 return

18 SearchShortestToExit(next state );
19

20 Procedure Discharge()
21 repeat
22 open← open ∪ {Next(Pop(close ))}
23 until close .size = 0

Web UI

Server

Operation

Master &

File System

MongoDB

Redis

Upload archive

Worker

Fork Test case

Communication

Return test case

SmartUnitCore

Figure 4: �e work�ow of the cloud-based platform.

3.3 Cloud-based Testing Service
�e SmartUnit service contains all the other features, including web
frontend UI, backend master process for handling web requests,
worker process for performing analysis actions, database module
for storing test results. �e SmartUnit system architecture diagram
is shown in Figure 4. �e Web UI is designed to manage projects
to be tested and get the results. �e project under test needs to
be uploaded to the server a�er archived, and will be passed to
master process for further operations. �e master process extracts
the uploaded archive, creates a record in the database, and forks a

worker process to call SmartUnit analysis engine (see Figure 3) to
generate test cases for the project.

A�er SmartUnit �nishes its analysis, worker process updates the
status and saves generated test cases in the database. �e status of
Web UI is also updated, and then users could download test cases
in speci�c formats, for example, .tcf format (for Testbed). When
the master process receives a request for a speci�c test case, it will
check if the test case is already prepared. If not, master process will
generate a test case �le according to test case data in the database
and the required �le format. When �nished, the test case is returned
to the Web UI, and could be downloaded.

3.4 Challenges and Solutions
3.4.1 Pointer. �e symbolizing of the pointer variable is a chal-

lenge, because the pointer operations need to access the real value
of the pointer and the variable that pointer points to. �e real value
of the pointer is hard to access as it is regarded as a symbolic value
that means we must maintain a pointer array of pointer owner to
execute a pointer operation, and the length of this array may be
in�nite because the pointer execution could be arbitrary. SmartU-
nit can support pointer operations, while a pointer memory must
include the array memory of its owner which the pointer belongs
to, the o�set to address the position of the pointer, and some other
marks such as null pointer mark. For the array of basic types, in
addition to memory space needed by the variable in the array, the
size of array will also be stored, to perform plus/minus operations
on pointers, and check if pointer is out of memory bound.

3.4.2 void*. In most embedded C programs, (void*) is a special
data type treated as a type that means nothing and used to transform
data without data type. In Memory model, each pointer typed
(void*) will be stored with its original type. SmartUnit implements
this by maintaining a void memory type and saves the alias of the
memory in it. When executor comes to the (void*), it will create
a voidmemory type, and record its type information to the aliased
memory of the voidmemory. It will update the aliased memory
when executing to the assignment of void*, and look up to its alias
memory rather than voidmemory itself, so that we can get the type
and memory information of the void* type.

3.4.3 Complex data structure. Complex data structures like struct,
union or enum type are hard to handle, for they do not have a �xed
length. To deal with the members of the struct, union or enum
type, the total data structure and the start location in memory are
needed to locate the variable by start location and the memory o�-
set. For a struct memory, the di�culty is to do operations related
to the index. �us, in addition to storing all variable declaration,
the start and end memory location and relation between previous
and next memory block are also needed to be stored.

4 EVALUATION SETUP
4.1 Research�estions
To evaluate our system, SmartUnit, we set up some research ques-
tions to guide our evaluation. �e research questions are described
as follows:
• RQ1: How about the performance of automated unit test gen-

eration framework, SmartUnit, on both commercial embedded



ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden C. Zhang, Y. Yan, H. Zhou, Y. Yao, K. Wu, T. Su, W. Miao, G. Pu

Table 1: Subjects of Evaluation Benchmark Repository.

Subject # Files # Functions # LOC
aerospace so�ware 8 54 3,769

automotive so�ware 4 330 31,760
subway signal so�ware 108 874 37,506

SQLite 2 2046 126,691
PostgreSQL 906 6105 279,809

Total 1028 9,409 479,535

so�ware and open-source database so�ware? We use statement
coverage, branch coverage, and MC/DC as evaluation indicators.

• RQ2: What factors make dynamic symbolic execution get low
coverage?

• RQ3: Can SmartUnit �nd the potential runtime exceptions in
real-world so�ware?

• RQ4: What is the di�erence in terms of time, cost and quality
between automatically generated test cases and manually wri�en
test cases?
We package the code under test and submit them to the SmartU-

nit cloud platform. SmartUnit can start dynamic symbolic execution
automatically. A�er the execution, a series of packaged .tcf �les
(the test cases for Testbed) for the codes can be downloaded from
the platform. We import the test cases into Testbed to get the cov-
erage and detect the runtime error. Testbed will generate a detailed
testing report a�er running the generated unit test cases. Statement,
branch and MC/DC coverage and runtime errors (e.g. divided-by-
zero, array index out of boundary) are provided by the report.

�e statement, branch and MC/DC coverage of each function
will be recorded as the performance indicator for RQ1. We turn
our a�ention to the functions which get low coverage in the three
coverage criteria above, to answer RQ2. �e runtime errors will be
classi�ed into a several of categories, so that we can obtain some
insights from them, in RQ3. We will select some representative
codes to answer RQ4.

4.2 Benchmark
�is paper selects two kinds of C program benchmarks for Smar-
tUnit: commercial embedded so�ware and open-source database
so�ware. Table 1 gives the list of benchmarks for the evaluation.
Due to the con�dentiality agreement, we hide the commercial so�-
ware names in this paper.

�e commercial embedded so�ware comes from aerospace,
automotive, subway signal companies. Up to now, SmartUnit has al-
ready tested millions of code for a number of commercial embedded
so�ware. For example, in the aerospace company, SmartUnit has
cumulatively tested more than 100,000 LOC. Over 70% functions
have achieved more than 90% statement coverage. In this paper,
to conduct an intensive study, we selected three benchmarks from
di�erent areas to ensure their diverse characteristics. All of them
come from real-world industrial systems.

�e open-source database so�ware used in this paper are
SQLite5 and PostgreSQL6. Due to security demand of the commer-
cial embedded so�ware, we mainly use the open-source database
so�ware to explain. We chose SQLite because it is an embedded
5h�ps://www.sqlite.org/
6h�ps://www.postgresql.org/

SQL database engine, usually used in embedded so�ware systems.
It is a good sample for us to �nd some insights when using Smar-
tUnit on the embedded system, which has nearly 130,000 LOC. �e
PostgreSQL is a representative object-relation database system, usu-
ally used as the enterprise-class database. We chose PostgreSQL as
a benchmark in order to evaluate performance and expandability
of SmartUnit on the enterprise-class system.

For each subject, we put all of the .c and .h �les into one folder to
make it easier for Smartunit to get the dependent header �les for the
functions under test. We divided each subject into an independent
.zip package so that we can calculate coverage respectively.

4.3 Evaluation Environment
SmartUnit was run on a virtual machine with three processors�
3GB memory, and CentOS 7.3 operating system. Testbed (version
8.2.0) was run on a virtual machine with two processors (2.70GHz
Intel(R) Core(TM) i5-2500S CPU) 1GB memory and 32bit Microso�
Windows XP Professional Service Pack 3 operating system.

5 RESULTS AND ANALYSIS
RQ1: How about the performance of automated unit test
generation framework SmartUnit in both commercial em-
bedded so�ware and open-source database so�ware? Table 2
shows the coverage information of the benchmarks. In Column
Subject, the items represent the name of the programs in our bench-
mark. �e Column #Test cases represents the number of test cases
generated by SmartUnit for the corresponding benchmark. We
separated PostgreSQL into the divided modules. �us, we used
PostgreSQL plus module names as the benchmark names in Table 2.
�e numbers in Statement Coverage, Branch Coverage, and MC/DC
Coverage represent the number of functions in the corresponding
range. �e number of functions which achieve 100% coverage is
highlighted in gray. N/A means the number of functions that cannot
be tested by SmartUnit or do not apply to the corresponding cover-
age criterion. Our partner companies only concern those branches
that have more than one conditions, when considering MC/DC
coverage. �erefore, the functions that do not have branches or
only have one-condition branches are counted as N/A in MC/DC
coverage. In general, more than 90% of functions in commercial
embedded so�ware achieve 100% statement, branch and MC/DC
coverage, more than 80% of functions in SQLite and more than
60% of functions in PostgreSQL achieve 100% statement and branch
coverage.

From the data, the conclusion is SmartUnit have a good per-
formance on commercial embedded so�ware and SQLite which is
used in embedded systems. �e performance on PostgreSQL not
as good as commercial embedded so�ware and SQLite, but is also
well enough. It means SmartUnit is more suitable for embedded
so�ware and also have a well performance on common so�ware.

RQ2: What factors make dynamic symbolic execution get
low coverage? In Table. 2, although SmartUnit has the high state-
ment, branch, and MC/DC coverage, there are some function units
has a low coverage (e.g. 0%-10%). We found the low coverage func-
tions, read the source code and analysis manually to �nd out why
SmartUnit get the low coverage in these functions. We categorized
the main reasons as follows:



SmartUnit: Empirical Evaluations for Automated Unit Testing
of Embedded So�ware in Industry ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 2: Performance of SmartUnit on Statement , Branch, and MC/DC coverage

Subject #Test cases Statement Coverage (#Functions) Branch Coverage (#Functions) MC/DC Coverage (#Functions)
N/A 0%-10% 10%-50% 50%-90% 90%-100% 100% N/A 0%-10% 10%-50% 50%-90% 90%-100% 100% N/A 0%-10% 10%-50% 50%-90% 90%-100% 100%

aerospace so�ware 368 1 - 3 6 4 41 1 - 5 5 3 41 45 2 - - - 8
automotive so�ware 965 1 - 3 9 2 315 1 - 6 8 - 315 274 2 3 1 - 50

subway signal so�ware 3617 6 - 1 24 26 817 6 - 2 29 26 811 558 6 5 11 - 294
SQLite 6945 86 6 80 147 59 1668 86 9 110 135 70 1636 1426 56 64 140 9 351

PostgreSQL bootstrap 4 18 - 1 1 - 1 18 - 2 - - 1 19 2 - - - -
PostgreSQL catalog 1023 50 2 79 117 7 170 50 6 128 69 13 159 207 151 30 8 - 29
PostgreSQL initdb 317 - - 2 2 5 63 - - 2 8 12 50 30 2 - 7 1 32

PostgreSQL pg dump 1661 14 2 25 57 22 386 14 5 34 57 37 359 345 22 21 30 2 86
PostgreSQL pg resetxlog 58 - - 1 1 1 8 - - 1 1 1 8 6 - 1 1 - 3
PostgreSQL pg rewind 252 4 - 1 - 6 53 4 - 1 1 6 52 48 - - 4 - 12
PostgreSQL pg upgrade 312 6 - 2 5 4 83 6 - 4 3 10 77 68 2 2 9 1 18
PostgreSQL pg xlogdump 69 3 - 2 2 - 11 3 - 2 3 - 10 15 - 1 - - 2

PostgreSQL pgtz 9226 589 15 588 704 69 2454 589 42 861 484 51 2392 2982 817 236 147 7 230
PostgreSQL psql 1438 3 - 12 14 16 383 3 - 14 16 19 376 336 7 12 23 3 47

PostgreSQL scripts1 197 - - - 7 4 30 - - - 7 6 28 27 - 2 6 - 6

Environment variable and Environment function: In the
benchmarks, there is a variety of environment variable and envi-
ronment function in the code. For example, the current time is an
environment variable, it comes from the system and is di�cult to
be symbolized. Environment function are usually standard library
calls, such as sizeof(). Listing. 1 is an example from PostgreSQL. It
is di�cult to covert the condition in line 4 to a constraint, because
symbolic execution engine is hard to comprehend the semantic of
the environment functions. �erefore, the coverage can not achieve
100% in this situation.

1 static void handle_sigint(SIGNAL_ARGS)
2 {
3 ...
4 if (PQcancel(cancelConn, errbuf, sizeof(errbuf)))
5 {
6 CancelRequested = true;
7 fprintf(stderr, _("Cancel request sent\n"));
8 }
9 else

10 fprintf(stderr, _("Could not send cancel request: %s"),
errbuf);

11 ...
12 }

Listing 1: An example of environment function.

Complex operation: Although we have a solution to deal with
the variable pointer, the complex operation is di�cult to deal with.
Listing. 2 comes from SQLite. �ere is a complex pointer operation
in line 4 which combines variable pointers and function pointers.
Due to the limit of the memory model, it can not handle these
complex operations. Execution will be terminated by this kind of
statement and get a low coverage.

1 static void callFinaliser(sqlite3 *db, int offset){
2 ...
3 int (*x)(sqlite3_vtab *);
4 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
5 if( x ) x(p);
6 ...
7 }

Listing 2: An example of complex operation.

limitation of SMT solver: In SmartUnit, Z3 Solver is the main
SMT solver to solve the constraint. Although Z3 is one of the best
SMT solvers, it still has some limitation. Here is an example. y !=

0 && (((x-1) * y) % y) == 1 is a constraint collected by SmartUnit
in the commercial so�ware. Although it is a legal constraint and
there is no divided by zero faults, the Z3 solver can not deal with it.
�e Z3 solver developer said that Z3 could not deal with nonlinear
constraints, such as this constraint. It is the common reason for
ge�ing the low coverage. �us the coverage of symbolic execution
is sometimes a�ected by the SMT solver.

RQ3: Can SmartUnit �nd the potential runtime exception
in real-world so�ware? From RQ1, we found that SmartUnit has
a high coverage on the real world so�ware. During the execution,
there are also some of the potential runtime exceptions in this
so�ware. Except the factors discussed in RQ2, we found more than
5,000 number of test cases with runtime exceptions. Due to the time
limit, we have not checked every test case manually, we sampled
from the test cases to analysis the runtime exceptions. Generally,
we divided the runtime exceptions found by SmartUnit into three
categories: array index out of bounds, �xed memory address and
divided by zero.

Array index out of bounds: As the introduction in Section 3,
SmartUnit use memory model to simulate whole memory alloca-
tion. if there is an array index out of bounds, SmartUnit will throw
a runtime exception. Listing. 3 is an example comes from SQLite.
Obviously, in this function, there is an out of bounds runtime excep-
tion in line 10, when i <argc. Although the caller of this function
ensure i <= argc in SQLite, it has a potential runtime exceptions if
other callers not ensure i <= argc. �ere is even no precondition in
the comment. It is quite serious if a programmer wants to call it, but
doesn’t know the precondition. We have found much of runtime
exceptions in this category from all of the benchmarks.

1 /*

2 ** Get the argument to an --option. Throw an error and die if

3 ** no argument is available.

4 */

5 static char *cmdline_option_value(int argc, char **argv, int i) {
6 if (i == argc) {
7 utf8_printf(stderr, "%s: Error: missing argument to %s\n",

argv[0], argv[argc - 1]);
8 exit(1);
9 }

10 return argv[i];
11 }

Listing 3: An example of array index out of bounds.



ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden C. Zhang, Y. Yan, H. Zhou, Y. Yao, K. Wu, T. Su, W. Miao, G. Pu

Fixedmemory address: Fixed memory address is a problem in
dealing with the variable pointer. In the embedded system, there are
many pointer operations with the �xed memory address. It is hard
for memory model to simulate a �xed memory address. For example,
the operations like (*0X00000052) or (* (symbolic variable + 12))
will cause runtime exceptions. It usually gets NULL when referring
from a �xed memory address. �us symbolic execution will throw
runtime exception with �xed memory address operations.

Divided by zero: Divided by zero is also a common runtime
exception in the benchmarks. It usually appears in numerical cal-
culation of program. SmartUnit will generate boundary value to
check if the program exists divided by zero runtime exception. We
select a brief example from SQLite to discuss this runtime exception.
Listing. 4 is the function which has the potential runtime exception
in line 19. When nUsable == 4, the expression (nTotal - nMinLocal)
% (nUsable - 4) will throw a divided by zero runtime exception.
we read the source code manually and found that it is di�cult to
com�rm whether nUsable could be 4 or not. �e comment of the
function does not contain the precondition of nUsable. It’s horrible
if the programmer who calls this function in a new function and
do not know the implicit prediction.

1 static void getLocalPayload(
2 int nUsable, /* Usable bytes per page */

3 u8 flags, /* Page flags */

4 int nTotal, /* Total record (payload) size */

5 int *pnLocal /* OUT: Bytes stored locally */

6 ){
7 int nLocal;
8 int nMinLocal;
9 int nMaxLocal;

10
11 if( flags==0x0D ){ /* Table leaf node */

12 nMinLocal = (nUsable - 12) * 32 / 255 - 23;
13 nMaxLocal = nUsable - 35;
14 }else{ /* Index interior and leaf nodes */

15 nMinLocal = (nUsable - 12) * 32 / 255 - 23;
16 nMaxLocal = (nUsable - 12) * 64 / 255 - 23;
17 }
18
19 nLocal = nMinLocal + (nTotal - nMinLocal) % (nUsable - 4);
20 if( nLocal>nMaxLocal ) nLocal = nMinLocal;
21 *pnLocal = nLocal;
22 }

Listing 4: An example of divided by zero.

In summary, SmartUnit could �nd the potential runtime excep-
tions in real-world so�ware. We categorized and analyzed the
potential runtime exceptions. Most of these potential runtime ex-
ceptions existed, due to there is no protection for input values. At
the same time, there is no clear precondition speci�cation for the
functions. Although there are protection codes in the caller of the
function, the potential runtime exceptions may cause the real faults
in real-world so�ware.

RQ4: What is the di�erence between automatically gen-
erated test cases and manually written test cases? In RQ4, we
compare automatically generated test cases and manually wri�en
test cases in the following aspect: time, cost and quality.

Time & Cost: Table 3 shows the test set generated time for each
benchmark. �e column Subject list all of the benchmark we used.
As Table 2, we separate PostgreSQL into the individual module, and
name with PostgreSQL plus module name. �e second column #

Table 3: Test set generated time for each benckmark.

Subject # Functions Time (s) Average (s/func)
aerospace so�ware 54 318 6

automotive so�ware 330 329 1
subway signal so�ware 874 2,476 3

SQLite 2046 13,482 6
PostgreSQL bootstrap 21 48 2
PostgreSQL catalog 425 1,350 3
PostgreSQL initdb 72 548 7

PostgreSQL pg dump 506 3,428 7
PostgreSQL pg resetxlog 11 71 6
PostgreSQL pg rewind 64 352 5
PostgreSQL pg upgrade 100 465 5

PostgreSQL pg xlogdump 18 130 7
PostgreSQL pgtz 4419 10,478 2
PostgreSQL psql 428 1,676 4

PostgreSQL scripts1 41 311 7
Total 9,409 35,462 3.77

Functions represents the number of functions in the benchmark. �e
column Time means the test set generated time for the correspond-
ing benchmark. �e column Average represents the average test set
generated time for the corresponding benchmark per function, in
other words, it means the average time of SmartUnit generates test
set for a function. Deserve to be mentioned, we use Total# Function
and Total Time to calculate Total Average.

In Table 3, it is obvious that the average time ranges from 1s
to 7s and total average time is 3.77s for all of the benchmarks. It
means that SmartUnit spends nearly 4s to generate test cases for a
function, and in the best situation, more than 90% of the functions
can achieve 100% statement, branch, and MC/DC coverage. How
about the test engineer? In our survey from companies, a trained
test engineer can product test case for 5-8 functions per day. �us
using automated unit test generation framework can cost less time
than employing test engineers.

�e main cost of automatically generated test cases and manually
wri�en test cases are both the salary paid for the employee. We
assume a developer costs twice salary higher than a test engineer.
SmartUnit has cost 24 man-month to release. For manually testing,
a test engineer could write the test case for about 160 functions per
month. �us 24 man-month cost could support test engineers write
about 8,000 functions. In summary, if you have a large number of
function units (e.g. more than 10,000), automatically generated test
cases are cheaper. On the contrary, manual test cases are cheaper
for the li�le scale of projects.

�ality: From RQ1, we have the conclusion that more than
90% of functions in commercial embedded so�ware can achieve
100% statement, branch and MC/DC coverage; more than 80% of
functions in SQLite and more than 60% of functions in PostgreSQL
achieve 100% statement and branch coverage. According to our
survey in the companies, the test engineers need to achieve 100%
coverage for each function. If we use coverage as a quality indicator,
automatically generated test case has overwhelming superiority on
cost and time though manual test case has higher coverage in some
cases. Meanwhile, the automatically generated test cases could �nd
runtime exception in time.

Discussion
Traditional automated unit testing tools focus on the automated

random testing, e.g. , test cases are randomly derived as the input



SmartUnit: Empirical Evaluations for Automated Unit Testing
of Embedded So�ware in Industry ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

to invoke the program code under test. Although the random
test data generation algorithm is quite easy to be implemented, it
is obviously that the expected coverage criteria (e.g., the branch
and the statement coverage) cannot be guaranteed. �e DART
(Directed Automated Random Testing) is a classical unit testing
tool that supports the directed random test data generation [16].
One unique characteristic of the DART is its complete automation
for unit testing. Since its underlying approach is random testing,
the DART focuses on detecting standard errors such as program
crashes, assertion violations, and non-termination while it is not
deliberately designed for certain coverage criteria requested by
the industrial standards. Our SmartUnit framework can handle
the automated testing and support various coverage criteria of the
industrial standards.

PEX is a famous unit testing tool that automatically generates
test suites with high code coverage [38]. It is a Visual Studio add-
in for testing .NET Framework applications. In practice, the PEX
tool is adapted to testing the C# code. Similarly the IntelliTest7

also automatically generates test data for the unit test of C#. �e
basic idea of the IntelliTest is to generate test data to execute each
statement of the target code and then analyze the coverage of
the conditional branch. �e Microso� Security Risk Detection is
a unique fuzz testing service for �nding security critical bugs in
so�ware. �ese three tools signi�cantly improve the unit testing
in bug detection and time e�ciency. However, since these tools are
designed as general solutions for unit testing, it cannot be directly
applied in the domain of real-time control so�ware testing. �ey
fall short in supporting the unit testing of the control so�ware
since some unique features such as the high coverage request of
particular criteria requested by the industrial standards have not
been deliberately considered. �e SmartUnit framework focuses on
the request of current industry standards and o�ers a completely
automated solution for the unit testing of the real-time so�ware.

Although there is a plug-in of Testbed called LDRA TBrun8

which can automatically generate driver program and test harness
without manual script, SmartUnit is quite di�erent from it. LDRA
TBrun uses data dictionary to generate the test cases, it combines
several values in the data dictionary, usually considering up bound
and low bound of variables. �is strategy is not able to deal with
memory calculation, while SmartUnit can easily catch memory
change constraints by DSE. LDRA TBrun generates unit test suite
based-on boundary value (e.g. , maximum value, minimum value,
median value, etc. ), while SmartUnit is a coverage-driven tool,
it can satisfy statement, branch, MC/DC coverage criteria from
industrial requirements. SmartUnit can avoid repetitive test cases,
while LDRA TBrun has many repetitive test cases in its test set.
LDRA TBrun can not give the expectative output value for each test
case, but SmartUnit can expect output value by executing test cases
automatically a�er generation. SmartUnit can not only generate
the test cases for function parameters and global variables which
support in LDRA TBrun, it can also generate the test cases for
instrument function parameters and instrument function return
value. In summary, LDRA TBrun is suitable for critical testing and

7h�ps://msdn.microso�.com/en-us/library/dn823749.aspx
8h�p://ldra.com/industrial-energy/products/tbrun/

robustness testing, while SmartUnit is suitable for coverage-driven
testing.

6 RELATEDWORK
�is section discusses related work in two aspects: symbolic execu-
tion and automated unit test generation.

Symbolic execution is a classic so�ware testing technique, and
recently enhanced with the dynamic symbolic execution (also called
concolic testing) technique [9, 10, 29]. �ere are several symbolic
execution tool, such as Pex [38] for .NET, Java PathFinder [2],
jCUTE [30] for Java, KLEE [7, 8], DART [16], CAUT [35], CUTE [30,
31], CREST [6] for C.

�ere is also much work on automated test generation. Some
of them are based on Java. RANDOOP [26], EVOSUITE [12], AGI-
TARONE9 are usually used to generate test cases and evaluate on
real-world so�ware [1, 13, 32]. Some of them focus on unit test gen-
eration [15, 27, 42–44]. SmartUnit has a good performance on unit
test generation, but also is evaluated on real-world so�ware and
used in practice. In the future, we will implement more advanced
coverage criteria, e.g. , data-�ow coverage [37], to further improve
its fault detection ability; and extend SmartUnit to support other
types of so�ware (e.g. , mobile applications [34]) and scenarios (e.g. ,
requirement testing [25]).

In industry, Microso� developed Unit Meister for parameterized
unit tests [39] and SAGE for whitebox fuzzer testing [17]. Fujitsu
tried to use symbolic execution to generate test [40], while Samsung
used CREST and KLEE on mobile platform programs [19, 20]. �e
benchmarks they chose were all from their so�ware. While We
chose the benchmarks from a variety of embedded so�ware systems
and open-source so�ware.

7 CONCLUSION
In this paper, we propose an automated unit coverage-based testing
tool for embedded so�ware called SmartUnit. It comprises of a
dynamic symbolic execution engine, a unit test generator, and a
private cloud-based service. It has been used in a series of real-
world embedded so�ware projects such as aerospace, airborne and
ground-based systems. �is tool has been developed and improved
collaboratively with several top companies in China. �e companies
have used the SmartUnit in their daily testing process and improved
their so�ware reliability. We show a general pa�ern of how to use
symbolic execution in practice with the example of SmartUnit.

�e performance of SmartUnit is evaluated by testing with both
commercial embedded so�ware and open-source so�ware. Besides,
some runtime exceptions detected by our tool are collected and
classi�ed as guidance for potential users to avoid such runtime
exceptions in so�ware developing process. Challenges in using
dynamic symbolic execution in the industrial environment have
also been discussed.

In summary, although there are some challenges, it is possible to
use dynamic symbolic execution technique on real-world so�ware
and get a high performance on coverage criteria. It is also practica-
ble to build automated unit test generation tool as a cloud service
to make unit testing easier to be adopted.

9h�p://www.agitar.com/solutions/products/agitarone.html



ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden C. Zhang, Y. Yan, H. Zhou, Y. Yao, K. Wu, T. Su, W. Miao, G. Pu

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable
feedback. Ting Su is partially supported by NSFC Projects No.
61572197 and No. 61632005. Geguang Pu is partially supported
by MOST NKTSP Project 2015BAG19B02 and STCSM Project No.
16DZ1100600. Chengyu Zhang is partially supported by China HGJ
Project (No. 2017ZX01038102-002).

REFERENCES
[1] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Jānis

Benefelds. 2017. An industrial evaluation of unit test generation: Finding real
faults in a �nancial application. In Proceedings of the 39th International Conference
on So�ware Engineering: So�ware Engineering in Practice Track. IEEE Press, 263–
272.

[2] Saswat Anand, Corina Păsăreanu, and Willem Visser. 2007. JPF–SE: A symbolic
execution extension to java path�nder. Tools and Algorithms for the Construction
and Analysis of Systems (2007), 134–138.

[3] IEEE Standards Association et al. 1990. Standard glossary of so�ware engineering
terminology. lEEE Std (1990), 610–12.

[4] Clark Barre�. 2013. �Decision Procedures: An Algorithmic Point of View,� by
Daniel Kroening and Ofer Strichman, Springer-Verlag, 2008. Journal of Automated
Reasoning 51, 4 (2013), 453–456.

[5] Clark Barre�, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. Cvc4. In
International Conference on Computer Aided Veri�cation. Springer, 171–177.

[6] Jacob Burnim and Koushik Sen. 2008. Heuristics for scalable dynamic test
generation. In Automated So�ware Engineering, 2008. ASE 2008. 23rd IEEE/ACM
International Conference on. IEEE, 443–446.

[7] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex Systems Pro-
grams.. In OSDI, Vol. 8. 209–224.

[8] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R
Engler. 2008. EXE: automatically generating inputs of death. ACM Transactions
on Information and System Security (TISSEC) 12, 2 (2008), 10.

[9] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S Păsăreanu, Koushik
Sen, Nikolai Tillmann, and Willem Visser. 2011. Symbolic execution for so�-
ware testing in practice: preliminary assessment. In Proceedings of the 33rd
International Conference on So�ware Engineering. ACM, 1066–1071.

[10] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for so�ware testing:
three decades later. Commun. ACM 56, 2 (2013), 82–90.

[11] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An e�cient SMT solver. Tools
and Algorithms for the Construction and Analysis of Systems (2008), 337–340.

[12] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented so�ware. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of so�ware engineering. ACM,
416–419.

[13] Gordon Fraser and Andrea Arcuri. 2014. A large-scale evaluation of automated
unit test generation using evosuite. ACM Transactions on So�ware Engineering
and Methodology (TOSEM) 24, 2 (2014), 8.

[14] Vijay Ganesh and David L Dill. 2007. A decision procedure for bit-vectors and
arrays. In CAV, Vol. 4590. Springer, 519–531.

[15] Pranav Garg, Franjo Ivancic, Gogul Balakrishnan, Naoto Maeda, and Aarti Gupta.
2013. Feedback-directed unit test generation for C/C++ using concolic execution.
In Proceedings of the 2013 International Conference on So�ware Engineering. IEEE
Press, 132–141.

[16] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed auto-
mated random testing. In ACM Sigplan Notices, Vol. 40. ACM, 213–223.

[17] Patrice Godefroid, Michael Y Levin, and David Molnar. 2012. SAGE: whitebox
fuzzing for security testing. �eue 10, 1 (2012), 20.

[18] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. 2008. Automated
whitebox fuzz testing.. In NDSS, Vol. 8. 151–166.

[19] Yunho Kim, Moonzoo Kim, and Yoonkyu Jang. 2011. Concolic testing on embed-
ded so�ware-case studies on mobile platform programs. In European So�ware
Engineering Conference/Foundations of So�ware Engineering (ESEC/FSE) Industrial
Track, Vol. 29. 30.

[20] Yunho Kim, Moonzoo Kim, Young Joo Kim, and Yoonkyu Jang. 2012. Industrial
application of concolic testing approach: A case study on libexif by using CREST-
BV and KLEE. In So�ware Engineering (ICSE), 2012 34th International Conference
on. IEEE, 1143–1152.

[21] James C King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385–394.

[22] Guodong Li, Indradeep Ghosh, and Sreeranga Rajan. 2011. KLOVER: A symbolic
execution and automatic test generation tool for C++ programs. In Computer
Aided Veri�cation. Springer, 609–615.

[23] Kin-Keung Ma, Khoo Yit Phang, Je�rey Foster, and Michael Hicks. 2011. Directed
symbolic execution. Static Analysis (2011), 95–111.

[24] Rupak Majumdar and Ru-Gang Xu. 2009. Reducing Test Inputs Using Information
Partitions.. In CAV, Vol. 9. Springer, 555–569.

[25] Weikai Miao, Geguang Pu, Yinbo Yao, Ting Su, Danzhu Bao, Yang Liu, Shuohao
Chen, and Kunpeng Xiong. 2016. Automated Requirements Validation for ATP
So�ware via Speci�cation Review and Testing. In Formal Methods and So�ware
Engineering - 18th International Conference on Formal EngineeringMethods, ICFEM
2016, Tokyo, Japan, November 14-18, 2016, Proceedings. 26–40.

[26] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed random
testing for Java. In Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion. ACM, 815–816.

[27] Brian Robinson, Michael D Ernst, Je� H Perkins, Vinay Augustine, and Nuo Li.
2011. Scaling up automated test generation: Automatically generating maintain-
able regression unit tests for programs. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated So�ware Engineering. IEEE Computer
Society, 23–32.

[28] Per Runeson. 2006. A survey of unit testing practices. IEEE so�ware 23, 4 (2006),
22–29.

[29] Koushik Sen. 2006. Scalable automated methods for dynamic program analysis.
Technical Report.

[30] Koushik Sen and Gul Agha. 2006. CUTE and jCUTE: Concolic unit testing and
explicit path model-checking tools. In CAV, Vol. 6. Springer, 419–423.

[31] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing
engine for C. InACM SIGSOFT So�ware Engineering Notes, Vol. 30. ACM, 263–272.

[32] Sina Shamshiri, Rene Just, Jose Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do automatically generated unit tests �nd real faults?
an empirical study of e�ectiveness and challenges (t). In Automated So�ware
Engineering (ASE), 2015 30th IEEE/ACM International Conference on. IEEE, 201–
211.

[33] Ting Su, Zhoulai Fu, Geguang Pu, Jifeng He, and Zhendong Su. 2015. Combining
symbolic execution and model checking for data �ow testing. In Proceedings of
the 37th International Conference on So�ware Engineering-Volume 1. IEEE Press,
654–665.

[34] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, Stochastic Model-based GUI Test-
ing of Android Apps. In Proceedings of the 2017 11th Joint Meeting on Foundations
of So�ware Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 245–256.

[35] Ting Su, Geguang Pu, Bin Fang, Jifeng He, Jun Yan, Siyuan Jiang, and Jianjun
Zhao. 2014. Automated coverage-driven test data generation using dynamic
symbolic execution. In So�ware Security and Reliability, 2014 Eighth International
Conference on. IEEE, 98–107.

[36] Ting Su, Geguang Pu, Weikai Miao, Jifeng He, and Zhendong Su. 2016. Automated
coverage-driven testing: combining symbolic execution and model checking.
SCIENCE CHINA Information Sciences 59, 9 (2016), 98101.

[37] Ting Su, Ke Wu, Weikai Miao, Geguang Pu, Jifeng He, Yuting Chen, and Zhen-
dong Su. 2017. A Survey on Data-Flow Testing. ACM Comput. Surv. 50, 1, Article
5 (March 2017), 35 pages.

[38] Nikolai Tillmann and Jonathan De Halleux. 2008. Pex–white box test generation
for. net. Tests and Proofs (2008), 134–153.

[39] Nikolai Tillmann and Wolfram Schulte. 2005. Parameterized unit tests with unit
meister. In ACM SIGSOFT So�ware Engineering Notes, Vol. 30. ACM, 241–244.

[40] Susumu Tokumoto, Tadahiro Uehara, Kazuki Munakata, Haruyuki Ishida, Toru
Eguchi, and Masafumi Baba. 2012. Enhancing symbolic execution to test the com-
patibility of re-engineered industrial so�ware. In So�ware Engineering Conference
(APSEC), 2012 19th Asia-Paci�c, Vol. 1. IEEE, 314–317.

[41] Gina Venolia, Robert DeLine, and �omas LaToza. 2005. So�ware development
at microso� observed. Microso� Research, TR (2005).

[42] Tao Xie and David Notkin. 2003. Tool-assisted unit test selection based on
operational violations. In Automated So�ware Engineering, 2003. Proceedings.
18th IEEE International Conference on. IEEE, 40–48.

[43] Sai Zhang, David Sa�, Yingyi Bu, and Michael D Ernst. 2011. Combined static
and dynamic automated test generation. In Proceedings of the 2011 International
Symposium on So�ware Testing and Analysis. ACM, 353–363.

[44] Wujie Zheng, Qirun Zhang, Michael Lyu, and Tao Xie. 2010. Random unit-test
generation with MUT-aware sequence recommendation. In Proceedings of the
IEEE/ACM international conference on Automated so�ware engineering. ACM,
293–296.

[45] Hong Zhu, Patrick AV Hall, and John HR May. 1997. So�ware unit test coverage
and adequacy. Acm computing surveys (csur) 29, 4 (1997), 366–427.


	Abstract
	1 Introduction
	2 background
	2.1 Industry Situation
	2.2 Dynamic Symbolic Execution
	2.3 Coverage Criteria

	3 Framework Implementation
	3.1 Framework Architecture
	3.2 Executor Module
	3.3 Cloud-based Testing Service
	3.4 Challenges and Solutions

	4 Evaluation Setup
	4.1 Research Questions
	4.2 Benchmark
	4.3 Evaluation Environment

	5 results and analysis
	6 related work
	7 conclusion
	Acknowledgments
	References

