CERN Accelerating science

CERN Document Server 找到 1 筆記錄  檢索需時 0.97 秒. 
1.
Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines / Schenk, Michael (CERN) ; Combarro, Elías F. (U. Oviedo (main)) ; Grossi, Michele (CERN) ; Kain, Verena (CERN) ; Li, Kevin Shing Bruce (CERN) ; Popa, Mircea-Marian (Bucharest, Polytechnic Inst.) ; Vallecorsa, Sofia (CERN)
Free energy-based reinforcement learning (FERL) with clamped quantum Boltzmann machines (QBM) was shown to significantly improve the learning efficiency compared to classical Q-learning with the restriction, however, to discrete state-action space environments. In this paper, the FERL approach is extended to multi-dimensional continuous state-action space environments to open the doors for a broader range of real-world applications. [...]
arXiv:2209.11044.- 2024-02-21 - 17 p. - Published in : Quantum Sci. Technol. 9 (2024) 025012 Fulltext: Publication - PDF; 2209.11044 - PDF;

您想得到有關這檢索條件的最新結果嗎?
建立您的 電郵警報 或訂閱 RSS feed.
沒有尋找到什麼? 嘗試在以下的服務器查尋:
recid:2893039 在 Amazon
recid:2893039 在 CERN EDMS
recid:2893039 在 CERN Intranet
recid:2893039 在 CiteSeer
recid:2893039 在 Google Books
recid:2893039 在 Google Scholar
recid:2893039 在 Google Web
recid:2893039 在 IEC
recid:2893039 在 IHS
recid:2893039 在 INSPIRE
recid:2893039 在 ISO
recid:2893039 在 KISS Books/Journals
recid:2893039 在 KISS Preprints
recid:2893039 在 NEBIS
recid:2893039 在 SLAC Library Catalog