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1. Introduction

A precise determination of the KaonB-parameter is required to constrain the CKM unitarity
triangle analysis.BK is defined in terms of hadronic matrix elements which can be computed using
lattice QCD. At present, the inclusion of dynamical quark effects is an essential requirement in
these lattice calculations. Indeed, a remarkably good agreement has been found between several
independent quenched determinations ofBK [1], leaving the “quenching” effects as the largest un-
certainty. A complete study of the systematic effects, other than quenching, has been performed in
ref. [2] and reviewed in this conference [3]. There are indications that once dynamical quarks are
taken into account, a major source of uncertainty on latticeresults arises from the determination
of the renormalization factors of the four-fermion operators [1]. In principle, this uncertainty can
be completely eliminated by a non-perturbative renormalization procedure. Similarly, the renor-
malization group (RG) running of the operator from hadronicscales up to high-energies, where
perturbation theory can be safely applied, is best performed non-perturbatively. Here we report on
the status of such a non-perturbative renormalization using Nf = 2 dynamical flavours. In particu-
lar, we present preliminary results for the scale evolutionof the four-fermion operator relevant for
the determination ofBK in the context of tmQCD [4].

The theoretical description of theK0− K̄0 oscillation is controlled, once high-energy scales are
integrated through an operator product expansion procedure, by the matrix element〈K̄0|O∆S=2|K0〉,
where the four-fermion operator is defined as follows:

O∆S=2 ≡ [s̄γµ(1− γ5)d] [s̄γµ(1− γ5)d] = OVV+AA −OVA+AV . (1.1)

The strange and down quark fields are denoted bys and d respectively. TheBK-parameter is
expressed in terms of the parity-evenOVV+AA operator :

BK ≡
〈K̄0|OVV+AA |K0〉

8
3F2

Km2
K

. (1.2)

Parity conservation ensures that the matrix element〈K̄0|OVA+AV |K0〉, involving the parity-odd oper-
ator, is identically zero.

In lattice regularizations preserving chiral symmetry theoperatorOVV+AA is multiplicatively
renormalizable. This is not the case for Wilson fermions because in this case chiral symmetry is
broken at non-zero lattice spacing. The renormalization ofOVV+AA is therefore more involved since
mixing with four other dimension-6 operators has to be considered. On the other hand, discrete
symmetries protect the parity-odd operatorOVA+AV , so as to preserve multiplicative renormalization
also in the case of Wilson fermions [5, 6].

The inclusion of a “twisted mass” term in the fermionic action opens the way to improve
the renormalization properties of Wilson fermions. The twisted-mass theory is related to standard
QCD through an axial transformation of the quarks fields. By choosing appropriate formulations of
tmQCD (see ref. [2] for two of these formulations), it is possible to relate the QCDOVV+AA operator
to a partnerOVA+AV in tmQCD where the property of multiplicative renormalization of this operator
is preserved. This method allows the determination ofBK only via multiplicative renormalization,
thus avoiding mixing with operators of wrong chirality. Another proposal in this direction uses
chiral Ward-Takahashi identities to relate parity-odd andparity-even operators [7].
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Our strategy to renormalize the operatorOVA+AV closely follows the one used in ref. [8] for the
quenched case. The connection between the renormalizationgroup invariant operator̂OVA+AV and
its bare counterpartOVA+AV(g0) can be written in the following way:

ÔVA+AV(x) = lim
g0→0

ZVA+AV;s(g0) OVA+AV(x;g0) . (1.3)

The RGI operator is independent of the renormalization scheme and scale when the renormaliza-
tion conditions are imposed at zero quark mass [9]. The renormalization factorZVA+AV;s(g0) is
scale-independent but depends on the schemes (only through cutoff effects) and on the lattice
regularization. These dependences are manifest when decomposingZVA+AV;s(g0) into:

ZVA+AV;s(g0) = ẐVA+AV;s(µmin)ZVA+AV;s(g0,aµmin) . (1.4)

The first factor on the r.h.s. of eq. (1.4) controls the RG-running of the operator from the refer-
ence scaleµmin to an infinite scale. It is independent of the regularisation. The second factor,
ZVA+AV;s(g0,aµmin), relates the bare lattice operator to its continuum value atthe hadronic scale
µmin. This factor is therefore dependent on both the regularization and the scale. Both factors
on the r.h.s. of eq. (1.4) depend on the renormalization scheme. In this report, we focus on the
more expensive part of the renormalization procedure, thatis, the computation of the contribution
of the non-perturbative evolution function̂ZVA+AV;s(µmin) describing the running in the scale range
1 GeV – 100 GeV.

2. Renormalization group running of four-fermion operators

Let us first define a renormalized four-fermion operatorOR at a reference scaleµ :

OR(x;µ) = lim
a→0

ZO(g0,aµ) O(x;g0) . (2.1)

The running of the renormalized operatorOR(µ) is controlled by its anomalous dimensionγO(ḡ),
defined as :

µ
∂

∂ µ
OR(x;µ) = γO(ḡ) OR(x;µ) . (2.2)

In mass-independent renormalization schemes [9] as those we consider here, the functionγO(ḡ)

only depends on the renormalized coupling ¯g. The perturbative expansion ofγO(ḡ) is given by

γO(g)
g→0
∼ −g2

(

γ(0)
O + γ(1)

O g2 + γ(2)
O g4 + . . .

)

, (2.3)

with γ(0)
O a universal coefficient. By combining eqs. (2.1) and (2.2), it is possible to relate the

anomalous dimension ofOR to its scale-dependent renormalization factor :

γO(g(µ)) = lim
a→0

(

µ
∂

∂ µ
ZO(g0,aµ)

)

ZO(g0,aµ)−1 . (2.4)

The RGI operator is obtained upon the formal integration of eq. (2.2). It is given by

Ô(x) = OR(x;µ)

[

ḡ2(µ)

4π

]−γ(0)
O /(2b0)

exp

{

−
∫ ḡ(µ)

0
dg

(

γO(g)

β (g)
−

γ(0)
O

b0g

)}

. (2.5)
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The integral in the r.h.s of eq. (2.5) describes the scale evolution of γO(ḡ). The evolution function
of the operatorOR between the renormalization scaleµ and an arbitrary scaleµ ′ is given by:

U(µ ′,µ) ≡ exp

{

∫ g(µ ′)

g(µ)

γO(g)

β (g)
dg

}

= lim
a→0

ZO(g0,aµ ′)

ZO(g0,aµ)
. (2.6)

The running of the renormalized four-fermion operatorOR can therefore be performed by con-
structing ratios of the renormalization factorsZO at different scales.

Our renormalization schemes are defined in the Schrödinger functional (SF) formalism. This
technique has been used to determine the scale evolution of physical quantities such as the strong
coupling [10, 11] or the quark mass [12, 13]. These studies were performed both with and with-
out dynamical quarks. In the case of four-fermion operators[8] the running was carried out in
the quenched approximation. We regularize the theory on a lattice of physical sizeL4 using stan-
dard SF boundary conditions allowing to carry out simulations at zero quark masses. The SF is
used as a mass-independent renormalization scheme; since the renormalization factors are flavour-
independent, they can also be used to renormalize theB-parameters in the Kaon,D andB-meson
sectors. The renormalization conditions are imposed at a scaleµ equal to the IR cutoff 1/L.

Let us now concentrate on the case of the local parity-odd four-fermion operator:

OVA+AV(x) =
1
2

[

(ψ̄1γµψ2)(ψ̄3γµγ5ψ4)+ (ψ̄1γµγ5ψ2)(ψ̄3γµψ4)+ (ψ2 ↔ ψ4)
]

. (2.7)

Four distinct valence flavours are used in the definition of the operator. The SF correlation functions
used to extract the operatorOVA+AV(x) are:

F[ΓA ,ΓB,ΓC](x0) =
1
L3〈O21[ΓA ]O45[ΓB] OVA+AV(x) O

′
53[ΓC]〉 , (2.8)

whereO andO ′ are the interpolating fields on the time boundaries (refer to[8] for a full explanation
of the notations). Several choices of the Dirac matricesΓA,B,C are allowed. We will focus here on
the particular choiceΓA = ΓB = ΓC = γ5. Note that a “spectator” valence quarkψ5 is used in
eq. (2.8). It is useful to keep in mind that since the quarks are massless in this mass-independent
renormalization scheme, flavour only enters through Wick contractions.

The logarithmic divergences of the local operatorOVA+AV(x) are isolated by dividing out from
the correlatorF the divergences coming from the boundaries and the externallegs. This is obtained
through the ratio:

h(x0) =
F[γ5,γ5,γ5](x0)

f 3/2
1

, (2.9)

where f1 is the boundary-to-boundary correlation function :f1 =−1/(2L6)〈O ′
12[γ5] O21[γ5]〉 . The

renormalized ratiohR can be written as follows:

hR(x0;µ) = ZVA+AV(g0,aµ)h(x0;g0) , (2.10)

where the renormalization factor is fixed by imposing the renormalization condition :

ZVA+AV(g0,aµ = 1/L)h(x0 = L/2;g0) = hs(x0 = L/2;g0)

∣

∣

∣

∣

g0=0
, (2.11)
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i.e. at tree levelZVA+AV = 1. The renormalization condition is taken at the scaleµ = 1/L and
therefore at fixed renormalized couplingu = g2(1/L). Note that as the quarks are massless, once
the continuum limita→ 0 is taken, the only remaining scale isL.

The running of the scale-dependent factorZVA+AV(g0,aµ) is implemented in the SF formalism
via the step scaling function (SSF), defined in the continuumas:

σVA+AV(u) = lim
a→0

ΣVA+AV(u,a/L) , ΣVA+AV(u,a/L) =
ZVA+AV(g0,a/2L)

ZVA+AV(g0,a/L)

∣

∣

∣

∣

∣

m=0, g2(1/L)=u

. (2.12)

The SSF can be written in terms of the evolution functionU : σVA+AV(u) = UVA+AV(1/2L,1/L) . The
SSF is used to run the operatorOVA+AV between two scales differing by a factor of two. By iterating
this procedure the running of the operator can be performed over a large range of scales.

3. Non-perturbative study of the step scaling function

The computation of the SSF is performed withNf = 2 flavours ofO(a) improved Wilson
fermions. We evaluateΣVA+AV(u,a/L) at six values of the renormalized couplingu (labelled, in
increasing order,u1, ...,u6). At each of these couplings, we consider three lattice resolutionsL/a=

6,8,12 to extrapolate our data to the continuum limit. The unquenched configurations employed in
our computation have been previously used in the study of thequark mass renormalization [13] (the
description of our simulation setup can be found in this reference). In fig.1 we present the status
of the ongoing determination ofΣVA+AV(u,a/L). Data for some of the simulation points has not yet
been included as it is still being generated. Moreover, the statistical errors of our preliminary data
in fig.1 will reduce when the complete set of configurations will be considered. The integrated
autocorrelation times are included in the error estimate. We observe that the autocorrelations grow
when increasing the coupling and when approaching the continuum limit.

TheO(a) improvement of the dimension-six operatorOVA+AV has not been implemented. Al-
though a Symanzik improvement program is possible, the mixing ofOVA+AV with several dimension-
seven operators makes it unpractical. For each of the couplingsu, the continuum limit ofΣVA+AV(u,a/L)

should therefore be taken through a linear extrapolation. This is illustrated in fig.1 in those cases
where threeL/a resolutions are already available. As our data seems to showrather small cutoff
effects, we have also tried to fitΣVA+AV(u,a/L) to a constant (we perform a weighted average and,
somehow abusively, we refer to it as a “constant fit”). In the case of the couplingsu1,u3,u5 and
u6 this fit was performed by discarding theL/a = 6 data which, being far from the continuum, is
expected to contain large cutoff effects. By comparing the linear and the constant fit, we observe
good agreement of the extrapolated values. A more refined analysis of the continuum extrapolation
will be undertaken once our complete set of data will be available.
In a tentative study of the quality of our data, we present in fig. 2 the SSFσVA+AV(u). TheNf = 2

data is compared to the quenched one from ref. [8]. The same renormalization scheme and fitting
procedures is used in both theNf = 2 andNf = 0 data (in particular, also in the quenched case we
perform a constant fit to the continuum).1 In the strong coupling regime,u ∼ 3.5, we observe

1Note that this comparison is only intended to study the quality of our data. It is indeed improper to compareNf = 2
and quenched physical results at this stage since the respective renormalized couplings are not taken at the same physical
scale.
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Figure 1: Continuum extrapolation of the SSFΣVA+AV (u,a/L) at fixed renormalized couplingsu. The empty
circles correspond to the extrapolated value obtained through a linear fit and the diamond to the one obtained
via a fit to a constant. Results are preliminary.

a similar pattern in theNf = 2 andNf = 0 data when comparing the value ofσVA+AV(u) obtained
through a linear and a constant extrapolation to the continuum: in bothNf = 0,2 cases the linear
extrapolation points lie above the constant-fit ones. Due tolarge statistical errors, theNf = 2 data
shows a better agreement between linear and constant fit. In fig.2, we also plot the perturbative
expressions ofσVA+AV(u) in both theNf = 2 andNf = 0 cases. These expressions were computed
at next-to-leading order (NLO) in ref. [14]. In our chosen renormalization scheme, we observe a
fairly good agreement between the perturbative curve and the non-perturbative data in the small
coupling region and some signs of deviations in the strong coupling regime. We have considered
nine different renormalization schemes (for the definitions of these schemes, refer to [8, 14]). The
empirical criterion to identify the more appropriate schemes is to consider those having a small
NLO term, of the same sign as the LO one, in the perturbative expansion ofσVA+AV(u). We have
checked that our best available scheme is indeed the one of eq. (2.9).

Conclusions

We have presented the status of the computation of the non-perturbative RG running of the
four-fermion operatorOVA+AV using lattice QCD with two dynamical quarks. This calculation will
soon allow us to determine the universal renormalization factor ẐVA+AV;s(µ) in eq. (1.4). The second
factor on the r.h.s of this equation is simpler to determine,compared toẐVA+AV;s(µ), as it depends
only on a single scaleµ . This determination will allow to complete the renormalization of the
operatorOVA+AV . As our renormalization scheme is flavour-independent, thesame renormalization
factors can be used to determine theB-parameters in the strange, charm and beauty sectors.
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Figure 2: The step scaling functionσVA+AV(u) (discrete points) is compared to the LO and NLO perturbative
results. In order to evaluate the quality of our data we compare ourNf = 2 results with quenched data from
ref. [8]. Results are preliminary.
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