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1. Introduction

A precise determination of the Kadparameter is required to constrain the CKM unitarity
triangle analysisBy is defined in terms of hadronic matrix elements which can loepded using
lattice QCD. At present, the inclusion of dynamical quarteets is an essential requirement in
these lattice calculations. Indeed, a remarkably goodeageat has been found between several
independent quenched determination®gffl], leaving the “quenching” effects as the largest un-
certainty. A complete study of the systematic effects, othan quenching, has been performed in
ref. [B] and reviewed in this conferendg [3]. There are intians that once dynamical quarks are
taken into account, a major source of uncertainty on latiseilts arises from the determination
of the renormalization factors of the four-fermion operatfi]]. In principle, this uncertainty can
be completely eliminated by a non-perturbative renormatiim procedure. Similarly, the renor-
malization group (RG) running of the operator from hadrosgales up to high-energies, where
perturbation theory can be safely applied, is best perfdrnua-perturbatively. Here we report on
the status of such a non-perturbative renormalizationgusin= 2 dynamical flavours. In particu-
lar, we present preliminary results for the scale evolutbthe four-fermion operator relevant for
the determination 0Bk in the context of tmQCD[[4].

The theoretical description of the® — KO oscillation is controlled, once high-energy scales are
integrated through an operator product expansion proeebyithe matrix elemenri?|OAS=2|K9),
where the four-fermion operator is defined as follows:

0°572 = [§yu(1— ¥6)d] [Syu(1— ¥5)d] = Ouvna — Ovmsar - (1.1)

The strange and down quark fields are denoteds layd d respectively. TheBg-parameter is
expressed in terms of the parity-evén, .., Operator :

(K%Owy s [K®)

BK =
ERem

(1.2)
Parity conservation ensures that the matrix elen(llé_f‘)ntoVA+AV |K%), involving the parity-odd oper-
ator, is identically zero.

In lattice regularizations preserving chiral symmetry tperatorO,y .. IS multiplicatively
renormalizable. This is not the case for Wilson fermionsalise in this case chiral symmetry is
broken at non-zero lattice spacing. The renormalizatio®of 4. is therefore more involved since
mixing with four other dimension-6 operators has to be atergid. On the other hand, discrete
symmetries protect the parity-odd operai®f , »/, SO as to preserve multiplicative renormalization
also in the case of Wilson fermionfd [5, 6].

The inclusion of a “twisted mass” term in the fermionic antiopens the way to improve
the renormalization properties of Wilson fermions. Thestedl-mass theory is related to standard
QCD through an axial transformation of the quarks fields. Byasing appropriate formulations of
tmQCD (see ref[]2] for two of these formulations), it is pbésto relate the QCID,, . 1, Operator
to a partnelO,,_», in tMQCD where the property of multiplicative renormalipat of this operator
is preserved. This method allows the determinatioBobnly via multiplicative renormalization,
thus avoiding mixing with operators of wrong chirality. Aher proposal in this direction uses
chiral Ward-Takahashi identities to relate parity-odd padty-even operator$][7].
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Our strategy to renormalize the opera@j ,», closely follows the one used in ref] [8] for the
quenched case. The connection between the renormalizptheip invariant operatady, ,, and
its bare counterpaf,, , (go) can be written in the following way:

6VA+AV (x) = gI(ETO Zniavs(90) Ovarav (X 00) - (1.3)

The RGI operator is independent of the renormalization mehand scale when the renormaliza-
tion conditions are imposed at zero quark mdbs [9]. The realization factorZ,, .s(do) is
scale-independent but depends on the scheifomly through cutoff effects) and on the lattice
regularization. These dependences are manifest when gesong 2, a.s(do) into:

Zoniavs(00) = 2VA+AV;s(umin) Zon i avs (90, @Umin) - (1.4)

The first factor on the r.h.s. of ed. (IL.4) controls the RGaimg of the operator from the refer-
ence scalgumin to an infinite scale. It is independent of the regularisatidie second factor,
Zun.nvs(Q0,@8Umin), relates the bare lattice operator to its continuum valuthathadronic scale
Umin- This factor is therefore dependent on both the regulaoizeand the scale. Both factors
on the r.h.s. of eq[(J.4) depend on the renormalizationmseheln this report, we focus on the
more expensive part of the renormalization procedure,ish#he computation of the contribution
of the non-perturbative evolution functi(ﬁq,MA\,;s(umin) describing the running in the scale range
1 GeV —100 GeV.

2. Renormalization group running of four-fermion operators
Let us first define a renormalized four-fermion operddarat a reference scaje:
Or(X 1) = lim Zo(go,au) O(x,Go). (2.1)

The running of the renormalized operafg(u) is controlled by its anomalous dimensigi(g),
defined as :

u %OR(X;“) = Yo(9) OrR(X; H) - (2.2)

In mass-independent renormalization schenfies [9] as theseonsider here, the functiom ()
only depends on the renormalized couplmdrhe perturbative expansion gf(g) is given by

—0
Yo(g) °~" —¢? (yé°)+yél>gz+yg>g4+...> , (2.3)

with yg)) a universal coefficient. By combining egf. {2.1) ahd](2.2)s ipossible to relate the

anomalous dimension @ to its scale-dependent renormalization factor :

1o(a(40) = im, 1. Zo(Go.ah) ) Zofi. o) 2.4

The RGI operator is obtained upon the formal integrationcpf(.2). It is given by

X =2\ 1Yo /(2b0) ) (0)
O(x) = Or(X; 1) [M} exp{—/ogu dg(%—%) } . (2.5)
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The integral in the r.h.s of eq._(2.5) describes the scalkuton of y5(g). The evolution function
of the operatoOg between the renormalization scaleand an arbitrary scalg’ is given by:

b 9(H) yo(9) . Zo(go.ap’)
U(“’”):eXp{/gm) B(9) dg}_me' @9)

The running of the renormalized four-fermion operaf can therefore be performed by con-
structing ratios of the renormalization factas at different scales.

Our renormalization schemes are defined in the Schrodingetibnal (SF) formalism. This
technique has been used to determine the scale evolutidmysifgal quantities such as the strong
coupling [I0[I}L] or the quark mags [42] 13]. These studie® werformed both with and with-
out dynamical quarks. In the case of four-fermion operaffffghe running was carried out in
the quenched approximation. We regularize the theory ottiadaf physical size&* using stan-
dard SF boundary conditions allowing to carry out simulaiat zero quark masses. The SF is
used as a mass-independent renormalization scheme; Boenbrmalization factors are flavour-
independent, they can also be used to renormaliz8{parameters in the Kaol) andB-meson
sectors. The renormalization conditions are imposed atla goequal to the IR cutoff L.

Let us now concentrate on the case of the local parity-oddfimnmion operator:

Owaiav (X) = % [(Pryu2) (Wayuysa) + (nyuyso) (Payua) + (Yo — Yu)] . (2.7)

Four distinct valence flavours are used in the definition efperator. The SF correlation functions
used to extract the operatox, , », (x) are:

Firarerc (o) = é(ﬁzﬂrA]ﬁ%[rB] Ouaiav (X) Og3[lcl) (2.8)

whered and¢” are the interpolating fields on the time boundaries (refgffjttor a full explanation
of the notations). Several choices of the Dirac matriceg c are allowed. We will focus here on
the particular choicda =g =I'c = . Note that a “spectator” valence quagk is used in
eq. (2.8). Itis useful to keep in mind that since the quarksmaassless in this mass-independent
renormalization scheme, flavour only enters through Wigkramtions.

The logarithmic divergences of the local operayf . , (X) are isolated by dividing out from
the correlator# the divergences coming from the boundaries and the extexgel This is obtained
through the ratio:

.y, (X0)
h(Xo)zi[ys’fysg/yZ] : (2.9)

1

wheref is the boundary-to-boundary correlation functiory:= —1/(2L8) (0},[ys] C21[ys]). The
renormalized ratidr can be written as follows:

hr(X0; M) = Za+av (9o, al) N(Xo0; Qo) (2.10)

where the renormalization factor is fixed by imposing theoreralization condition :

ZVA+AV (gO>aIJ = 1/L)h(XO = L/Z;gO) = hs(XO = L/Z;QO) ) (2-11)
9o=0
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i.e. attree levelZ,, ., = 1. The renormalization condition is taken at the sqale- 1/L and
therefore at fixed renormalized coupling= g%(1/L). Note that as the quarks are massless, once
the continuum limita — O is taken, the only remaining scalelis

The running of the scale-dependent fadgyr, », (9o, au) is implemented in the SF formalism
via the step scaling function (SSF), defined in the continagm

ZVA+AV (907 a/ZL)
ZVA+AV (907a/l-) m=0, g2

. (2.12)
(1/L)=u

O v (U) = JaiLnoZVAMv(U, a/L), Zoav(Ua/L) =

The SSF can be written in terms of the evolution functiin gy, (U) = Uy, a (1/2L,1/L). The
SSF is used to run the operafdy, . », between two scales differing by a factor of two. By iterating
this procedure the running of the operator can be performmedalarge range of scales.

3. Non-perturbative study of the step scaling function

The computation of the SSF is performed with= 2 flavours of&'(a) improved Wilson
fermions. We evaluat&,, ., (u,a/L) at six values of the renormalized coupling(labelled, in
increasing ordewl, ..., u6). At each of these couplings, we consider three latticaluésnsL /a =
6,8,12 to extrapolate our data to the continuum limit. The unghed configurations employed in
our computation have been previously used in the study afulaek mass renormalizatiop [13] (the
description of our simulation setup can be found in thisneriee). In fig]JlL we present the status
of the ongoing determination &,. (u,a/L). Data for some of the simulation points has not yet
been included as it is still being generated. Moreover, thiessical errors of our preliminary data
in fig.l will reduce when the complete set of configurationti e considered. The integrated
autocorrelation times are included in the error estimate.0bserve that the autocorrelations grow
when increasing the coupling and when approaching theraqunti limit.

The ¢'(a) improvement of the dimension-six operafy, ., has not been implemented. Al-
though a Symanzik improvement program is possible, thengigf O,,_ », With several dimension-
seven operators makes it unpractical. For each of the ewslj the continuum limit o, ,, (u,a/L)
should therefore be taken through a linear extrapolatidris i illustrated in fig]1 in those cases
where thred_/a resolutions are already available. As our data seems to sibver small cutoff
effects, we have also tried to fit, , (u,a/L) to a constant (we perform a weighted average and,
somehow abusively, we refer to it as a “constant fit”). In thsecof the couplingsl,u3,u5 and
u6 this fit was performed by discarding th¢a = 6 data which, being far from the continuum, is
expected to contain large cutoff effects. By comparing thedr and the constant fit, we observe
good agreement of the extrapolated values. A more refindgsimaf the continuum extrapolation
will be undertaken once our complete set of data will be atxd.

In a tentative study of the quality of our data, we presentgnffithe SSFoy, . o, (U). TheN; =2
data is compared to the quenched one from [gf. [8]. The sanwemalization scheme and fitting
procedures is used in both thie = 2 andN; = 0 data (in particular, also in the quenched case we
perform a constant fit to the continuurd).In the strong coupling regime; ~ 3.5, we observe

INote that this comparison is only intended to study the ggafiour data. It is indeed improper to compate= 2
and quenched physical results at this stage since the taspesiormalized couplings are not taken at the same phlysic
scale.
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Figure 1. Continuum extrapolation of the SSR, . a, (u,a/L) at fixed renormalized couplings The empty
circles correspond to the extrapolated value obtaineditiira linear fit and the diamond to the one obtained
via a fit to a constant. Results are preliminary.

a similar pattern in thé&: = 2 andN; = 0 data when comparing the value @, , ,, (u) obtained
through a linear and a constant extrapolation to the comtmuin bothN; = 0,2 cases the linear
extrapolation points lie above the constant-fit ones. Duartye statistical errors, thé; = 2 data
shows a better agreement between linear and constant fitg il fie also plot the perturbative
expressions o0&y, 4 (U) in both theNs = 2 andNy = O cases. These expressions were computed
at next-to-leading order (NLO) in ref[ [lL4]. In our chosema@emalization scheme, we observe a
fairly good agreement between the perturbative curve aadtim-perturbative data in the small
coupling region and some signs of deviations in the strongloog regime. We have considered
nine different renormalization schemes (for the defingionthese schemes, refer [p [8] 14]). The
empirical criterion to identify the more appropriate scksnis to consider those having a small
NLO term, of the same sign as the LO one, in the perturbatiypamsion ofa,, .. (U). We have
checked that our best available scheme is indeed the one. ¢E.8y

Conclusions

We have presented the status of the computation of the nburpative RG running of the
four-fermion operatoO,, ., Using lattice QCD with two dynamical quarks. This calcudatwill
soon allow us to determine the universal renormalizati«xtofiww;s(u) in eq. (T.}). The second
factor on the r.h.s of this equation is simpler to determammpared to?VAw;s(u), as it depends
only on a single scal@l. This determination will allow to complete the renormaliaa of the
operatorO,, . .. As our renormalization scheme is flavour-independentséimee renormalization
factors can be used to determine Byparameters in the strange, charm and beauty sectors.
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Figure 2: The step scaling functiooi, . 4/ (U) (discrete points) is compared to the LO and NLO perturbative
results. In order to evaluate the quality of our data we camparN; = 2 results with quenched data from
ref. [E]. Results are preliminary.

Acknowledgements

We thank Roberto Frezzotti and Francesco Knechtli for uskifaussions. We would specially
like to thank Michele Della Morte for help and advice in thaffistages of this work. We also thank
the Computer Center of DESY-Zeuthen for their support.

References

[1] C. Dawson, Po% AT 2005 (2006) 007.

[2] P. Dimopoulos et al., [ALPHA Collaboration], Nucl. PhyB 749 (2006) 69 [hep-ph/0601002].

[3] C. Pena, “Twisted mass QCD for weak matrix elements,” PA$ 2006 (2006) 019.

[4] R. Frezzotti et al., JHEB108 (2001) 058 [hep-lat/0101001].

[5] C. W. Bernard, T. Draper, G. Hockney and A. Soni, Nucl. 8Hgroc. SuppH (1988) 483.

[6] A. Donini et al., Eur. Phys. J. @0 (1999) 121 [hep-1at/9902030].

[7] D. Becirevic et al., Phys. Lett. B87 (2000) 74 [hep-lat/0005013].

[8] M. Guagnelli et al., [ALPHA Collaboration], JHEB603 (2006) 088 [hep-lat/0505002].

[9] S. Weinberg, Phys. Rev. D8 (1973) 3497.
[10] M. Lischer, R. Sommer, P. Weisz and U. Wolff, Nucl. PHy<13 (1994) 481 [hep-lat/9309005].
[11] M. Della Morte et al., [ALPHA Collaboration], Nucl. PlsyB 713 (2005) 378 [hep-lat/0411025].
[12] S. Capitani et al., [ALPHA Collaboration], Nucl. Phy& 544 (1999) 669 [hep-lat/9810063].
[13] M. Della Morte et al., [ALPHA Collaboration], Nucl. PlsyB 729 (2005) 117 [hep-lat/0507035].
[14] F. Palombi, C. Pena and S. Sint, JHE&®3 (2006) 089 [hep-lat/0505003].



