
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN{PH-EP/2006-015

DELPHI 2006-006 CONF 752

10 May 2006

Study of Leading Hadrons in Gluon

and Quark Fragmentation

DELPHI Collaboration

Abstrat

The study of quark jets in e

+

e

�

reations at LEP has demonstrated that the

hadronisation proess is reprodued well by string models like JETSET. How-

ever, our understanding of gluon fragmentation is less omplete. In this study

enrihed quark and gluon jet samples of di�erent purities are seleted in three-

jet events from hadroni deays of the Z olleted by the DELPHI experiment

in the LEP runs during 1994 and 1995. The leading systems of the two kinds of

jets are de�ned by requiring a rapidity gap and their sum of harges is studied.

An exess of leading systems with total harge zero is found for gluon jets in

all ases, when ompared to Monte Carlo Simulations with JETSET (with and

without Bose-Einstein orrelations inluded) and ARIADNE. The orrespond-

ing leading systems of quark jets do not exhibit suh an exess. The inuene of

the gap size and of the gluon purity on the e�et is studied and a onentration

of the exess of neutral leading systems at low invariant masses (� 2 GeV/

2

)

is observed, indiating that gluon jets might have an additional hitherto unde-

teted fragmentation mode via a two-gluon system. This ould be an indiation

of a possible prodution of gluoni states as predited by QCD.
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1

1 Introdution

The study of quark jets provides us with remarkable insights into the mehanism of

hadronisation. It gives strong evidene for hain-like harge ordered partile prodution in

exellent agreement with string Monte Carlo models like JETSET [1℄ . This is shown e.g.

by several ontributions [2{5℄ of the DELPHI experiment at LEP, where the ompensation

of quantum numbers, in partiular that of harge, has been extensively studied. Muh

less is, however, known about the behaviour of gluon jets. On the theoretial side, besides

the fragmentation via two strings as implemented in JETSET/PYTHIA and ARIADNE

[6℄, the diret neutralisation of the olor otet �eld by another gluon with the reation

of a two-gluon system has been onsidered by Minkowski and Ohs [7,8℄ and also by

Spiesberger and Zerwas [9℄. Older referenes exist by Montvay [10℄ and Peterson and

Walsh [11℄. Additional referenes an be found in [7℄ where it is also emphasized that

an experimental study of the gluon orner in three-jet events ould ontribute valuably

to the question of the existene of glueballs, an early expetation of QCD [12℄. No

quantitative predition however exists up to now. This has triggered an experimental

investigation by the DELPHI ollaboration on gluon fragmentation in a leading system

de�ned by a rapidity gap [13,14℄. The preliminary results revealed that eletrially neutral

systems of leading partiles in gluon jets our more often than predited by JETSET,

in agreement with the expetations of the above theoretial argumentations, while there

was no disagreement observed in quark jets. This phenomenon, experimentally observed

for the �rst time, has meanwhile also been seen by ALEPH and OPAL [15,16℄

The JETSET (ARIADNE) model of a q�qg event strethes a string from the q to the

g and on to the �q. The string fragments for example by the reation of q�q pairs, similar

to what happens for quark fragmentation (Fig.1a). Thus the JETSET (and ARIADNE)

model regards gluon fragmentation as a double olor triplet fragmentation (most learly

skethed in Fig.1 of ref.[7℄) and the leading system an obtain the harge �1 or 0 in

the limiting on�guration. The proess proposed by Minkowski and Ohs, namely the

otet neutralization of the gluon �eld by another gluon has the signature of an unharged

leading system due to the requirement that the sum of harges (SQ) of the deay prod-

uts of a two-gluon system is zero (Fig.1b). In [7,8℄ it is also proposed to enhane the

possible ontribution of this proess by seleting events where a leading partile system

is separated from the rest of the low energy partiles by a large rapidity gap, empty of

hadrons. In this situation of a hard isolated gluon the otet �eld is expeted not to have

been distorted by multiple gluon emission and by related olor neutralization proesses

of small rapidity ranges [7℄. The prie to pay for suh a seletion is, however, a strong

redution of the number of events beause of the Sudakov form fator [17℄. A di�er-

ent mehanism - olor reonnetion [18℄ - an produe similar e�ets. Two experiments,

however, agree that the present olor reonnetion models, as implemented in some ver-

sions of Monte Carlo simulations, an not reprodue quantitatively the observed exess

of SQ = 0 systems [15,19℄.

The present study aims to onsolidate the results of the preeding analyses [13{16℄ by

studying the dependene of the exess of neutral leading systems in enrihed gluon jets on

the gap size and gluon ontent, and by investigating if there are possible trivial origins for

the observed e�et. This is espeially important, sine a signi�ant failure of the string

model to desribe gluon jets might generally reveal the presene of hitherto undeteted

proesses. The size of the e�et for a pure gluon jet is estimated. As a ross-hek, the

same investigation is done for quark jets.
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Figure 1: Diagrams to illustrate the proesses of olor triplet fragmentation a) and olor

otet fragmentation b). The dashed lines represent the olor triplet strings and the helixes

represent the olor otet strings.

2 Data sample and 3-jet event seletion

The data sample used has been olleted by the DELPHI experiment at the LEP

ollider at the Z resonane during 1994 and 1995. Three-jet events have been seleted by

using the appropriate uts for trak quality and for the hadroni event type [20℄ as well

as applying a k

t

luster algorithm (Durham) [21℄ with y

ut

= 0:015

1

. The jet energies

were realulated based on the diretion of the jet momenta and the jets were sorted by

dereasing energy, i.e. E

3

� E

2

� E

1

. Events with �

2

;�

3

= 135

Æ

� 35

Æ

have been used,

where �

i

is the inter-jet angle opposite to jet i. All jets are required to lie in a plane and

the jets must be at least 30

Æ

away from the beam diretion [22{24℄. About 314000 events

meet all these onditions.

Without any additional tag the jet with the highest energy E

1

(jet1) is in most ases

a quark jet and that with the smallest energy E

3

(jet3) the gluon jet. The measured

mean jet energies are:

�

E

1

= 41:4 GeV,

�

E

2

= 32:2 GeV and

�

E

3

= 17:7 GeV.

2

In the �rst

data sample (sample1), where the gluon and quark jet identi�ation is based on energy

ordering only, events are required not to exhibit any b-signal (235080 events). Monte

Carlo simulations show for the above mentioned onditions a quark jet ontribution of

� 90% for jet1

3

and a gluon jet ontribution of about 70% for jet3. In a more detailed

study of the gluon purity a seond independent sample (sample2) is seleted, where jet1

and jet2, ontrary to jet3, are required to exhibit a b-signal [24,25℄ (Setion 4.3). This

1

This value has been obtained from a study optimizing simultaneously purity and statistis [22℄

2

Although the mean energies of jet1 and jet3 di�er by more than a fator 2, the maximum possible rapidities and mean

multipliities di�er muh less (e.g. hn

jet3

i = 9, hn

jet1

i =11.6).

3

All quark jet seletions (jet1) shown in the �gures for omparisons are de�ned by sample1.
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additional tag results in a gluon purity of jet3 of about 90% and onsists of 31400 events.

A third sample (sample3) is seleted to enable purity unfolding for speial ases. It is

de�ned by the requirement that jet3 has a b-tag. For this jet3 sample onsisting of 12200

events the gluon ontent is very muh diminished (about 26%).

3 Monte Carlo models

For omparisons a suitable number of Monte Carlo simulations using JETSET 7.3[1℄

and ARIADNE[6℄ have been performed. In ontrast to JETSET, ARIADNE inorpo-

rates dipole radiation of gluons instead of the parton shower used by JETSET. Sine

Bose-Einstein orrelations (BEC) are present in nature, like-harged partiles will stik

together in momentum spae and loal harge ompensation is expeted to be diminished.

The implementation of Bose-Einstein orrelations into the Monte Carlo simulation, how-

ever, is highly problemati and the magnitude of the e�et on harge ompensation is

unknown. Nevertheless, the possible e�et of BEC has to be investigated and the possible

unertainties have to be onsidered.

Three di�erent Monte Carlo event samples have been reated by using di�erent gen-

erators:

Model (1): JETSET with BEC inluded (BE32 [26℄)

Model (2): JETSET without BEC

Model (3): ARIADNE without BEC

The number of events generated for eah sample orresponds roughly to that of the

data.

The data are ompared to these Monte Carlo event samples with full simulation of the

DELPHI detetor. The same reonstrution and analysis hain has been applied to the

data and Monte Carlo (MC) samples.

4 Analysis

4.1 The sum of harges in the leading system with a rapidity

gap (sample1)

After the seletion of 3-jet events and the determination of enrihed quark and gluon

jet samples, the leading hadroni system of a jet is de�ned by requiring that all harged

partiles assigned to the jet must have a rapidity y with respet to the jet axis of y �1.5.

The size of the demanded gap below this leading system is a ompromise between the

requirement of a gap as large as possible and the onsiderable loss of statistis at a larger

gap. The requirement that the rapidity interval Æy � �y (with �y = 1.5) below the

leading system be empty of harged hadrons redues the number of jets appreiably.

About 38000 enrihed gluon jets and 39000 quark jets meet this ondition. The whole

analysis (with one exeption in setion 5) is based on harged partiles only and in

priniple, there ould be neutral hadrons in the gap. It has been veri�ed that removing

in addition topologies, where observed neutrals are ontained in the gap (mainly  s from

the deay of �

0

s), leads to results that are fully onsistent with the ones presented here,

but with about 15% larger statistial errors.

The sum of harges (SQ) of the partiles belonging to the leading system de�ned as

above is shown in Fig.2a for gluon jets and in Fig.2b for quark jets and ompared to

ARIADNE. P (SQ;�y) is generally de�ned as the fration of a jet sample with �y and a
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Figure 2: Fration of jets P (SQ; 1:5) as a funtion of the sum of harges SQ of the leading

system for both (a) gluon jets and (b) quark jets. Full irles represent the data , lines

the Monte Carlo simulation, model (3). The di�erene (data-MC) is shown in () for

gluon jets and in (d) for quark jets.
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given value of SQ, P (SQ;�y) =

N(SQ;�y)

N(�y)

and is an estimate for the probability of a jet

with a gap to have a ertain SQ. The SQ distribution of the leading system for the gluon

jet (Fig.2a) exhibits for SQ = 0 a signi�ant enhanement of the data over the Monte

Carlo. This e�et is predited, if the proess of olor otet neutralization is present [7,8℄.

On the other hand, there is no signi�ant di�erene in the SQ distribution for the data

and the Monte Carlo simulation in the ase of quark jets (Fig.2b).

The lower parts of Fig.2 show quantitatively the di�erenes of the P (SQ; 1:5) between

the data and the Monte Carlo simulation. This di�erene for the gluon jet (Fig.2)

amounts to about 3.5 standard deviations (statistial errors only), for the quark jet

(Fig.2d) this di�erene is ompatible with zero.

4.2 The dependene on the size of the rapidity gap

Figs.3a,b show, for neutral leading systems (SQ = 0), the dependene of R(�y) on

the size of the lower limit (�y) of the rapidity gaps onsidered:

R(�y) =

P (0;�y)

data

� P (0;�y)

MC

P (0;�y)

MC

(1)

For all three types of Monte Carlo simulations (models (1), (2) and (3), see Setion 3),

R(�y) (�y > 0:5) is positive and inreasing with �y for jet3 (Fig.3a). This learly shows

that the surplus of neutral leading systems in the data, ompared to the Monte Carlo

simulations, inreases with the gap size. This orroborates the arguments of Minkowski

and Ohs [7,8℄. ARIADNE without BEC (model 3) lies between the JETSET models.

In the ase of jet1 (Fig.3b) all values are sattered around zero and no rise an be seen.

When omparing JETSET with and without BEC inluded, one noties for jet3 and also

for jet1 a di�erene for all values of �y. The e�et of introduing BEC into the Monte

Carlo models auses a shift of R(�y), essentially independent of �y, to higher values.

The dependene on �y is approximately the same for all three models. Arguing that only

the rise and not implementation e�ets of BEC are of interest here and that the surplus

of neutral systems is expeted to be small and in a �rst approximation negligible in jets

without a gap, the following quantity is alulated:

R

0

(�y) = R(�y)� R(0) (2)

and shown in Fig.3,d.

The residual spread between the models is onsidered as systemati unertainty.

4.3 The dependene of R

0

(�y) on the gluon purity

In Fig.4a the mean values of R

0

with models (1), (2) and (3), whih are presented

in Fig.3, are drawn together with the statistial errors (symbols with error bars) and

systemati unertainty (shaded area). As a ross-hek, an independent seond sample

(sample2) of gluon jets with a muh higher purity is seleted. The dependene of R

0

(�y)

in the ase of jet3 on �y for this sample is given in Fig.4b, orresponding to Fig.4a with

sample1, where only energy ordering has been applied for the determination of the jet

identity. Although the statistis are smaller in Fig.4b (3870 jet3 at �y = 1:5, whih is

only about 1/10 of sample1), the e�et is inreased, whih is expeted if it is onneted

to the gluon jet only. At �y = 1:5 R

0

(�y) is about 0:09 � 0:04(statistial) beause of

the higher purity.
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Figure 3: a),b): Relative deviations R(�y) of the number of neutral leading systems

in gluon and quark jets for the three Monte Carlo models de�ned in Setion 3 and for

various sizes of �y. R is de�ned in eq(1). ),d): R

0

(�y) as de�ned in eq(2). Beause of

the nature of the ut �y, the bins are orrelated.
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Figure 4: R

0

(�y) using model averages. The gluon jet3 is tagged using energy ordering

in a) and b-tagging is used for the seletion in b).

To estimate the amount of disagreement between data and Monte Carlo in pure gluon

jets the gluon purity has to be estimated for jet3 at the gap size �y for both data

seletions in Fig.4. In priniple, it an be diretly obtained from the Monte Carlo. At the

same sale, gluon and quark jets exhibit di�erent rapidity distributions, i.e. gluon jets

emit more partiles per unit at small rapidity. Demanding a gap redues therefore not

only the number of jets, but also the gluon ontent in a mixed sample of gluon and quark

jets. This is observed in the MC. An estimation of the gluon purity at gap �y however

depends on the orret modelling of the rapidity distribution of pure gluon jets. Therefore

another method has been used in addition. It uses the measured redution rates of the

number of jets f

i

(�y) in sample-i by demanding a gap (see Setion 4.1) and from the MC

only the omposition at gap zero. Let us de�ne N

1

(�y) = f

1

(�y)N

1

(0) in sample1, and

N

2

(�y) = f

2

(�y)N

2

(0) in sample2, where N

1

(�y) (N

2

(�y)) is the number of jets ounted

at �y in sample1 (sample2). Sine these samples are an admixture of pure q(=light quark)

jets, g(=gluon) jets and b(=b-quark) jets, the orresponding f

1

(�y); f

2

(�y) (and also

f

3

(�y) for sample3) are also an admixture of the redution rates f

q

(�y); f

g

(�y); f

b

(�y)

of the pure light-quark, pure gluon and pure b-quark subsamples, e.g.

f

1

(�y) = a

1q

f

q

(�y) + a

1g

f

g

(�y) + a

1b

f

b

(�y) (3)

with two analogous equations for f

2

(�y) and f

3

(�y). The resulting system of three linear

equations an be written in short:

F = AF

pure

(4)

with the solution

F

pure

= A

�1

F: (5)
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The vetor F (f

1

(�y); f

2

(�y); f

3

(�y)) is measured,

and the vetor F

pure

(f

q

(�y); f

g

(�y); f

b

(�y)) is the solution.

The matrix A represents the q,g,b ompositions for the three seletions at gap=0, es-

timated from Monte Carlo (e.g. a

1g

is the gluon purity of jet3 in sample1, a

2g

that of

sample2, and a

3g

that of sample3 and so on). With the solution of equ.(5), the numbers

of true gluon jets at �y an be determined in sample1 and sample2:

N

gluon

1

(�y) = f

g

(�y)a

1g

N

1

(0); (6)

N

gluon

2

(�y) = f

g

(�y)a

2g

N

2

(0): (7)

The fration of gluon jets 

�y

g

at �y is given by:



�y

g

(sample1) = N

gluon

1

(�y)=N

1

(�y) = a

1g

f

g

(�y)=f

1

(�y); (8)



�y

g

(sample2) = N

gluon

2

(�y)=N

2

(�y) = a

2g

f

g

(�y)=f

2

(�y): (9)

Applied to the two data sets in Fig.4a,b the following numbers for the gluon ontent

have been obtained:

1. The sample in Fig.4a (sample 1): 

0

g

= 0:65, 

1:5

g

= 0:46 (from equ.(8) ), and 

1:5

g

=

0:45 (diretly from the Monte Carlo at �y = 1:5).

2. The sample in Fig.4b (sample 2): 

0

g

= 0:88, 

1:5

g

= 0:80 (from equ.(9) ), and



1:5

g

= 0:82 (diretly from the Monte Carlo at �y = 1:5).

The statistial errors on these numbers are below 1%, systemati errors an be obtained

by omparing the estimates with di�erent Monte Carlo models (1), (2) and (3). They

are � 2:6%. The purity estimates obtained above allow the determination of the exess

of neutral systems R

0

g

in pure gluon jets. The following values of R

0

g

have been obtained

for the two samples de�ned above:

Sample1 : R

0

g

(1:5) = 0:100� 0:023 (stat)� 0:025 (syst) (10)

Sample2 : R

0

g

(1:5) = 0:107� 0:042 (stat)� 0:028 (syst) (11)

The samples are statistially independent. Adding statistial and systemati errors

quadratially, a signi�ane of about 3� is obtained in sample 1 and of about 2� in

sample 2. Combining �nally both samples results in:

Combined : R

0

g

(1:5) = 0:102� 0:021 (stat)� 0:026 (syst) (12)

This number an be used to make a �rst estimate of R

g

(0), the amount of the exess of

neutral systems in pure gluon jets without any gap seletion. Taking into aount the

estimated value of f

g

(1.5) = 0.112�0.003 from equ.(5) whih tells that 11% of the pure

gluon jets meet the gap ondition �y = 1.5, one obtains:

R

g

(0) ' R

0

g

(�y = 1:5)f

g

(�y = 1:5) = 0:01 (13)

Extending this analysis to samples whih allow also for smaller gap sizes 1:5 > �y �1.0

leads to the onlusion that the amount R

g

(0) of a possible otet neutralisation of the

gluon �eld is of the order of 1 - 2 %.
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4.4 Disussion of the systemati unertainties

The following soures of systemati errors have been onsidered:

(a) Quality of event reonstrution. Bad reonstrutions and losses of traks in the

detetor and wrong assignments to the jets an lead to di�erenes of several GeV

between the jet energy alulated from the angles between jets (E

al

) [24℄ and the

sum of energies of all partiles assigned to the jet (E

sum

). Improving the quality by

utting away about 1/3 of the jets with the largest di�erene E

al

�E

sum

does not

signi�antly hange the signals at SQ = 0 both in gluon and quark jets.

(b) The dependene of the e�et on the polar angle of the jet with respet to the ollision

axis has been investigated: the e�et is stable.

() The inuene of trak �nding eÆieny in the detetor. In order to investigate

the inuene of trak �nding eÆieny the e�et of a redution of the eÆieny by

1% has been simulated. No signi�ant hange in the signals at SQ = 0 has been

observed.

(d) To investigate whether the good agreement between data and Monte Carlo in quark

jets is only due to the larger partile momenta, in a test-run only partiles with

momenta less than 30 GeV/ have been aepted in jet1. The agreement with the

Monte Carlo remains.

(e) The estimations leading to (10) and (11) assume that quark jets, also at the lower

energies of jet3, do not exhibit any exess of neutral leading systems. This is further

tested by measuring the exess in sample3 whih exhibits at �y = 1:5 an admixture

of only 20 % gluon jets. As expeted, the signal is redued, and is even negative

with large error: R

0

3

(1.5) = -0.02 � 0.04. Adopting the same proedure as in Setion

4.3 by using matrix inversion with the measured values R

0

i

(1.5), i= 1,2,3 for the 3

seleted samples as input, the resulting exess for pure quark and gluon jets ould

be estimated: R

0

q

(1.5) = 0.00 � 0.05, R

0

g

(1.5) = 0.11 � 0.05 and R

0

b

(1.5) = -0.06 �

0.07. These results do not show any evidene that quark jets exhibit an exess of

neutral leading systems for the lower jet3 energies.

(f) At the generator level of JETSET and for pure gluon jets the e�et of hanging

parameters within limits has been studied. For example, di�erent DELPHI tunings

have been used, the DELPHI tuning [27℄ has been replaed by that of OPAL [28℄

and by the JETSET default

4

, and the poporn parameter has been varied. Some

hanges of P (SQ;�y = 1:5) at SQ = 0 are revealed in gluon jets and to a lesser

extent in pure quark jets. At a gap size of �y = 1:5 a maximum variation of R(�y)

of 0.027 is observed.

The systemati error from (f) amounting to 18% is taken into aount. This is a

onservative estimate with a fator 0.68 of the maximum variation, orresponding to 1�

of a Gauss distribution. The ontributions from (a)-(e) are negligible. The systemati

errors for samples 1 and 2 are estimated as follows:

1) Sample 1

a) from the spread in Fig.4a at �y = 1.5:

�R

0

= 0.017

b) unertainty in purity: 0.0026 (see Setion 4.3)

) unertainty from (f): 0.018

By quadratially adding all 3 ontributions a systemati error of 0:025 is obtained.

4

All these studies have been done with BE orrelations inluded.
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2) Sample 2

a) from the spread in Fig.4b at �y = 1.5:

�R

0

= 0.021

b) unertainty in purity: 0.0028 (see Setion 4.3)

) unertainty from (f): 0.019

By quadratially adding all 3 ontributions a systemati error of 0:028 is obtained.

5 Mass spetra

Color otet neutralization of the gluon �eld ould produe a resonane spetrum whih

di�ers from that of olor triplet fragmentation [29℄ implemented in JETSET. In order to

investigate in whih region of the mass spetrum the observed exess of the leading neutral

systems is loated, the invariant mass (M

inv

) distributions P (M

inv

) =

N(M

inv

;SQ=0;�y)

N(�y)

of

the leading systems with total harge zero at �y = 1:5 have been alulated and ompared

with the mean values of models 1-3 for the two ases:

a. M

inv

is omputed using only harged partiles (assuming pion mass). This distribu-

tion is shown in Fig.5a for gluon enrihed jets and in Fig.5 for quark jets. For gluon

jets the distribution of the di�erene data-MC (Fig.5b) exhibits possible evidene for

a rather narrow mass enhanement

5

in the region of the f

0

(980) resonane. In the

mass range between 1 and 2 GeV/

2

an overall exess is observed. The distributions

for quark jets do not exhibit a signi�ant di�erene between data and MC in the low

mass region (Fig.5d). Without emphazising too muh the narrow peak just below

1 GeV/

2

, it has to be noted that it survived a quality ut (by aepting only jets

with a polar angle � 50

Æ

) well above 3�, whereas all other deviations from zero in

Figs.5b,d were dereased below 2� exept the seond peak in the gluon jets at about

2.73 GeV/

2

whih remains at about 2.3�.

b. M

inv

is omputed for all partiles, harged (assuming pion mass) and neutrals (as-

suming photons with zero mass). Figs.6a,d show P(M

inv

) for gluon enrihed jets and

Fig.6g for quark jets. Both gluon enrihed samples exhibit an exess of data om-

pared to the MC for low invariant masses (0.9 to 2 GeV/

2

), whih is emphasized

in Figs.6b,e where the mass distributions of data and MC have been subtrated.

Separating the mass ranges below and above 2 GeV/

2

in Fig.6 for sample1, an ex-

ess orresponding to about 5�(stat) is observed in the low mass range. Comparing

Fig.6 with Fig.6f, one observes that the exess is inreasing aording to inreasing

gluon purity, namely about a fator 2 between sample1 and sample2. For quark jets,

the orresponding distributions (Fig.6g,h,i) do not exhibit any signi�ant di�erene

between data and MC.

The observations in Fig.5 on�rm the �rst preliminary results presented in 2001 [13℄

for leading gluoni systems by onsidering harged partiles only. In 2002 the OPAL

ollaboration also reported [16℄ a 2� exess in the mass distribution of leading systems,

onsisting of harged and neutrals, between 1 and 2.5 GeV/

2

in gluon jets.

The observation in Fig.6 that the exess of neutral leading systems in gluon jets is

limited to the low mass region supports arguments in favour of gluoni states. The

existene of glueballs, i.e. bound states of two or more gluons, is a predition of QCD

5

The experimental mass resolution is below 10 MeV/

2

, the binwidth in Fig.5 is 50 MeV/

2

.
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Figure 5: a),): Invariant mass distribution P (M

inv

) of the leading system (SQ = 0)

(onsidering only harged partiles) a)for gluon-enrihed jets (sample1), ) for quark jets.

P is de�ned at the beginning of Setion 5. The dots with error bars are the data, the his-

tograms are the mean values of the three Monte Carlos. b),d): P

data

(M

inv

)�P

MC

(M

inv

).

[12℄. There is general agreement that the lightest glueball should be in the salar hannel

with J

PC

= 0

++

. Quantitative results are derived from the QCD lattie alulations [30℄

or QCD sum rules [31℄ whih predit the lightest glueball to be around 1600 MeV/

2

. It

ould however also be a broad objet in the mass region between 1000 and 1800 MeV/

2

.

The state ould mix with ordinary 0

++

states, like the f

0

(980) resonane. A reent

disussion with various referenes an be found in [32℄.
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Figure 6: a),d): Invariant mass distributions P (M

inv

) of the leading system (SQ = 0)

(with harged and neutral partiles) for gluon-enrihed jets, samples 1 and 2 respetively.

g): same for quark jets (jet1, sample1). The dots with error bars are the data, the

histograms are the mean values of the three Monte Carlos. The quantity P is de�ned

at the beginning of Setion 5. Seond row b),e),h): P

data

(M

inv

)� P

MC

(M

inv

); Last row

),f),i): P

data

(M

inv

)� P

MC

(M

inv

) for 2 bins: (0.25-2 GeV/

2

) and (2-3.75 GeV/

2

).
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6 Summary

In the present study the leading systems de�ned by a rapidity gap have been inves-

tigated for gluon and quark jets. The statistis of 1994 and 1995 at

p

s = 91:2 GeV

obtained by the DELPHI ollaboration is used to selet 3-jet events and to single out

quark jets (purity � 90%) and gluon enrihed jets (purity � 70%) by energy ordering

(sample1). For the (enrihed) gluon jets a higher rate of neutral leading systems than

predited by string models like JETSET (with and without Bose Einstein orrelations)

and ARIADNE is observed but no suh enhanement is seen for the quark jets. Various

heks have been performed whih suggest that this e�et is not a spurious one. An

inrease of the e�et with inreasing gluon purity, obtained by a tagging proedure in a

seond sample (sample2), is observed orroborating that it is indeed onneted with the

gluon jets.

The exess of neutral leading systems in pure gluon jets at a gap size �y = 1:5 has

been measured to be about 10%, with a signi�ane of 3�. It is of the order of 1 to 2 %

in pure gluon jets without any gap ondition.

The mass spetra of the neutral leading systems of gluon jets, both with and without

inluding neutral partiles have been studied. Mass spetra whih inlude harged and

neutral partiles, show learly that the exess mentioned above is onentrated at low

invariant masses (below 2 GeV/

2

). The signi�ane is enhaned there and amounts to

about 5�(statistial) in sample1 and the exess is inreased roughly proportionally to the

gluon purity in sample2.

The orresponding mass spetra of leading systems in quark jets do not exhibit any

exess in the low mass regions.

The observed exess of neutral systems in gluon jets and its inrease with the gap size

and with the gluon purity is in agreement with expetations, if the hitherto unobserved

but predited proess of otet neutralization of the gluon �eld takes plae in nature. Al-

though olor reonnetion ould in priniple alternatively explain the exess, the spei�

mass onentration at low mass seems to favor the �rst ase and ould be a signal of

gluoni states predited by QCD.
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