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reformulated in the language of quaternion valued dif-
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charge the forms studied 1lead unambiguously to the
't Hooft-Polyakov monopole. The implications of this
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INTRODUCTION

Since the discoveryl) of finite energy configurations in S0(3) gauge mo-—
dels with scalar fields there has been considerable activity in the study of
classical solutions to non-linear field theories. The spherically symmetric
't Hooft-Polyakov monopole is topologically stable and may be regarded as a bound
state of SO(3) gluons and isovector scalars. It has been conjectured by Montonen
and 01ive2) that the gauge theory in a certain limit can be completely re-expressed
in terms of local monopole fields playing the role of heavy gauge particles. The
spherically symmetric monopole would acquire the status of an elementary field in

3)

this dual description. It has also been shown™’ that if monopoles of higher mag-
netic charge exist they must of necessity be non-spherically symmetric. In the
dual description one expects such states, if they exist, to be excitations of the
fundamental monopole. However, if such states with magnetic charge g, = N8o
exist as topologically stable classical solutions of the Bogomolny equations then
the duality hypothesis would require either infinite component monopole fields or
the existence of gluon composites of mass n times the fundamental gluon mass and

electric charge n to maintain the symmetry.

One piece of evidence to support the duality conjecture is Manton's calcula-
tion4) of the classical inter-monopole force for widely separated monopoles. 1In
the limit of a vanishing Higgs potential this result follows from the dual descrip-
tion since a Higgs scalar meson becomes massless and can compensate appropriately
the long-range photon exchange. Although this result neglects higher-order ex-—

5)

changes it has led some people to expect classically stable configurations of
several monopoles with like magnetic charge. If the inter-monopole forces between
two 't Hooft-Polyakov monopoles really vanished to all orders, one would indeed
expect an axially symmetric stable monopole configuration of magnetic charge twice

that of a single monopole.

In this paper a search for such configurations with finite energy will be
made. Since it is intended to use the techniques of quaternionic valued differ-

6) the first section develops the theory ab initio. Aside from its

ential forms
intrinsic nature, the advantage of this approach resides mainly in the computa-
tional ease with which one can manipulate complicated partial differential equa-
tions. The quaternionic analysis leads naturally to the use of V and S opera-
tors that streamline the purely algebraic aspects of the calculation. After re-

7)

viewing a derivation of the magnetic Bogomolny equation, the next section de-
fines axially symmetric q vector p forms in terms of V and the Lie deriva-
tive. The important question of appropriate boundary conditions is discusseds)
and the basic axially symmetric ansatz for the investigation presented. The equa-

tions resulting from this ansatz are developed in a particular gauge and an
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argument against the existence of finite energy configurations with axial sym-—
metry satisfying the Bogomolny equations is made in the penultimate section.
The last section indicates that it is difficult to escape from this conclusion

within the framework of the ansatz under investigation.

QUATERNIONIC FORMS

Since the algebra of SU2 is isomorphic to the algebra of the quaternions
H I reformulate the theory in this representation. This offers more than for-
mal advantages as will be demonstrated in the following sections. Furthermore,
it is not necessary to commit oneself to a particular co-ordinate system at the
outset so it is natural to manipulate the intrinsic geometric forms in the theory

which will take values in the field of quaternions rather than the real numbers.

A basis of H will be denoted by {1,i,j,k} = {1,8;,8,,8z} with the multi-

plication rules

eaei = - Sﬂ«b F Qave /éc_

-
[
~

For a typical quaternion
— N A
:\, = S ' a . e (23

where ag,a; are, in general, complex numbers. H <conjugaticn is defined by
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has components which may be identified with those of the vector (r;,r;,r3) ro-
tated by Y about the axis (ni,n2,n3) in R3. Clearly the unit quaterniomns

are isomorphic to SU, elements.

A quaternionic p form is simply a p form with quaternionic components.
. J . .. .
In a p form basis e (where J 1is a multi-index) such an entity may be ex—

pressed as
J
W = Zw_ ¢
.33'

where
W3 7 Wy, + Lwg, ~ 3w33+ KWy, ©

SU2 gauge theory may be generated in terms of a q vector 1 form A in
Minkowski space-time. It is defined to be a connection such that under local

gauge transformation generated by the element Q

A= QAQ ~ QaQ 7

In this expression the exterior derivative d commutes with the generators of
H. This transformation ensures that the q vector curvature 2 form F de-—

fined by

¥ = aN «~ A A 8

transforms as
— —
¥ QY Q
Since QQ = 1 it is clear that any q scalar constructed from entities trans-
forming in this way will be locally gauge invariant.

A scalar field ® in the adjoint representation of SU2 may be represented

by a q vector 0 form transforming under Q as

@"Q-@Q (9)
Its covariant exterior derivative with respect to the connection A 1is defined

as

DA = 4T + AVAY) a0
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since this transforms like ®. As A = -A and ®=-0 then DO is also a ¢
vector 1 form.

In order to construct gauge invariant 4 forms on Minkowski space I emp loy

the Hodge operator (Z) defined with respect to a metric g and volume ele—

(4)

ment ¢€:

LWL x w = %?(W,w)e (11)

() )

where gp 1is the metric induced on p forms w by the tensor

(4)
- 3 «Q [+ §
f;) = ~AN®AL + T e @ e (12)
\ [- SN

It is convenient to use a co-ordinate time t and an orthonormal triad of 1

forms (el!,e?,e®) in 3 space. One readily verifies that FZ*F and D&.*Dd
. L. 4) 4
are q scalar 4 forms. These are just the usual kinetic contributions to the

action of SU2 gauge theory with isovector scalar fields.

In the following I study the field equation generated from the action

S - - % &(V » ¥ -\—Eiﬁg‘,&@) a3

AN )

adopting the usual procedure of identifying & as a Higgs field that satisfies

the R’ asymptotic condition

ks
Q — consYany . (14)

The field equations obtained by varying the forms A and & may be written

SF VR YY) e
’D :u) (‘D@) = O (16)

or in terms of exterior derivatives

&)F X Q\I(P\h’&)\:) = V(‘&,b@@) (17)
Aka{D@) “ 'L\/(RA’("\“D@) = O (18)
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From the definitions (8) and (10) there follow the identities

DY = aF * 2AV(RA,¥) =0 )

'91 @_ = A (®@> a 1\,(Rﬁ‘9’§') :1\1(?&) (20

3

As a first step in recovering the static R° field equations I define q wvector

electric and magnetic forms with the 3+1 decomposition

Y D + a%, T

(21
A = KX+ d_ A% o2
D& : o+ WX -
The "field forms" follow from (8) and (10) in terms of the potentials
? = és)d\ - O(AoL
=) = ol — <; C*.o “ O(OC( - o olo
(&) (24)
- é‘)'@ ~ AV (4 Q)
W= 3 o+ AV(L,T)

The dot differentiates all components of a form with respect to t and the symbol

d means exterior differentiation in the subspace of forms generated by el,e?

(3)
and e3. This decomposition enables one to identify a three-dimensional dual

operator * with respect to the metric g where

A = L@ x 9 (25)
(v)
Since any Minkowski space form can be written o+ dt.B where a and B are in-
dependent of dt (although they may have time dependent components) the (z)

duals can be replaced by * duals according to

(’:) \_ = N Y\ {?;X = (-ko(\hAt ~+ -1«/3 (26)



- 6 -

With these definitions the field equations (15) and (16) decompose into

s\’:F:-\— A BN+ V(B dE) = V(D) 2

«3)

j\é,'\élS + 2V (d, T) = V(W D)

(28)

W — h\"\o + D\V(d:\’\ '0{0’\,\03 =0 (29)

Q.
7
+'
pO
Z
~
Q.

>
j/I
N
(
O

(30)

where

(o}

U
A

~ (31)

T = + ¢
B : -8

The two identities (19) and (20) become

.3
’/

&‘%_AER “ l\l(o(ag_ozﬁg) o 062

3)
{a® Y =~ 2av (49 =0 o2
Ly)
W - A\, =2V (2 & - o4\ -\-ok,\\,) (4
)
AW = AV (BT - d W) 02

It is interesting to examine these equations in the case where & and A are
proportional to a single unit quaternion. If the component of ¢ in such a
basis is constant only the terms in curly parentheses above survive. These equa-

tions are recognized as the 3+1 form of Maxwell's equationms.

At this point I restrict the equations to static configurations in which

0g = 0. Thus hy =0, E=0, F =B and only two of the field equations survive:



3%+ AV (d W) =o (36)
1 o+ AN (o, B) T V(WE) @

The operator (g) can now be written d without ambiguity. Similarly, there

are only two non-trivial identities

A% ~ LN Lo{,\%) = O (38)
3\\\ - 2\ Ld,\'\> - lv(e-&} (39)

One now observes in this magnetostatic situation that if

%) = X -3_—1 LN (40)

then the two field equations (36) and (37) are satisfied by virtue of the equa-
tions (38) and (39). This is the Bogomolny equation which was originally derived

as a consequence of minimizing the static field energy of the system.

1f the coupling constant is suitably normalized, the field energy within a

ball b of R® may be written in this case as

N - { sCe.W) v
©°

Since [with the aid of (19) ]

&(3-@) = B\ =~ l\!(%'&hd) (42)

the above integral may be written
M = - ngLc\ CQQ» = 7 &absceg) (43)

where 8b bounds b containing a non-singular 3 form. If at large distances

il

from some origin D® tends to zero we may interpret B® as a Maxwell magnetic
field (see below). For b a large sphere we see that the mass is proportional

to the magnetic charge.

SYMMETRIC FORMS

I now turn my attention to the study of field configurations that obey the

basic equation (40). The imposition of spherical symmetry on gauge invariant
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quantities was a powerful tool in the discovery of the singly charged magnetic

3)

monopole. It has been subsequently shown that monopoles of higher magnetic

charge must of necessity be non-spherically symmetric configurations. The next
simplest situation occurs for axially symmetric configuration. Suppose the
metric is chosen with an azimuthal angle co-ordinate ¢. A gauge invariant (i.e.,

q scalar) p form w_ will be said to be axially symmetric if

p
ix (JJQ = O (44)

where iX is the Lie derivative with respect to the vector field X = 3/3¢. A

q vector p form )\p will be said to be axially symmetric if the action of &X

can be compensated by an infinitesimal gauge transformation with angle Y, say

S;%? E Q?\Ya —)? = x\/(“')?) (45)

Thus Ap is axially symmetric about the =n = (n;,ns,n3) axis if

LiNe = N{nde) =0 w6)
It may be recalled that ix is a derivation and acting on a 1 form

h: T AL

f*x’\ F Z (XA ax® + Z Aﬁl‘.« dc” (47)
* °,® D x®

where, in general,

U]

X

For )\p to be rotationally symmetric
A
— = O (48)
£’ L, A v N ( Q~(>‘v> |

where Li are the orbital angular momentum generators.

> %, 2.

o 0

The solutions of definite magnetic charge establish a map between R® space
(co-ordinated by x',x%,6, say) and a unit sphere in SU2 space. I co-ordinate
the latter by spherical polar angles <y and | and choose k to define an axis
- . -Ky

of symmetry. Then k and T = i e enable one to construct the axially symmetric

unit q vector 0 form:



-XTTY
W o K B() + TawmBl)) = ke 49)

where | = m¢$ for some constant m, The q vector M will cover the SU2

sphere (possibly several times) in accordance with the function v(x!,x%) and
m. If one uses spherical polar co-ordinates (x!,x?) =(r,0) then y =6 de-—

fines the rotationally invariant unit q vector

N - \<we-—\-'1'gm% (50)

In this latter case the q vector 1 form NdN is rotationally symmetric so

that an ansatz with this symmetry is
N - s (kG- V) NN o1

_ SYEAIRN
- A ALY
@ S:J- C (52)

A straightforward calculation verifies that for

W = ax (53)
S\ oy

W = x (o codmat ~ 1) (54)

Equation (40) is satisfied and one identifies the Prasad-Sommerfeld solution for

the the 't Hooft-Polyakov monopole.

BOUNDARY CONDITIONS

The question of appropriate boundary conditions for an axially symmetric
field configuration will now be considered. The solution that is sought should
produce a finite value for the integral (41). 1If the equation (40) is satisfied
we are then guaranteed a definite magnetic charge. For a specific ansatz this
will entail certain regularity conditions on the solutions both asymptotically
and in the neighbourhood of monopole centres. For the Higgs field the isotropic
asymptotic condition (14) will be adopted throughout since this is connected to
the Higgs mechanism that we have tacitly assumed. If a static configuration of
several monopoles exists, yielding a total finite energy, then one expects that

the Maxwell magnetic field that they produce should coincide asymptotically with
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that produced from a series of singular Dirac monopoles. Alternatively, one
might search for a single magnetic multipole. Only the monopole component of
the magnetic field would be detected asymptotically.

4)

The calculations by Manton ~ have indicated that widely separated monopoles
of like magnetic charge are non-interacting to a first approximation. The exist-
ence of residual forces cannot, however, be ruled out in which case it may be
that such monopoles eventually migrate to infinity removing the system from the

class of static configurations considered here.

In order to be precise about a possible set of boundary conditions consis-
tent with (14), the field equations and the existence of magnetic charge I first
present a solution to the second-order equations (17) and (18) that describes an
arbitrary axially symmetric distribution of singular magnetic sources. I then
prescribe that any first-order solution to (40) should asymptotically approach
this solution in order to describe the long-range magnetic field component. This

implies that any multiple magnetic charges should be finitely separated.

The forms

P\: —-\iV\dN\
] - Zz WM

krd

for some constant Z will solve the second-order equations (17) and (18) provided

(55)

cos Y 1s such that

5

Con ¥ A4

™M (57)

generates a Maxwell field F, that obeys Maxwell's equations

M

a » ¥ = O (58)

(W ™M

almost everywhere. The argument follows with the aid of some relatiomns in the

Appendix. Away from singularities AM = % dM

DM = AN x av(am) =0 (59)

Thus

Y § = 0 (60)

and the only remaining field equation to solve is
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v+t =0 (61)

tu)

Now

Fo2df+ AR 7 -1aman - _\imawa)ha«W\ o2
But the Maxwell field generated by AM is

fw = o Ra = 3 enr¥) A 39 (63)

V+Y¥ - yeMDAF - ymM et =0 (64)
O

() )

A particular solution to (58) which in spherical polar co-ordinates reads

B lwF) + swm® dp( 2 35 (wn)) =0

is
o0 -Y‘l
Lor ¥ (e ®) = Z <. C‘n (cn ) (65)
no o~

N

where <¢C_ are arbitrary constants and

TR AN AT

in terms of Legendre polynomials. For n =1 one recognizes a Dirac monopole
with a string along the axis of symmetry. (Half of this string can be removed
by the Abelian gauge transformation AM - AM - c1d$¢.) The n = 2 term corres—

ponds to the magnetic dipole
9\«\ = Q*Cz sva- & AQ
Y

Since the Maxwell equations are linear in cos Y general solutions can be ob—

(67)

tained by superposition. Thus a series of Dirac monopoles along the symmetry

axis gives the solution

con ¥ = 2 i con U (68)

1Y
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where ei is the polar angle with respect to the ith monopole origin. Having
identified the Maxwell content of (55) and (56) I adopt as boundary conditions for

any solution to (40)

C\co T - %i \J\ é&‘¢\ \;
¢,

(69)
z M,
%

THE BASIC ANSATZ

The usual procedure for generating partial differential equations from a
quaternionic equation such as (40) is to formulate an ansatz for the forms that
suitably couples the internal algebra and tensor structure so that the non-commuta-
tive q elements are removed from the problems. In this procedure one must keep
in mind that the structure of the ansatz should not contain more degrees of free-
E))

dom than can be computed from the resulting differential equations In this

respect I examine the axially symmetric forms

N XV« 53T (5, -3) T T @

(71)

J = (A +~ NV

where in a general co-ordinate system (x',x?,$) the real functions £i,f5,A1,A2

are independent of ¢ and B is the 1 form

= B2 4~ b G (72)

With the aid of results in the Appendix it is straightforward to generate from
(40) the coupled partial differential equations (choosing polarity € =1 for

definiteness)

*A(S = 1R€(c§-i\> é\\\) (73)
(a3 ~ 22 430,09 - Tx QN VBN

and it is convenient to introduce
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,\: ’}\,’\' A"?‘z (75)
T §,

(i is the complex unit). These equations describe a two-dimensional Abelian

~ S’z (76)

gauge field coupled minimally to the doublets A and 3} . They are invariant

under the local Abelian gauge transformations

p 77

2

where | is an arbitrary real function of x and x*. The asymptotic boundary

conditions (69) require

A
c:}yoc = -‘—;-.m,roo e (78)

N, = Z e

Consequently, the equations (73) and (74) may be simplified by writing

I\ = ? Q’t A (79)
e ¥
T - (w R W,) e (80)

[é = __\aa'\‘ + o (81)

and exploiting the gauge invariance (77) to take p,hi,h, and o real. Taking

real and imaginary parts one has

Ao = Lpn, =+ &y (82)
nap = 2Ax*lo, ay) \'\1'*(%\\,3\?) (83)

A‘Q e x La\‘,_,\&“{\ o 1*L¢»ANB\\‘ (84)
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The asymptotic boundary conditions are now simply

§ e (85)
N, > O
(86)
/X
\“q - X o (87)
vy — % (88)

Using the fact that ** =1 we can eliminate o from the set (82)-(84) obtain-

ing the three equations linking p, h; and h,
R}
A*xdp = W\ pAY, Y é_\\i\,\(«é\,-.;\\“w)w”

(90)

xagt = {2agh.) - (A(\&*\\‘JAB\\’)\SAN

This observation implies that once p and h; are found as functions of x
2

1

and x then in an axially symmetric co-ordinate system (82) takes the form

a0~ = % L—)c‘) x\) 6""-\. dxt (91)

for some known function £. Consequently one can always write locally

S = Z(x,x) & (92)

say and introduce the single component . The equations (89) and (90) are
coupled non-linear partial differential equations in two variables. There are
two integrability conditions that follow from (90) by applying *d and d*,

respectively

dxdy A&*(A(\\‘:*\\‘,)AA\\»}AQ\V\S X JCE

A x (¢ La O\ ) aw)) §-2a«(3ew) ay):©

(94)
5)

At this point one can make contact with the equations developed by Manton™’ in his
search for axially symmetric monopole configurations. Adopting circular cylindri-
cal co-ordinates (x',x2) = (p,z) one recognizes that Eqs. (89)-(94) reproduce

his second order equations.



_15_

6. ABSENCE OF AXIALLY SYMMETRIC MONOPOLES

In this section I shall analyze (82)-(84) in spherical polar co-ordinates

(x!,x?) = (r,0). The dual operator gives

w (3¢, 9) = s=® 3%
+ ( dx, Atb) - - 3%

sw© (95)
x (39,3%) - o8¢
(tSV“
and (82)-(84) correspond to the five component equations
E = 2 Y \'\\ el
N (96)

swn©
]

AN, 2 = Wy (98)
¥ X swd = o . * AN wmL (99)
\>' Sw © = - N \;\1_ (100)

Dot (or prime) indicates partial differentiation with respect to r(8).

Multiplying (96) and (97) together and integrating with respect to r one:

finds

2 g
*
= — W, = %LQ) (101)
—
Sw©
where g is some function only of 6. However, with the choice of boundary con-

ditions (85) and (86) g must clearly be zero and one has

= - e\ (iz -3-_\) (102)
S
Equations (96) and (97) are now equivalent to

X = uye )

with 1% = eY. The remaining three equations become
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'
QQM% \( = \,\m \\1 - 12 ws (104)

~ Xt €

s"‘“e (105)

[}

s?' - v\, (106)
smaf}

Differentiating (104) with respect to r gives
. .
i Swsﬁ \< < \-l‘w\ \'\'L (107)

However, using (103) and (106) gives

-

S s+ Nt o uw W, (108)

Since m must not vanish these can only be consistent if h; 1is a function
solely of 6. In which case, from (106) p is a function of r. Now, integrat-

ing (103) with respect to r gives

X = \(\h) ~ X, 19) (109)

Y; and Y, is to be determined. From (104)

I

where Y = 4pe, Y'
\
LY sw® 4 U b (110)

L%
3\ ™

Inserting this in (105) and using 4ep = Y we finally obtain

.. X)X Le)
NG - A 2 L\\’;_(e\smﬂ - Ke e - 2aw

Swna
This equation is only consistent if one (or both) of the two functions Y; and
Y, 1is constant. Since a constant Y; is not interesting one must have Y, =

= 1ln ¢ say and

AR

\.1\.('\ - %C—e- _2"

(112)

with the solution

\<\ - &M(ol’(‘ /\.‘C_S\\\ or) (113)
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for a constant a = Z2. The complete solution consistent with the asymptotic

boundary condition is now constructed as

S = wer
ot
2 shot

T e e
2 A g

v
W, = 53. w> B
. S i@

Thus one is led unambiguously back to the spherically symmetric monopole (51),

vv\\(\‘ -
(52) with unit magnetic charge.

DISCUSSION

{1 the last section it was shown that the cunly consistent monopole soiucion
to the first—order eguation (40} with the asymptotic boundary conditions (693
was the known spherically symmetric solutiom. [It will be recalled that the
singular solutions (55), (56) obayed second-order field equations.:l One is fa—
turally led to reconsider the boundary conditions. Onc possibility is to coir
template modifications to (85) and (86) while keeping the isotropic condition
©2 = 2AR = 2p2 » z?/2. If I and/or h, tended to a non-vanishing function of
f on the sphere at infinity one need not have g¢(0) wvanishing and the arguments
of the last section would not apply. However, examining the field energy

(41) for the ansatz (70} one finds

a2k P =
. a z e a L
W'—"X% Qic -%*Q‘ «*\-\\?12 + vy \v\tmﬂ' T Y 38 g
® - s gw“e

If p? is essentially constant outside a large radius, the only way for 22 in
the third term to prevent a divergence is for it to vanish asymptotically. The
same argument applies to mzh%/sin2 9§ in the last term. Since all the terms in

the integrand are positive there is no possibility of cancellations between terms.

The conclusion is that any finite energy axially symmetric configuration
obeying (40) does not belong to the class encompassed by the ansatz (70), (71)
with the boundary conditions (69). Such solutions with magnetic charge g = mgo»
if they exist, must arise from a more general ansatz than that considered here or
from solutions’’ to the second-order equations (36),(37). If this latter case
turns out to be the only possibility then (barring degeneracies) they may be
safely described as excitations of the fundamental monopole since their emergy

would exceed n monopole masses due to the Bogomolny bound.
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APPENDIX

In this Appendix I collect some results that are used in the derivation of

(53), (54), (73) and (74)

S O N ¢
e \ ) e (A.1)
—w VY i w Y (A.2)
e v v e
+ - (A.3)
™ = =\

Applying d to (A.3)

N AN = - ™M (A.4)

Applying d to the definition of M

Sy
IM = Mye [ 3% & ™ sw¥ 3w (4-3)
Hence
- KW
N (3™ ye ) = WY (A.6)
NN w \e'k*> T - MawT Y (A.7)
Under exterior multiplication of dM with itself
AWM, 3N = - 2N I (wn¥) A (A.8)
Other simple but useful results are:
y e Y W Y v = N (A.9)
v (A.10)
W le Ty) SR CAA I
AM,. 3™, d3WM = o 4.1

-k

The quaternion T =1 e obeys the following relations
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~*: -\ (A.12)
T AT - -3V N

(A.13)

AT» dV =0 (A.14)

AT = XV &y (A.15)

TK = - 'V (A.16)

(\<'V\) M I - (KT) (A.17)

From the ansatz (70),(71) the computation of B gives

(3) S AN «+ a A~ 3!
= T35 A5, B 09 {35, 028 BY sy TR 0o
Similarly
W = 43 ~ AN (A TE)
S B TR E LU W A PR R L Tt W

(A.19)

w2 X 5 NNy

Equations {73),(74) now follow by applying * to (A.19) and taking the k, T
and kT components of (40).
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