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1 Introduction

I have been assigned this broad title but my talk will be mostly concerned with the origin of
the electroweak scale. I will attempt to give an overview of the theoretical ‘laborings’ that
came up after the end of the LEP era and in preparation to the commissioning of the LHC.
An appropriate subtitle for my talk could thus be ‘Electroweak Symmetry Breaking after
LEP/SLC’.

There are two different sides from which to regard the legacy of LEP/SLC, and forming
what is also known as the LEP paradox [1]. From one side it is an impressive triumph of
human endeavour: the Standard Model (SM) is a complete theory of fundamental processes
successfully tested at the per-mille precision. That means that small quantum corrections
to the Born approximation are essential in the comparison between theory and experiment.
However, when regarded from the other side, this great success becomes a huge conceptual
bafflement, because the hierarchy problem, which inspired theoretical speculations for the
last three decades, suggested that the SM should be overthrown right at the weak scale. That
did not happen, so we must now understand why. I will discuss the paradoxical LEP/SLC
legacy in the first part of my talk. In the second part I will attempt to give an overview on the
new ideas that were stimulated partly by the LEP paradox, on the phenomenological side,
and partly by field theory developments (concerning for instance the use of extra-dimensions
and branes) on the theoretical side. I think it will emerge that, while potentially realistic and
certainly very ingenious, these attempts still leave something to be desired. In fact it may
even be fair to say that these models concretely embody the LEP paradox. Indeed, because
of the increasing sense of frustration with the standard approaches, a radically different
approach to the hierarchy problem has recently been advocated. That involves the use of
variants of the anthropic principle to explain the puzzling values of apparently fundamental
parameters, such as the cosmological constant or the Higgs mass. In the third part of my
talk I will illustrate how anthropic considerations can explain the puzzling need, after LEP2,
for tuning on models with low energy supersymmetry.

2 The legacy of LEP/SLC

The large set of data collected in electron–positron collision at LEP/SLC displays a remark-
able O(10−3) agreement with the SM for a relatively light Higgs. More precisely, a global
eletroweak fit [2] gives with 95% CL the bound mh < 219 GeV. On the other hand, the
SM suffers from the hierarchy problem: the Lagrangian Higgs mass parameter m2

H , which is
related to the physical mass by m2

h = −2m2
H , is affected by uncalculable cut-off dependent

quantum corrections. Whatever more fundamental theory replaces the SM above some scale
ΛNP, barring unwarranted cancellations, it is reasonable to expect the Higgs mass parame-
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ter to be at least of the same size as (or bigger than) the SM contribution computed with
a cut-off scale ΛNP. (This way of estimating the size of the Higgs mass is made reason-
able by many explict examples that solve the hierarchy problem, and also by analogy with
well-known quantities in low energy physics, such as the electromagnetic contribution to
m2

π+ −m2
π0 .). The leading quantum correction is then expected to come from the top sector

and is estimated to be

δm2
H ∼ −3λ2

t

8π2
Λ2

NP . (1)

In the absence of tuning, this contribution is compatible with the allowed range of m2
h only

if the cut-off is rather low

ΛNP < 600 × (
mh

200 GeV
) GeV . (2)

If we allow a fine-tuning of order ǫ then the bound is relaxed by a factor 1/
√

ǫ. Now, the
question is: if the energy range of validity of the SM is as low as 500–1000 TeV, why did
LEP/SLC not detect any deviation from the SM predictions in their rich set of data? Even
though the center of mass energy of these experiments is significantly lower than 1 TeV, still
their precision is high enough to make them sensitive to new virtual effects associated to
a much higher scale than their center of mass energy. The effects from new physics at a
scale ΛNP can in general be parametrized by adding to the SM renormalizable Lagrangian
the whole tower of higher dimensional local operators, with coefficients suppressed by the
suitable powers of ΛNP [3]:

LNP
eff =

1

Λ2
NP

{
c1(ēγµe)

2 + c2W
I
µνB

µνH†τIH + . . .
}

. (3)

At leading order it is also sufficient to consider only the operators of lowest dimension,
d = 6. The constraints on the whole set of d = 6 operators have been studied in ref. [4]. The
lower bound on ΛNP for each individual operator Oi, neglecting the effects of all the others
and normalizing |ci| = 1, ranges between 2 and 10 TeV. Turning several coefficients on at
the same time does not qualitatively change the result, unless parameters are tuned. The
interpretation of these results is that if New Physics affects electroweak observables at tree
level, for which case ci ∼ O(1), the generic lower bound on the new threshold is a few TeV.
The tension between this lower bound and eq. (2) defines what is known as the LEP paradox.
This is an apparently mild problem. But notice that the needed tuning ǫ grows quadratically
with ΛNP, so that for ΛNP = 6 TeV we need to tune to 1 part in a hundred in order to have
mH = 200 GeV. In view of this problem, things would look definitely better if New Physics
affected low energy quantities only via loop effects. In this case ci ∼ α/4π and ΛNP < 600
TeV would not lead to any tension with electroweak precision tests. It is at first reassuring
that Supersymmetry with R-parity, arguably the leading candidate New Physics scenario,
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precisely enjoys this property, with the mass scale of supersymmetric particles identified with
ΛNP . However the attraction of Supersymmetry largely lies in its giving a very plausible
picture for physics way above the weak scale and up to the Planck scale where, in addition to
electroweak symmetry breaking (EWSB), also Gauge Unification, neutrino masses and Dark
Matter fit very well. In this extrapolation, however, the leading quantum contribution to the
Higgs mass parameter is not eq. (1) but the larger one associated to renormalization group
(RG) logarithms. In the Minimal Supersymmetric Standard Model (MSSM) the relation
between the various mass parameters is then roughly

m2
Z ∼ −2m2

H = −2µ2 +
3

2π2
λ2

tm
2
t̃ ln

MP lanck

mt̃

+ . . . (4)

∼ −2µ2 + O(1) m2
t̃ + . . . , (5)

where we have not displayed the normally less relevant contributions. From the above we
deduce that the natural expectation is to have the stop, the charginos and everything else
at or below the vector boson scale

mZ ∼ mt̃,∼ µ ∼ . . . (6)

The above relation raised great hope of new discoveries at LEP/SLC. This did not happen,
and so supersymmetry can no longer be viewed as completely natural. In fact, at least in
the MSSM, the situation is made even worse by the indirect, and stronger, bound placed on
the stop mass by the lower bound on the lightest Higgs mass. As is well know, in the MSSM
the physical mass of the lightest Higgs has an upper bound, which in 1-loop accuracy reads
roughly

m2
h ≤ m2

Z + m2
t

3λ2
t

2π2
ln mt̃/mt . (7)

The second term on the right-hand side corresponds to the leading top/stop radiative correc-
tion to the Higgs quartic coupling. It is then only thanks to this correction that mh can exceed
its direct experimental (95% CL) lower bound of 114.4 GeV. However, this generically re-
quires mt̃

>∼ 500–1000 GeV, which when compared to eq. (5) implies that a cancellation with
1 to 5% accuracy is needed. Although the description we give here is somewhat schematic,
the problem is ‘robust’, in the sense that it does not depend in any significant way on the full
structure of the soft terms. In particular things are not dramatically improved by considering
the extra positive contribution to the right-hand side of eq. (7) that arises for large t̃L–t̃R
mixing. This is because the sizeable A-terms that are needed for that to happen require
some tuning too. Another often heard criticism to the above simple argument concerns the
fact that the bound on mh in the MSSM is, strictly speaking, lower than 114.4 GeV. This is
because the coupling of h to the Z-boson is a factor sin(β − α) smaller than the one in the
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SM. In some regions of the supersymmetric parameter space this suppression can become
significative, making the bound on mh weaker and thus giving the impression that the need
for tuning is relaxed. However as a direct analysis shows [5, 6], the parameter space region
where this happens corresponds to an even bigger tuning than the 1–5% estimated above.
This is because one needs tan β ≫ 1 (which always entails some tuning), the mass of the
second CP-even Higgs mH tuned somewhat close to mh and a still sizeable stop contribution
to the Higgs quartic coupling.

While the problem is ‘robust’ within the MSSM, it can be somewhat relaxed just by
adding a single superfield N to the model, thus upgrading the theory to the so-called NMSSM.
In the presence of N there is an additional positive contribution to the right-hand side of
eq. (7), due to the superpotential trilinear coupling NH1H2. This allows a relaxation of
the lower bound on the stop mass. A detailed analysis, described in ref. [7], shows that the
amount of fine tuning can in general be relaxed to about 10%. This is encouraging, although
my impression is that in several attractive scenarios for supersymmetry breaking, such as
gauge or anomaly mediation, the soft terms have such a structure as to make the desired
electroweak vacuum with 〈H2〉, 〈H1〉, 〈N〉 6= 0 rather hard to obtain, that is to say very
tuned. Some extra model building effort in the context of the NMSSM is perhaps desirable.

In the end, should we really worry about tuning at the few per cent level? Perhaps not,
but we should keep in mind that once we are willing to accept some tuning, the motivation
for New Physics at the LHC becomes weaker. Notice indeed that, already with a tuning at
the per mille level, the sparticles are out of reach at the LHC.

2.1 Technical parenthesis: LEP1 & LEP2 bounds on New Elec-

troweak Physics

I now want to illustrate the impact of electron–positron data by focusing on the simplest
scenario for New Physics in the electroweak sector, the so-called universal models. These
are the models where deviations from the SM appear, at leading order, only through vector
boson vacuum polarizations [8]

LNP = W µ
+Π+−(q2)W+µ + W µ

3 Π33(q
2)W3µ (8)

+ W µ
3 Π3B(q2)Bµ + BµΠBB(q2)Bµ (9)

Most Technicolor, Little Higgs and Higgsless models practically belong to this class [9],
showing that it is not an obviously idle exercise to focus on universality. I say ‘practically’,
since the more realistic versions of these models almost always display extra effects involving
the third-family fermions, and associated to the large value of the top quark Yukawa coupling.
However, since the majority of the observables (and arguably those that are under better
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experimental control) only involve the fermions of the first two families, the bounds on
universal models indeed have a more general relevance.

The electroweak constraints on universal models were widely discussed in the 90’s. How-
ever, as I will now show, and as it was recently discussed in ref. [9], some important aspects
were always either missed or not emphasized. Consistent with the absence of new particles
at LEP2, let me start by assuming that the scale of new physics ΛNP is somewhat above the
energy of LEP2. It then makes sense to expand the vacuum polarizations Π(q2) as a power
series in q2 and retain only the leading terms. In order to decide which terms are leading,
it is useful to classify the vacuum polarizations in eq. (8) according to their transforma-
tion properties under custodial symmetry and under the electroweak group SU(2)L (the two
relevant symmetries of the problem). Within any given symmetry class is then natural to
retain only the term of lowest order in the Taylor expansion in q2. This is because, barring
accidental cancellations that make the lowest-order term in a given class anomalously small,
the higher-order terms in the same class will give effects at around the Z0 pole that are
smaller by at least a factor M2

Z/Λ2
NP ≪ 1. According to this criterion, and after reabsorbing

the trivial redefinition of the electroweak input parameters (GF , αEM , mZ), we are left with
4 leading form factors

Adimensional form factors Operators Custodial SU(2)L

Ŝ = g2Π′
3B(0) OWB = (H†τaH)W a

µνBµν/gg′ + −
T̂ = g2

M2
W

(Π33(0) − Π+−(0)) OH = |H†DµH|2 − −
Y =

g′2M2
W

2
Π′′

BB(0) OBB = (∂ρBµν)
2/2g′2 + +

W =
g2M2

W

2
Π′′

33(0) OWW = (DρW
a
µν)

2/2g2 + +

where we have indicated respectively with + or − the symmetries they respect or break. We
have also indicated the lowest dimension effective operator involving the Higgs and vector
fields associated to each form factor. As was already pointed out long ago by Grinstein and
Wise [10], the 4 leading form factors parametrize the d = 6 effective Lagrangian for the Higgs
and gauge fields. They are thus the leading terms in a double expansion in 〈H〉2/Λ2

NP and
in q2/Λ2

NP. It follows, however, from our discussion that they are the leading effects in full
generality, as we did not assume we could expand in the Higgs field, and our parametrization
also encompasses the generic strongly coupled Higgsless scenario. We stress that according

to our criterion the quantity U = g2
(
Π′

33(0) − Π′
+−(0)

)
is expected to be ∼ m2

W

Λ2
NP

T̂ ≪ T̂ so

that it can always be safely neglected. The negligibility of U is indeed a known property of
technicolor models [11]. The quantities Y and W are also small in the simplest technicolor
models, but they can be important in models where there is new structure in the pure gauge
sector, as in models with vector boson compositeness or as in Little Higgs models. On the
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Type of fit 103Ŝ 103T̂ 103Y 103W
One-by-one (light Higgs) 0.0 ± 0.5 0.1 ± 0.6 0.0 ± 0.6 −0.3 ± 0.6
One-by-one (heavy Higgs) — 2.7 ± 0.6 — —
All together (light Higgs) 0.0 ± 1.3 0.1 ± 0.9 0.1 ± 1.2 −0.4 ± 0.8
All together (heavy Higgs) −0.9 ± 1.3 2.0 ± 1.0 0.0 ± 1.2 −0.2 ± 0.8

Table 1: Global fit (excluding NuTeV) of dominant form factors including them one by one
or all together, with a light (mh = 115 GeV) and with a heavy (mh = 800 GeV) Higgs.

other hand there exists, as expected, no motivated scenario where S, T, U is the relevant set:
it is either redundant or insufficient.

Notice that by the equations of motion the operators associated to Y and W are equiv-
alent to a given combination of Ŝ, T̂ plus vertex corrections and plus four-fermion contact
interactions. Two classes of observables are then affected by (Ŝ, T̂ , Y, W ):

1. Z0 pole. Corrections to (δρ|mZ
, mW , sin2 θW |current), expressed via the ǫ’s of ref.[12] as

ǫ1 = ǫSM
1 + T̂ − W − tan2 θW Y (10)

ǫ2 = ǫSM
2 − W (11)

ǫ3 = ǫSM
3 + Ŝ − W − Y . (12)

2. Cross-sections and asymmetries in eē → f f̄ at LEP2. These mostly constrain Y and
W since their effect grows faster with energy than that of Ŝ and T̂ (they involve more
derivatives).

Notice that Z0 pole tests correspond to the measurement of just 3 quantities, and are thus
not sufficient to constrain the general set! (As is well known, the set S, T, U would indeed
be constrained by Z0 pole data: Is this the psychological reason why this inconsistent set
was so popular for so long?). Fortunately LEP2 data allow us to fully and strongly constrain
the set. It is interesting that the somewhat lower precision of LEP2 (about 1% versus
about 0.1% at LEP1) is compensated by the higher center of mass energy, which enhances
the effect of Y and W . Other low energy observables, such as atomic parity violation and
Moeller scattering, also provide extra independent constraints, but they are weaker than
those provided by LEP2. The bounds from the global (basically LEP1/SLC + LEP2) fit is
shown in the table: all 4 quantities are bounded at the per-mille level. The message should
then be clear: LEP2 data are crucial to perform a consistent analysis of new electroweak
physics.
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3 ‘New’ ideas on electroweak symmetry breaking

Because of the ‘uncomputability’ of the Higgs potential, the SM, while a perfectly consistent
theory, does not give a satisfactory explanation of EWSB. Perhaps roughly: the SM can
parametrize EWSB but cannot explain it. Sticking to theories with an elementary Higgs
field, progress necessarily involves computational control of the Higgs mass parameter. That
means that m2

H should be protected from ultraviolet corrections. The only way we know of
achieving this is by introducing extra symmetries. There are various possibilities, by now
well known. Supersymmetry is surely the most widely explored one. By supersymmetry
the Higgs boson H is mass degenerate with a Higgs fermion ΨH within the same Higgs
supermultiplet. The Higgs mass mH therefore inherits by supersymmetry the good UV
property of the fermion mass: the quadratic divergence is replaced by a mild logarithmic
one, and the hierarchy problem is solved. Another, perhaps less popular but interesting,
possibility is to promote the Higgs to a gauge field. We know indeed that a gauge symmetry
δAµ = ∂µα forbids a mass term m2AµA

µ. In order for this to work the Higgs H should
be part of a vector multiplet, which at first glance conflicts with ordinary 4-dimensional
Lorentz invariance. However, the conflict is solved if there exists (at least) one extra space
dimension, in which case H can be associated to the vector polarization along the new
dimension: H ∼ A5. It is amusing that also supersymmetry can be viewed as an extra
dimension, though of fermionic type. Finally another, perhaps simpler, possibility is that
the Higgs H is in lowest approximation the Goldstone boson of a spontaneously broken
global symmetry. This means that H basically transforms by a constant shift H → H + c
under the symmetry, which forbids any H interaction that does not involve at least one
derivative ∂µH . In particular it forbids a Higgs mass term, but also, which is less exciting,
the standard Yukawa interactions and the Higgs self-coupling. In fact this is a more general
problem: all the symmetries I mentioned above must be broken at some level in order to
give rise to realistic models. Breaking the symmetry while preserving its benefits, and also
avoiding the LEP paradox, is the main challenge in model building. I will now illustrate
some of these model building efforts.

3.1 The Little Higgs model

The LEP paradox is overcome if we can construct a theory where mH , with respect to
ΛNP , is much smaller than eq. (1) suggests. The Little Higgs (LH) idea is to achieve this
construction by making the Higgs an approximate Goldstone boson (a pseudo-Goldstone in
jargon) [13]. The inspiration for that comes from low energy hadron physics, where the pions
π+, π0 represent the Goldstone bosons associated to the spontaneous breakdown of the chiral
symmetry group SU(2)L × SU(2)R down to the diagonal isospin group SU(2)I . The quark
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masses mq and αEM explicitly break chiral symmetry by a small amount, thus giving rise to
the physical but small pion masses. In particular m2

π+ receives an electromagnetic correction
of order αEM

4π
Λ2

QCD ≪ Λ2
QCD. We can try and think of an extension of the SM where the

Higgs is a composite Goldstone boson associated to some new strong dynamics at a scale
ΛStrong. Among several others, the top Yukawa interaction (as it does not involve derivatives
of the Higgs field) breaks the Goldstone symmetry explicitly. Then, replacing αEM → αt and
ΛQCD → ΛStrong, we generically expect, in analogy with QCD, m2

H ∼ αt

4π
Λ2

Strong. Since in this
case ΛNP ∼ ΛStrong this is just eq. (1), and we are back to the LEP paradox. The Little Higgs
[14] is precisely a clever construction to avoid the appearance of the lowest order contribution
to m2

H . Consider indeed the expression for the mass of a Higgs pseudo-Goldstone boson, to
all order in the coupling constants

m2
H =

(

ci
αi

4π
+ cij

αiαj

(4π)2
+ . . .

)

Λ2
Strong . (13)

We can think of these couplings αi as external sources that transform non-trivially under the
Goldstone symmetry, thus breaking it, very much like an external electric field breaks the
rotational invariance of atomic levels. As in atomic physics, the coefficients ci, cij , . . . are
controlled by the symmetry selection rules. We can then in principle think of a clever choice
of symmetry group and couplings (thought of as external sources) such that the Goldstone
symmetry is partially restored when any single coupling αi vanishes. In that situation only
the combined effect of at least two distinct couplings αi and αj can destroy the Goldstone
nature of the Higgs thus contributing a mass to it. The symmetry is said to be collectively
broken, ci = 0 and

m2
H ∼ (

α

4π
)2Λ2

Strong . (14)

By this equation we then expect ΛStrong ∼ 10 TeV, which seems to be what we need to avoid
the LEP paradox.

The general symmetry structure of LH models involves a global group Gglo broken down
to a subgroup Hglo with the Higgs doublet belonging to the Goldstone space Gglo/Hglo.
Only a subgroup Gloc ⊂ Gglo is gauged: gauge and Yukawa interactions collectively realize
the explcit breaking Gglo → Gloc. Therefore as a combination of spontaneous and explicit
breaking only a gauge group Hloc ⊂ Hglo survives between the fundamental scale ΛStrong and
the weak scale. Normally Hloc is just the electroweak group Gweak = SU(2)L × U(1)Y . In
order to realize this structure, the field content of the SM must be clearly extended, and the
many different ways of achieving that define a variety of Little Higgs models. One feature
of all these models is the presence of same spin partners for basically each SM field. When
computing corrections to the Higgs mass, these partners enforce the selection rule ci = 0 by
cancelling the 1-loop quadratic divergent contribution of the corresponding SM field. For
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instance, in all models the left-handed top doublet (t, b)L is extended to at least a triplet
χL = (t, b, T ′)L, with T ′

L an up-type SU(2)L singlet; in the right-handed sector, along with
tR and bR, there is then a new up-type quark T ′

R. The field χL transforms as a triplet of
some SU(3) ⊂ Gglo. The ordinary Higgs boson arises as a (pseudo)-Goldstone from the
spontaneous breaking of SU(3) down to ordinary SU(2)L. The triplet structure for third
family fermions is a feature of the simplest models, event though Gglo is strictly bigger than
SU(3). For instance one simple model is the so-called Littlest Higgs for which Gglo = SU(5)
and Hglo = SO(5).

The gauge group can either be extended by adding extra group factors to Gweak (product
group models) or by embedding Gweak in larger simple group (simple group models). For
instance, within the latter class the Simplest Little Higgs model [15] has a weak gauge group
SU(3)×U(1). The simplest product group models instead, such as the SU(5)/SO(5) Littlest
Higgs, have gauge group SU(2)1 × SU(2)2 × U(1)Y . The role of the extra charged W±

H and
neutral ZH is to cancel the 1-loop correction δm2

H ∼ αW

4π
Λ2

Strong from SM vector bosons.
The partners of the SM states that are needed to enforce the LH mechanism naturally

have a mass of order
m2

partners ∼
α

4π
Λ2

Strong = g2f 2 , (15)

where I indicated by α = g2/4π a generic coupling constant and I used the qualitative
relation ΛStrong ∼ 4πf between the strong scale and the Goldstone decay constant f (this is
in analogy with the relation between strong scale and fπ in QCD). For ΛStrong ∼ 10 TeV, the
partners then have a mass in the TeV range. Notice that the presence of these new states
with intermediate mass is necessary for the LH mechanism to work.

As already said, from the viewpoint of the low energy effective theory, the partner loops
cancel the leading quadratic 1-loop correction to m2

H . For instance in the top-quark sector
the 3 diagrams in the figure add up to a quadratic correction

δm2
H = −3Λ2

Strong

8π2

(

λ2
t + λ2

T − 2
λTmT

f

)

= 0 (16)

thus implying a sum rule involving the top Yukawa, the T–t mixing Yukawa, the heavy
top partner mass mT , and the Goldstone decay constant. An experimental validation of
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this sum rule would be a spectacular confirmation of the LH mechanism. The cancellations
among different diagrams are analogic to what happens in supersymmetry. The analogy goes
indeed further, in that logarithmic divergences do not cancel, and play a role in triggering
electroweak symmetry breaking. For instance in the Littlest Higgs model the t–T sector
gives rise to a negative correction

δm2
H = − 3

8π2
λ2

t m
2
T ln

(
Λ

mT

)
, (17)

completely analogous to the t–t̃ one in the MSSM.
Those we just described are undoubtedly attractive qualitative features for a theory

of electroweak symmetry breaking. In the end, however, it is the comparison with the
electroweak data that matters. In the LH models there are two classes of contributions to
effective operators.

The first class is associated to the yet unknown physics at the cut-off ΛStrong, at which the
Higgs is composite. It necessarily gives rise to operators involving just the Higgs boson, where
vector bosons appear only through covariant derivatives. For ΛStrong ∼ 10 TeV these effects
are not in contradiction with the data. The situation would however be bad if light fermions
as well were composite at ΛStrong. This is because strong coupling would then demand
ci ∼ 16π2 with ΛNP = ΛStrong for 4-fermion contact interactions in eq. (3). But with this
normalization LEP2 data imply ΛStrong

>∼ 50 TeV [4]. Fortunately, fermion compositeness
is not a necessary requirement of LH models, although Higgs compositeness requires some
extra interactions in oder to give rise to the SM Yukawa couplings.

The second class of effects is mainly associated to the intermediate mass ∼ gf ∼ 1 TeV
vector bosons, W±

H , ZH , . . . In product group models, all such effects arise from the mixing
between heavy and light bosons. These models are therefore universal and all the new effects
are faithfully parametrized by Ŝ, T̂ , Y, W [9, 17]. Simple group models are not universal
because of the new current–current interactions associated to the extended gauge structure,
but the bounds are roughly the same [17, 18]. From the first analyses of electroweak data
in LH models [16] to the most recent and comprehensive ones [17, 18], much work has been
done. In what follows I will briefly discuss the results for product group models as studied
in ref.[17]. One robust feature of these models is the contribution to Ŝ and W ; in terms of
the mass mWH

and gauge coupling αH for the new vectors, this is just

Ŝ =
m2

W

2m2
WH

1
√

1 − αW

αH

W =
m2

W

2m2
WH

αW

αH√
1 − αW

αH

, (18)

while the contributions to T̂ and Y are more model-dependent. However, especially thanks
to LEP2, it is possible to strongly bound the model even by treating T̂ and Y as free
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parameters. Notice that, by eq. (18), it is the intermediate scale mWH
∼ gf ∼ 1 TeV,

instead of ΛStrong = 4πf , that plays the role of the new physics scale ΛNP : we are back to
the LEP paradox! In fact one may even say that the LH provides an explicit incarnation
of the LEP paradox itself. By eq. (18) the bound on mWH

and on f become weaker as αH

gets larger. For αH > 0.3 one gets (with 95% CL) mWH
> 1.2 TeV, by keeping T̂ free, and

mWH
> 1.6 TeV for T̂ = 0. The direct bound on mWH

, αH indirectly limits the mass of the
top partner (via the bound on the LH decay constant f) roughly as

mT >
1√
αH

TeV . (19)

We now see the LEP paradox in action. The Higgs mass is dominated by quantum correction
δm2

H ∝ m2
T , and for a ‘normal’-size coupling αH

<∼ 0.1 we must tune the Higgs mass to at
least 5% accuracy. Alternatively, tuning is minimized, if we are willing to accept a coupling
αH ∼ O(1) on the verge of becoming strong. While it does not seem technically unacceptable
to have such a large coupling at low energy, it may perhaps make things harder when trying
to come up with a weakly coupled UV completion of the LH. The need for slightly extreme
choices of parameters is not limited to product group models, but also holds for simple group
ones, although the discussion is somewhat different [17, 18]. Notice also that, in addition
to the general tension with electroweak data, specific models can have extra tuning [19], for
instance in association with the Higgs quartic coupling. I do not know whether it is fair to
emphasize these more specific tunings. However I think it is fair to say that for normally
weak gauge couplings αH

<∼ 0.1 the LH is not less tuned than supersymmetry.
The basic problem involves the mixing between light and heavy vector bosons. However

the cancellation of the leading quadratic correction to the Higgs mass does not rely on this
mixing. In fact LH models have been constructed [20] involving an extra discrete symmetry,
T-parity, with respect to which SM particles are even, while the heavy vector bosons are
odd. This naturally forbids the mixing, implying Ŝ = W = 0. This would be a great result,
if it wasn’t that with T-parity there necessarily appear new and potentially disastrous loop
corrections to 4-fermion contact terms. This is precisely what T-parity was asked to avoid!
These new loop effects are tamed provided a partner for each SM fermion, including the light
ones, is added with a mass around 500 GeV. This way, models with T-parity can probably
be made technically less fine-tuned than models without it. T-parity is a smart idea, but it
is not clear to me if the extra complications it entails are worth the effort.

In the end, even if these models are somewhat cornered by LEP data, it is only with the
LHC that we will directly test them. The top partners are likely to be the lightest and most
accessible states, in view of tuning considerations. T is directly produced in qb collisions
via the flavour mixing vertex W+T̄ b. The parameters λT and mT are thus extracted from
the measured rate and from the reconstructed mass. The remaining parameter f , as well as
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αH , can be extracted from the Drell-Yan (DY) production and decay of the heavy vectors.
Notice that the large αH values that are favoured by low energy data suppress the coupling
of WH to light particles, thus leading to a suppression in the DY cross section. One can still
conclude that, in case of a discovery up to mT < 2.5 TeV and mWH

< 3 TeV, the sum rule
eq. (1) can likely be tested within 10% accuracy [21].

3.2 H ∼ A5 or Higgs as ‘holographic’ Goldstone boson

This is also a pretty ‘old’ idea [22, 23] on which, again, progress was made in recent years
(see for instance ref. [24]) thanks to the use of new concepts such as branes, warping, decon-
struction, etc. The basic remark is that when the gauge group Gextra breaks down to Gweak

by some clever compactification, the extra-dimensional polarizations Aα
5 , Aα

6 , . . ., associated
to the generators Tα ∈ Gextra/Gweak, are massless at tree level. Very much as for the LH
models, one can build models where Gextra/Gweak contains the SM Higgs doublet. The extra
dimensional gauge symmetry then forbids the presence of local contributions to the mass
of such a Higgs boson, implying that all the contributions to m2

H must be associated to
non-local, ie. finite, quantum corrections.

These models are indeed closely related to a large class of LH. These are the so-called
moose models, which can be represented by diagrams where the dots indicate gauge group
factors, while the links indicate scalar fields with quantum numbers under the two gauge
dots they connect. A simple LH moose, depicted in figure (a), involves one extra gauge
group factor Gnew admitting SU(2) × U(1) as a subgroup. The link field Σ represents the
set of Goldstone bosons associated to the breaking of the global symmetry group Gglo =
Gextra × Gextra down to just Gextra. The gauge factors Gweak and Gnew are embedded into
each distinct Gextra factor of Gglo. The Goldstone field Σ breaks Gweak × Gnew → Gweak,
and the uneaten Goldstones ∈ Gextra/Gnew make up the Higgs doublet. Notice that this
construction realizes collective symmetry breaking: in the limit of vanishing gauge coupling
for any individual dot (either Gweak or Gnew), Σ becomes an exact Goldstone. Now, one
may imagine repeating this structure by adding N intermediate dots with gauge group
Gi ≡ Gextra, linked by replicas of Σ, as shown in the figure. In the limit N ≫ 1, this linear
structure truly approximates a 5-dimensional theory, with gauge group Gextra, broken down

13



to respectively Gweak and Gnew at each boundary. The scalars Σi play the role of A5(i),
which makes the connection between H ∼ A5 and LH fully manifest. The moose diagram
is called a deconstruction of the 5th dimension [25]. The Higgs mass is calculable at 1-loop,
as in any LH model, but now the new states that cut-off the quadratic divergence are nicely
interpreted as the Kaluza–Klein replicas of the SM fields. So we roughly have

m2
H ∼ 3λ2

t

16π2
m2

KK + . . . (20)

At the classical level one may think of achieving the continuum limit by sending N → ∞.
At the quantum level, however, that does not make sense, since 5-dimensional gauge theories
have a UV cut-off ΛStrong which sets a minimal length scale 1/ΛStrong. Indeed, studying the
spectrum of the deconstructed theory one gets

N ∼ ΛStrong/mKK ∼ ΛStrongR (21)

so that N truly has a physical interpretation as the number of weakly coupled Kaluza–Klein
resonances below the cut-off ΛStrong (the KK levels are more or less equally spaced by an
amount mKK). The simple construction we have just sketched displays, perhaps roughly,
some aspects of a more general idea, holography, born within string theory [26], but more and
more influential in model building and phenomenology (see e.g. ref. [27]): weakly coupled
5D theories can be alternatively viewed as purely 4D theories with a large number of states
N . Moreover, the more weakly coupled the 5D description (the larger ΛStrong) the larger N .

Among the various realizations of H ∼ A5, the arguably most interesting one [28] was
obtained within the Randall–Sundrum (RS) model [29]. In the RS model the 5th dimensional
interval y = [0, R] is warped and the metric is ds2 = e−2y/Ldxµdxµ + dy2. The length L
characterizes the distance along y beyond which curvature effects are important. The warp
factor e−y/L describes the energy red-shift of any process taking place at y, relative to the
same process taking place at y = 0. This is conceptually analogous to the relative red-shift
of light emitted in a given atomic transition by atoms sitting at different heights in the
gravitational field of the Earth. However, unlike on Earth, in the RS metric the curvature of
space-time is large. The red-shift is then huge, and can be used to explain the Big Hierarchy
problem. Indeed in the RS model the effective 4-dimensional force is mediated by a massless
graviton localized near y = 0, and therefore the effective MPlanck is not red-shifted. However
the lightest Kaluza-Klein states, for all fields, are localized near y = R and their mass is
red-shifted by a factor e−R/L:

mKK

MPlanck

∼ e−R/L . (22)

If one succeeds in associating mKK to the weak scale, then the exponential explains the Big
Hierarchy for a fairly small radius R/L ∼ 35. In the model of ref. [28] the Higgs is basically
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the zero model of some components of A5: H =
∫ R
0 A5 dy. Its mass, generated at 1 loop,

is of the form in eq. (20) as expected in any H ∼ A5 construction. The peculiarity of this
model is then that the calculability of mH is combined with a solution of the Big Hierarchy
problem. Unlike most LH theory, thanks to the embedding in the RS geometry, the model
in ref. [28] gives a valid description of physics up to energies of the order of MPlanck. In this
sense it can be considered a serious competitor of supersymmetry. As in supersymmetry, the
extrapolation to the Planck scale is rather constraining:

• There are KK resonances for each SM particle.

• Perturbativity of the three SM gauge couplings up to the Planck scale implies N <∼ 10,
see eq. (21). By converse this bound implies that the coupling among KK modes is
pretty strong: gKK ∼ 4π√

N
. The KK states behave like the resonances of a strongly

coupled 4-dimensional field theory.

• The quark and lepton mass spectrum can be nicely explained via their localization in
5D, while implementing a GIM mechanism to suppress FCNC’s [30].

• The right-handed top tR, unlike the other SM states, strongly interacts with the KK
modes. From the 4-dimensional perspective the interpretation is that tR is composite.

• The electroweak constraints are similar to the LH as far as oblique corrections are
concerned: they require about 10% tuning corresponding to a bound mWH

> 2.5 TeV
on the mass of the lightest vector KK mode, slightly stronger than for LH. However
significantly stronger bounds are here associated to corrections to the Zbb̄ vertex [31].
They lead to a bound of about 4 TeV on the mass of the top KK partners, thus implying
a need for fine tuning at the few per cent level. These stronger bounds, unlike the
more robust ones from Ŝ, may however be a peculiarity of the specific model, and
some possibilities to overcome them are outlined in ref. [31].

One last item concerns gauge unification, which in some leading, naive, approximation
works very well, and in a novel way, totally alternative to what was thought so far [32]. The
beta function are indeed not just modified by the addition of the contribution of new states,
but also by the subtraction of the contribution of the Higgs H and the right-handed top tR,
which are by all means composite states just above the weak scale. The problem, however,
is that higher order uncalculable effects are very important unless N ∼ O(1), which would
drastically limit the overall calculability [32]. So, while the idea of unification by subtraction
is new and interesting, it does not have yet a realization that can computationally compare
to the fully weakly coupled supersymmetric unification.

5D models or moose models, can also be used to construct partially calculable Higgsless
theories [33]. This corresponds to choosing Gnew and its embedding in Gextra so that the
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combined effect of the two boundaries is to break Gextra directly to electric charge U(1)Q (in
the 1-link moose limit, diagram (a), the link field breaks Gweak × Gnew to U(1)Q.). These
models are very ambitious since, unlike in models with a Higgs field, the ratio (mZ/mWH

)2

is fixed in any given construction to be of order g2N/16π2, and it is not tunable. This makes
it harder to pass the electroweak precision tests: either small N is chosen [9], implying unac-
ceptably strong coupling, or the simplicity of the idea must be spoiled by extra complications
[34]. Moreover it is not yet clear if non–universal effects such as Z → bb̄ can be fully kept
under control.

4 Anthropic approach to hierarchy problem(s)

The ideology underlying model building attempts, such as the ones I described so far, is
that the measured parameters of the SM must be pointing toward a unique fundamental
description of Nature. If that description is not perverse, any apparent tuning within the SM
should not look so within the more fundamental description. Thus we must look for theories
that effortlessly explain the value of the weak scale, θ-QCD, etc. The anthropic approach
to physics, and to the hierarchy problems in particular, follows a different ideology, which
could be based on a multiverse assumption:

• Our local universe represents but a small region of a multiverse in which some, perhaps
all, physical parameters vary from region to region.

According to the multiverse assumption, the value of some physical quantities, which we so
far considered a fundamental property of Nature, may instead have a purely environmental
origin. One standard example of an environmental quantity is the radius of Earth’s orbit
around the Sun: while not fundamental, its value is pretty constrained by the prior that the
Earth has a hospitable atmosphere with the presence of liquid water. The anthropic principle
was for long considered powerless by the great majority, until Weinberg in 1987 [35] applied
it to the cosmological constant Λcosm , thus providing a radically different viewpoint on the
least understood of all hierarchy problems. Weinberg’s assumed that (Structure Principle)

1. Λcosm is not a fundamental quantity.

2. The only environmental constraint on Λcosm is that it be small enough to allow the
formation of galaxies.

Weinberg then argued that, if the distribution of values of Λcosm is reasonably smooth, then
the most natural expectation is that Λcosm be of the same order of magnitude as, or not much
smaller than, the critical value Λc below which galaxies can form. Then, when there was still
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no observational indication that Λcosm 6= 0, Weinberg predicted a likely value Λcosm ∼ Λc ∼
100ρc, where ρc is the critical density for the closure of the Universe. The computation was
later refined into roughly Λc ∼ 10ρc [36]. In the meanwhile the Type IA Supernovae data [37]
had established the presence of a negative pressure energy density component, compatible
with a cosmological constant Λcosm ≃ 0.7ρc. It is quite remarkable that Weinberg’s logic
correctly predicts, to within an order of magnitude, a mysterious quantity like Λcosm, which
is otherwise apparently tuned by 120 orders of magnitude (Λcosm/M4

Planck ∼ 10−120).

Further to the success of the Structure Principle, the anthropic viewpoint has recently
also been reinforced by advances is string theory, indicating the existence of a tremendous
multitude of different vacua, forming what is called the Landscape. The universe would then
be a multiverse with each different region (subuniverse) sitting at a different vacuum out in
the Landscape. That and the frustration with standard approaches have stimulated the use
of the anthropic viewpoint on the electroweak hierarchy problem. Ref. [38] introduced what
is now called the Atomic Principle, according to which the Fermi scale is an environmental
quantity whose value is nailed by the request that complex chemistry (atoms) exists. Re-
markably the Atomic Principle sets an upper bound on 〈H〉, which is only about 5 times its
experimental value. The Atomic Principle was later applied to the MSSM [39, 40] under the
assumption that the soft terms, and thus the weak scale, are environmental quantities, and
with the additional request that the lightest supersymmetruc particle (LSP), a neutralino,
provide the Dark Matter of the Universe. The resulting scenario, dubbed Split Supersymme-
try, features superheavy (even up to 1013 GeV) squarks, leptons and one combination of Higgs
scalars, while the charginos and the neutralinos have a mass which ‘accidentally’ ends up
close to the weak scale in order to have the right amount of relic LSP. Remarkably, although
the superspectrum is split, the successful unification of gauge couplings is mantained, as in
supersymmetry that is mostly due to the contribution of Higgsinos and gauginos. Moreover
the set up is rather predictive. In particular the gluino decays very slowly, via the virtual
exchange of the heavy squarks, giving rise, over a significant portion of parameter space, to
distinctive displaced vertex events. Split Supersymmetry has been the subject of a great
amount of work in the last year. It would be fair and worthwhile to review this work, but
unfortunately I do not have enough time. In the remaining part of my talk I would instead
like to present a new, anthropic, viewpoint on the fine-tuning problem of the MSSM [6].

4.1 Back to Supersymmetry

Let us go back to the well known cartoon of EWSB by RG evolution in supersymmetry,
shown in the figure. The Higgs mass parameter m2

H starts positive up at the Planck scale
and is driven negative below some RG scale Qcrit by RG contributions, mostly due to the
stops, until the running is frozen at the typical scale of sparticle masses mSUSY . The physical
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value of the Higgs mass is then approximatively

m2
H |phys = m2

H(Q = mSUSY) (23)

Now, Qcrit is associated to a dimensional transmutation, and is expected to differ significantly
from both mSUSY and MPlanck. A generic expectation is mSUSY ≪ Qcrit ≪ MPlanck so that
by the time the running is frozen at Q ∼ mSUSY the Higgs mass is large and negative (cf.
eq. (5))

m2
H |phys ∼ −m2

t̃ ∼ −m2
SUSY . (24)

As we explained already, this is unfortunately not the situation favoured by the data. The
data favour instead −m2

H |phys ≪ m2
t̃
, which by direct glance at the figure is equivalent to

mSUSY ≃ Qcrit. (25)

An alternative way of phrasing the fine-tuning problem of supersymmetry then is to ask:
Why should two totally unrelated parameters like mSUSY and Qcrit almost coincide? Given
the present constraints, if Supersymmetry is discovered at the LHC, we will almost certainly
have to ask ourselves this question. Let me try and give an answer right now.

Let us assume that the overall SUSY mass scale mSUSY is environmental. More precisely,
let us assume that up at the Planck scale the various soft parameters are given by

mi = ci mSUSY , (26)

with the ci fixed everywhere throughout the multiverse, while mSUSY varies. Let us also
assume that all the other dimensionless gauge and Yukawa couplings are fixed at the Planck
scale. Notice that under these conditions Qcrit is also fixed, as it depends only on MPlanck,
ci, and the other dimensionless couplings, but not on mSUSY. Two possibilities for the patch
of Universe we live in are then given

1. mSUSY > Qcrit, in which case m2
H |phys > 0, implying 〈H〉 = 0.
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2. mSUSY < Qcrit, in which case m2
H |phys < 0, implying 〈H〉 6= 0.

It is pretty clear we do not live in region 1, and in fact it is not even sure if in region 1 there can
exist anyone to ask this question [38, 41]. Now, compatibly with the prior that we must live
in region 2, what is the most likely value we expect mSUSY to have? The problem is phrased
in complete analogy with Weinberg’s approach to the cosmological constant, with 〈H〉 6= 0
replacing the datum that galaxies exist. Then, under the assumption that the distribution of
mSUSY is reasonably flat and featureless, and, which is quite likely, not peaked at mSUSY = 0,
we expect mSUSY ∼ Qcrit. A small Higgs mass parameter is then obtained through the brief
running from Qcrit to mSUSY

m2
H |phys

m2
t̃

∼ 3λ2
t

2π2
ln(mSUSY/Qcrit) ∼ −3λ2

t

2π2
≪ 1 . (27)

To be more precise let me assume the number N(m) of vacua with mSUSY < m grows
like mn. The prior mSUSY < Qcrit leads to a conditional probability giving the average
〈ln(mSUSY/Qcrit)〉 ∼ −1/n, so that the expectation is

m2
H |phys

m2
t̃

∼ −3λ2
t

2π2
× 1

n
. (28)

Notice that the loop factor 3λ2
t/2π2 ∼ 0.15, while it helps to explain the little hierarchy

problem in supersymmetry, falls short to explain it completely. Indeed one can imagine
field theoretic landscapes [6] where n is somewhat bigger than 1, say O(a few) but not much
bigger (For instance if there are O(10500) vacua, as perhaps suggested by string theory,
and if mSUSY can range up to MPlanck, then n <∼ 30). So it is reasonable for the ratio in
eq. (28) to be between 0.01 and 0.1 but not much smaller, thus providing an argument why
supersymmetry should be elusive at LEP but not at the LHC. Of course there has been a
price to pay. Supersymmetry looks tuned because throughout the Lanscape it is much more
likely to be in the region with 〈H〉 = 0 than in the region 〈H〉 6= 0 : the most likely points
with 〈H〉 6= 0 are then close to the boundary of the two regions, where a little hierarchy is
present.

Now, what does one do with an argument like the above? Can it be falsified? It certainly
can. It predicts that m2

H will cross zero immediately above the supersymmetric threshold as
we run the soft parameters up in energy. Now, although less typical, or even more tuned,
there are choices of parameters where this does not happen, for instance when the beta
function for mH has a zero at the weak scale. Such values of the soft masses would rule out
this scenario (although it would probably be hard, given the precision with which masses
are measured at the LHC, to quickly reach a conclusion). Another situation that would rule
out this scenario is that in which m2

H becomes negative at some high RG scale, as it would

19



happen in small deformations of gaugino mediation. In the end, is the possibility to falsify
this scenario so exciting? Probably not, as, if supersymmetry is discovered, it will very likely
look like that. I think the main lesson is that fine-tuning in supersymmetry, once we discover
it, could be telling us something fundamental about the statistics of vacua and the nature
of soft terms up at the Planck scale.

5 Summary

In recent years there have been many new proposals of calculable electroweak symmetry
breaking, all trying to account for the baffling absence of new signals at LEP/SLC. In
practically all the examples there are two separate energy scales

• ΛNP ∼ 1 TeV, at which lay particles that regulate the Higss mass divergence.

• ΛStrong ∼ 10 TeV, which describes the underlying new (strong) dynamics.

In all the models there exists already some tension with electroweak precision tests mostly
as a consequence of the need for states at a relatively low scale ΛNP ∼ 1 TeV. In fact
it is fair to say that models such as the Little Higgs or the Holographic Goldstone boson
are explict incarnations of the LEP paradox. The tension is not dramatic yet and can
be relaxed at the price of some extra complications (large gauge couplings or T -parity in
Little Higgs models), so perhaps one should not worry too much. After all the LHC will
directly test, in many of these models, a sizeable portion of the parameter space, which is not
constrained even indirectly by LEP. In particular the LHC will test the lower layer structure
up to ΛNP ∼ 3 TeV. The comparison of these new approaches to SUSY is a fair exercise.
But one should be careful not to compare apples and oranges. Supersymmetry provides a
weakly coupled calculable description for physics up to the Planck scale. The extrapolation
is rather constraining and thus accounts for a good portion of the tuning that is needed
in the MSSM. If we set ourselves the less ambitious goal of finding a theory of electroweak
symmetry breaking valid only to slightly above the weak scale as is done in most Little
Higgs models, then supersymmetry would look less tuned. The 5D supersymmetric model
presented in Ref. [42] is an illustration of that possibility. On the other hand the holographic
Higgs Goldstone model [28] can be extrapolated up to the Planck scale, which makes it fully
comparable to the MSSM, and also very constrained [31]! More concretely, perhaps, the
new models compare reasonably well with supersymmetry as Dark Matter is concerned. But
this is largely due to the fact that any stable relic with weak scale annihilation cross-section
is a potentially good Dark Matter candidate. In the models at hand the stability of the
relic follows from a discrete symmetry, for instance T-parity in LH or KK parity in the 5D
models, precisely has it follows from R-parity in supersymmetry. On the other hand, the
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neatness of gauge unification in supersymmetry is in my opinion not matched by any of the
new models, although new intriguing twists have emerged [32].

The biggest novelty of the last year is however that the anthropic principle has finally
made it to the gauge hierarchy problem. Weinberg’s impressive anthropic explanation of
the size of the cosmological constant, together with the lack of a fully natural theory of
electroweak symmetry breaking, is perhaps a serious indication that we do live in a multiverse
of vacua. How do we proceed if that is the case? We can certainly toy with the Landscape
and try to come up with alternative solutions to the problems of particle physics. In this
respect I illustrated a new viewpoint on the supersymmetric fine-tuning problem. With
Split Supersymmetry the anthropic approach has even materialized into a cleverly predictive
model. However I find it worrysome that with the anthropic approach we are working with
assumptions that are very hard, probably impossible, to test. The multiverse theory may
become the greatest revolution after Copernicus, but will we ever test it?

Luckily a less speculative era will start in a couple of years, as the LHC will start to
unravel under our eyes the riddle of the weak scale.

I would like to thank Nima Arkani-Hamed, Kaustubh Agashe, Riccardo Barbieri, Roberto
Contino, Gian Giudice, Thomas Gregoire, Christophe Grojean, Alex Pomarol, Martin Schmaltz,
Claudio Scrucca, Alessandro Strumia and Raman Sundrum for many instructive discussions.
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