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Using a generalization of the sum rules obtained by equating a fixed-t and a backward dispersion
relation, it is argued and illustrated for wN elastic scattering that saturation with a few resonances can

easily lead to inconsistent results.

Dispersion relations which receive contributions
from both the direct channel (s) and the crossed
channel (¢) provide a means of investigating the
dymanics of the {-channel exchanges. In particu-
lar, such dispersion relations have often been
used in combination with fixed-¢ dispersion rela-
tions to calculate coupling constants of ¢t-channel
resonances. Usually one equates a fixed-t{ disper-
sion relation to a backward dispersion relation at
the threshold of the direct channel and then makes
the assumption that it is possible to saturate the
dispersion integrals in a narrow-width approxima-
tion with a few resonances.! Unfortunately, it was
in general not possible to check the consistency of
such a calculation.

Recently dispersion relations have been pro-
posed® which may be considered to be a general-
ization of the well-known backward dispersion re-
lations of elastic scattering. These dispersion
relations are written along parametrized curves
in the Mandelstam plane that allow the path of in-
tegration to be varied from the boundary of the
physical region to paths within the physical region.
If such dispersion relations are combined with

fixed-¢ dispersion relations and the assumption of
|
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narrow-width resonance saturation is made one is
led to the important observation that values cal-
culated for the ¢-channel coupling constants depend
on the path of integration. This of course means
that the coupling constants calculated by such a
method are not unique and consequently that such
a narrow-width saturation cannot be considered as
a reliable method to determine ¢{-channel coupling
constants.

To illustrate this point we consider elastic 7N
scattering. In the case of elastic scattering the
family of curves which contain the backward direc-
tion and pass through the s-channel threshold point
consists of hyperbolas described by one parameter,
¢, which determines the asymptotes s=—c, u=-c.
For ¢ =0, the dispersion relation is just the back-
ward dispersion relation, whereas for ¢ >0 the
paths of integration are within the s-channel phys-
ical region.

The sum rule is obtained by equating such a dis-
persion relation and a fixed-{ dispersion relation
at threshold, i.e., at =0, s=s,=(M +1)*), M =nu-
cleon mass, m, =1. In the following we consider
the invariant amplitude B~ and equate
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where u,=(M —1)?, G?/4m=pion-nucleon coupling 2= s’
constant~ 14.6 (Ref. 3),and the cosines of the scat- S c+s’’ (3)
tering angles in the s and ¢ channels are given, re- 212=1— 4ct’
spectively, by ¢ (t' - 4aM?)(t'-4) "
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Saturating in the narrow-width approximation
the fixed-¢ dispersion relation, Eq. (2), with N
and A and the hyperbola dispersion relation, Eq.
(1), with N, A, and p, we obtain the sum rule

Sp:SN(C)+SA(C)5 (4)
where
Gpn'ﬂGgNN < Gg'NN>
=" (1+2
Sp 47Tmp2 * GXNN ’
LG, ®)
Sy = 477'(M +c)

SA:Y(AI)(MAZ +c)™! +Y(z§)(MA2 +c)™®
and
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In the above expressions m, and M, are the p
and A(1236) masses, respectively, G}y denotes
the vector (V) and tensor (T) pNN coupling con-
stants, G,,, is the p7m7 coupling constant, and
Gqya’/471~0.26 is the TNA coupling constant.?*
The numerical value for the meson contribution
S, differs from author to author?®:

0.425 S, =0.59. (M

Equations (4) and (5) clearly demonstrate that
the ¢ dependence is different for the s- and ¢-chan-
nel resonances. In particular, an s-channel reso-
nance introduces pole terms in ¢ of the form

TABLE I. The dependence of Sy, Sp, and Sy+S, on
the parameter c.

c Sylc) Sale) Syle) +Splc)
0 0.32 0.04 0.36
5 0.30 0.03 0.33
10 0.27 0.03 0.30
15 0.24 0.03 0.27
20 0.22 0.03 0.25
25 0.21 0.03 0.23
30 0.20 0.03 0.22
35 0.18 0.02 0.21

(M g? +c)™" while a ¢-channel resonance of spin J
introduces a power series in ¢ of order (J-1)/2
due to the angular dependence P,’(z,), e.g., the g
meson (J ¥ =37) gives a linear ¢ dependence.

Within the p, N, A saturation scheme, Eq. (4), it
is clear that the sum rule cannot be used to deter-
mine the p couplings, assuming the N and A cou-
pling constants to be given, since the right-hand
side of the sum rule, Eq. (4), depends on ¢ where-
as the left-hand side is independent of ¢. For
convenience, we give a table of Sy, S5, and S, +
S, for various values of c.?

As is seen from the table the right-hand side of
the sum rule, Eq. (4), varies by more than 40% as
c varies from 0 to 35. Thus, various determina-
tions of the coupling constant using this sum rule
can differ by 40%. Since there is no reason to pre-
fer the ¢ =0 (backward) sum rule over those for
other values of ¢, the assumption of a narrow-
width saturation with p, N, and A resonances is
clearly not valid.

Although we have demonstrated our point that a
simple narrow-width saturation scheme can easily
lead to inconsistencies, we could hazard a few
guesses as to the origin of the discrepancy. Clear-
ly the correct way to calculate s-channel contribu-
tions is to use experimental phase-shift solutions
for the low-energy region and reasonable paramet-
rization, e.g., Regge-pole fits, for the high-ener-
gy region. For ¢ =0, this has been done by Engels
et al.’ and one finds a correction to Sy +S, of the
order of 0.24, i.e., S,=0.60. This is in reasonable
agreement with the values given in Eq. (7). One
could also include higher-J t-channel resonance
contributions which would introduce a ¢ dependence
on the left-hand side of the sum rule, but the fact
that the ¢ =0 sum rule with a proper treatment of
s-channel contributions is reasonably satisfied by
the p alone suggests that such contributions are
not of major importance.

It should be noticed that we have written our
sum rule at t=0. This is not necessary and one
could consider various values of {. For ¢ a free
variable, one finds that the s-channel resonances
introduce terms of the form ¢" coming from their
angular variation, whereas the t-channel reso-
nances introduce poles in ¢, e.g., (t —m %)™, etc.
Since the dependence on ¢ for the s- and ¢-channel
resonances is different, calculations using such
sum rules would result in an ambiguity similar to
that considered above and would not lead to unique
values of ¢-channel coupling constants.®

In conclusion, the use of parametrized disper-
sion relations has shown us that simple narrow-
width resonance saturation of sum rules is in gen-
eral not a reliable method to determine coupling
constants.
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The scaling variable v =xy = 2(Eu/M)sinz(%9u) is useful for the description of deep-inelastic
neutrino-nucleon scattering processes. This variable is determined solely by the momentum
and angle of the outgoing lepton. The normalized scattering distribution in this variable is
independent of incident lepton energy and flux, provided scale invariance is valid. The sen-
sitivity to various hypothetical scale-breaking mechanisms is discussed.

Experiments which attempt to measure deep-
inelastic neutrino-nucleon cross sections are
plagued with the difficult problem of determining
the neutrino flux. It is clearly desirable to find
ways of extracting information from such experi-
ments which is flux-independent. Experimental
studies along these lines have already been carried
out by Myatt and Perkins.! Recently, Cline and
Paschos? have analyzed moments of the scaling
variable x=@?/2M v, which yield information re-
garding current-algebra sum rules, provided

scaling is correct. Paschos and Zakharov® have
also put bounds on ( E,/E,) and {(@*/2ME,), which
depend only on the hypothesis of scale invariance.

Here we consider the case where the only ac-
curately determined quantities in an experiment
are the secondary muon momentum £’ and its pro-
duction angle 9. We find that some theoretical
questions, in particular the validity of dimensional
scaling, can be answered from this information
alone. The key lies in the fact that the scale-in-
variant quantity



