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By introducing a variable corresponding to the Leader-Pennington variable, we are able
to write dispersion relations which are an extension of boundary dispersion relations to the

interior of the physical regions.

In a recent article! we showed how dispersion
relations could be written, for certain inelastic
processes, which would include both ¢-channel and
s-channel contributions, the latter evaluated on
the contour representing the boundary of the s-
channel physical region. For the elastic scattering
case, these boundary dispersion relations (BDR)
become the ordinary backward dispersion rela-
tions.? BDR are limited however in that they in-
corporate information only from forward (Z,=1)
and backward (Z;=-1) scattering or production
data. Dispersion relations which could be written
for contours interior to the boundary curves, i.e.,
using data away from the forward or backward di-
rections, would be quite useful, especially as the
data in the region somewhat off the scattering po-
lar axis are often more numerous and reliable. In
this note, we wish to demonstrate how such an ex-
tension of BDR away from the boundary curve can
be effected.

We are concerned, in particular, with reactions
of the type

a+b~c+d, (1)

where m,=m,. Reactions in which m,=m, we term
elastic (irrespective of quantum-number exchange);
others (m,#m,) are inelastic. BDR are obtained
by applying the Cauchy theorem in the complex ¢
plane for a suitable amplitude at fixed sing, =0.
This is equivalent in the regions of interest to fix-
ing the Kibble boundary function

¢ =44(p,p}sing,)? (2)
at zero. (See Ref. 1 for kinematical details.) The
resultant contour consists of the entire boundary

curve for the s-channel physical region, a contri-

§

bution extending from the lowest two-body #-chan-
nel threshold, £,, to the threshold of the #-channel
reaction

a+Cc=b+d, 3)

and the branch of the ¢-channel boundary corre-
sponding to cosd,=—1. This choice of fixed and
dispersion variables is convenient in that it allows
ys to remove easily contributions from kinematical
cuts. There are no kinematical singularity contri-
butions for amplitudes A with even s-u crossing
symmetry, i.e., A=A for even amplitudes and
A/(s —u) for odd amplitudes.

As was mentioned above, the BDR for elastic re-
actions are backward dispersion relations, i.e.,
dispersion relations at fixed angles §,=n. For in-
elastic reactions, 6, is piecewise-fixed around the
boundary. Fixed-angle dispersion relations are
convenient because data are usually taken at fixed
angles. There is as yet no way of writing fixed-
angle dispersion relations for angles away from
the polar axis, from which kinematical singularity
contributions can easily be eliminated and which
do not involve unphysical contributions from a
double-spectral function.

As an alternative, we introduce the variable

C=4¢/t2, (4)

which we will fix in order to write dispersion re-
lations. (This is essentially the Leader-Pennington
variable® for {-channel reactions.) An advantage

in working with fixed C is that in the Mandelstam
plane the physical scattering regions are charac-
terized by positive values of ¢ and thus of C, and
the unphysical regions by negative values of ¢ and
C. This ensures that a fixed-C curve passing
through the direct-channel physical region will
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also pass through the crossed-channel physical
region. From the relationship

s—u=4p,piz, =v,2, (5)
we can write

C=[v2-(s-u)]/t. (6)
Thus,

2s=% —t+(v2 = CH)M2, (7a)

=3 ~1t-(v?-CtM2, (Tb)

where s+¢+u=2. Here we have adopted the sign
convention which reduces to that for the BDR when
C=0.

We may now, as before,! write the invariant am-
plitudes for the process (1) as functions of £ and

V=S—-u
=(v,2 = CH)V2, (8)

Therefore, one may write fixed-C dispersion re-
lations for amplitudes, A, which are even in v,
i.e., are even under s-u crossing, without con-
tributions arising from kinematical singularities. )

It now remains to discuss the contours of inte-
gration for fixed C. From (7a) and the expression

v2E=(Z - tP -40mz2 -m2)m2 - m,?)
- dmy*(mg: —m 2/t (9)
we find that the equation for #(s, C) is a quadratic;

it reduces for elastic reactions to a linear equation
with solution

S =Zs+(mS -m,’)
s+3C

t=

2

4sp .
==s7ic (elastic). (10)

In either event, for positive values of C the s-
channel unitary cut maps onto the negative ¢ axis,
—0< ¢< 0, Figures 1(a) and 1(b) show these con-
tours for various values of C in the Mandelstam
diagrams for elastic 7N scattering and 7N -7N,
respectively. The fixed-C dispersion relation is
thus written

- - 4 Al 7' ’ L] Al +'! ’
At st ON=A"" (1,5, 0+ 2 [ ap AL LA L 7, InAL, SCL O (1)
TJew t' -1 LR t' -t

(a)

FIG. 1. Mandelstam diagram for (a) TN — 7N, (b) TN —nN, showing curves of fixed C; dashed lines are boundaries
of physical regions which do not contribute to C =0 dispersion relations (BDR).
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where s(¢, C) is given by (7a) with the assistance of
9).

In the region ¢, <t<¢,(C), s(¢,C) is complex;
here the vertical path in the figures indicates only
the range of the ¢ variable. [f,(C) is that value of
t at which, for given C, v=0.] Other than this,
however, all curves with C>0 lie within physical
regions. Double-spectral functions are not en-
countered.? In this region ¢ is, of course, real and
one can use a {-channel partial-wave expansion of
the appropriate ¢-channel reaction for the ampli-
tude. In such cases, one must establish whether
or not 2, is contained in the large Lehmann ellipse
of the reaction.

Curves within the s-channel boundary all pass
through the threshold point s = (m, +m,)? for the
elastic reaction and approach s=« as {-0_ in the
inelastic case. In both cases, the curves are as-
ymptotic to u=—;C as -+, [Following the phase
convention in Ref. 1, we have v <0 as {— «.]

We show in Fig. 2 the variation of Z; with ¢ with-
in the s-channel physical region for the reaction
TN —-~nN. We see that for any value of C, other than
zero, knowledge of the amplitude at all angles is
required. The results of analyses using fixed-C
dispersion relations are therefore likely to be very
sensitive to differences in phase-shift solutions.

It should be mentioned here that it is not neces-
sary to use the variable C to avoid the introduction
of double-spectral-function contributions. An ob-
vious alternative extension of BDR is provided by
constant-¢ contours. Unfortunately, at least for
elastic reactions, fixed-¢ dispersion relations
lead to much more complicated kinematics than
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FIG. 2. Z as a function of ¢ for various values of
C for the reaction TN — nN. The units of ¢ are (nucleon
mass)?.

afforded by Eq. (10). In particular, whereas all
fixed-C curves pass through the physical threshold
point, fixed-¢ curves do not.

Finally, we mention the possibility of writing
dispersion relations with the variable C’ =Ct fixed.
This variable offers some advantages in simplify-
ing kinematical calculations but there are encoun-
ters with the double-spectral region for sufficient-
ly large —C’. C’ also does not have the advantage
of being always positive in physical regions and
negative in unphysical regions [see the discussion
following Eq. (4)].
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