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Abstract

The constraints on the minimal supergravity model from the b → sγ decay are stud-

ied. A large domain in the parameter space for the model satisfies the CLEO bound,

BR(b → sγ) < 5.4 × 10−4. However, the allowed domain is expected to diminish signifi-

cantly with an improved bound on this decay. The dependence of the b → sγ branching

ratio on various parameters is studied in detail. It is found that, for At < 0 and the top

quark mass within the vicinity of the center of the CDF value, mpole
t = 174±17 GeV,

there exists only a small allowed domain because the light stop is tachyonic for most of

the parameter space. A similar phenomenon exists for a lighter top and At negative when

the GUT coupling constant is slightly reduced. For At > 0, however, the branching ratio

is much less sensitive to small changes in mt, and αG.
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The extensive analyses of the high precision LEP data in the last few years have

indicated that the idea of grand unification is only valid when combined with supersym-

metry [1]. One of most promising and most studied models is the minimal supergravity

model (MSGM) [2]. Supersymmetry (SUSY) is naturally and softly broken by a hidden

sector. In addition to Yukawa couplings, the gauge coupling constant, αG, and the unifi-

cation scale, MGUT ≃ 1016 GeV, there are only five free parameters in this model: the four

soft breaking terms [the universal scalar mass, m0, the universal gaugino mass, m1/2, the

cubic scalar coupling, A0, and the quadratic scalar coupling, B0], and a supersymmetric

Higgs mixing, µ0. The common approach to constraining the GUT model is to utilize the

renormalization group equations (RGE) to make contact with physics at the electroweak

scale, MEW [3]. Remarkably, the evolution of RGEs from MGUT to MEW produces a

Higgs potential with a negative m2
H2

if the top quark is heavy, signaling a spontaneous

breaking of the electroweak gauge symmetry. As a consequence of this radiative breaking,

two constraints arise which relate the GUT parameters to the electroweak parameters.

One may then eliminate two GUT parameters, B0, and µ0, in favor of two electroweak

parameters: the Higgs VEV ratio tanβ ≡ v2/v1, and the Z boson mass, MZ . Therefore,

the low-energy physics depends only on four parameters

m0, mg̃, At, tan β, (1)

and the sign of µ [since the renormalization group equations determine only µ2]. Here, we

have replaced m1/2 by the gluino mass, mg̃, and A0 by At, their values at the electroweak

scale, MEW . In most analyses, only the masses of the third generation of leptons and

quarks are important. For small tanβ, one needs to retain only the top quark mass. Hence,

the four free parameters in eq. (1), plus the top quark mass, mt, suffice to parametrize the

MSGM.

The constraints on the parameter space of the MSGM may be classified into three

major categories. First, various theoretical considerations put stringent constraints on the

parameter space. For example, the color SU(3)C group should remain unbroken when

discussing the radiative breaking; µ2 should also stay positive to guarantee this breaking;

all scalar particles must be non-tachyonic; and the allowed parameter space should be such
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that theory remains in the perturbative domain. Some of these issues will be discussed

in a separate paper [4]. Second, cosmological considerations and the proton stability also

strongly constrain the model [3]. Thus, for SU(5)-type models, proton stability requires

that tanβ should not be too large, i.e., tanβ<
∼10 [5]. There still exists a large domain in

the parameter space which satisfies both the proton decay and the relic density bounds [6].

Third, there exist a vast amount of data from the electroweak physics in the low-energy

domain. It is thus very interesting to use these data to constrain the MSGM. One of the

interesting processes is the b → sγ decay. This decay is very sensitive to the structure of

fundamental interactions at MEW , because its rate is of order G2
F α, while most other FCNC

processes are of order G2
F α2. We shall study the constraint coming from the b → sγ decay

in the MSGM in this paper. The combined constraints, from b → sγ,proton decay,and

relic density will be discussed elsewhere [7].

The recent CLEO II experiment gives the following measurement for the branching

ratio of the exclusive B → K(892)∗γ decay [8], BR(B → K(892)∗γ) = (4.5 ± 1.5 ±

0.9) × 10−5, and an upper bound on the inclusive B → Xsγ decay, BR(B → Xsγ) <

5.4 × 10−4. Much work has been devoted to the determination of the ratio BR(B →

K(892)∗γ)/BR(B → Xsγ) from QCD calculations [9-11]. An accurate calculation is of

interest since the inclusive B decay is not as easy to study experimentally as the exclusive

B decay. The earlier calculations [9] made use of the constituent-quark model and the

2-point QCD sum rules, and the results for this ratio ranged from 0.05 to 0.40. More

recently, there have appeared calculations based on some new developments in QCD. The

method based on the 3-point QCD sum rules predicts a value of 0.17 ± 0.05 [10]. The

method that incorporates the chiral symmetry for the light degrees of freedom and the

heavy quark spin-flavor symmetries for the heavy quarks gives a value of 0.09 ± 0.03 for

this ratio [11]. Although these results are in accord with the CLEO II measurement,

more study is needed to fully utilize the CLEO result. Because the b quark mass is much

greater than the QCD scale, the dominant contributions to the inclusive B decay are from

the short-range interactions. Barring a large interference between the long- and short-

range contributions, one may model the inclusive B transitions, such as B → Xsγ and

B → Xceν̄e, by the decay of a free b quark to a free light quark, such as a free s or c quark.
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In fact, a calculation based on the heavy quark effective theory shows that BR(B → Xsγ)

agrees with the free quark results, BR(b → sγ) up to corrections of order 1/m2
b [12]. Thus,

the bound on BR(B → Xsγ) transfers to an upper bound, BR(b → sγ) < 5.4 × 10−4. It

is a common practice to use the ratio defined as

R =
BR(b → sγ)

BR(b → ceν̄e)
≃

BR(B → Xsγ)

BR(B → Xceν̄e)
. (2)

to constrain various models, utilizing the well-determined value of (10.7±0.5)% for BR(B →

Xceν̄e). The advantage of using R, instead of BR(b → sγ), is that the latter is dependent

upon m5
b and certain elements of the Kobayashi-Maskawa matrix, while the former only

depends on z = mc/mb, the ratio between the c and b quark masses, which is much better

determined than both masses, i.e., z = 0.316 ± 0.013 [13].

The ratio R defined in eq. (2) has been calculated as [14]

R =
6α

π

[η16/23C7(MZ) + 8
3
(η14/23 − η16/23C8(MZ)) + C2(MZ)]2

I(z)[1 − 2
3π

αs(MZ)
η

f(z)]
(3)

where η = αs(MZ)/αs(mb) = 0.548. Here, I(z) = 1 − 8z2 + 8z6 − z8 − 24z4 ln z is

the phase-space factor, and f(z) = 2.41, a QCD correction factor, for the semileptonic

process, b → ceν̄e. C7(MZ) and C8(MZ) are the coefficients of the photonic and gluonic

penguin operators for the bs transition at the electroweak scale. These coefficients are

model dependent and sensitive to the underlying fundamental interactions at MZ . For the

standard model (SM), only the penguin diagram induced by the W -t loop contributes to

C7(MZ) and C8(MZ), whereas, for the MSGM, many susy particles contribute. C2(MZ) is

a coefficient coming from a mixing between the photonic penguin operator and many four-

quark operators present at MZ . The form and number of these four-quark operators differ

depending on the model. Fortunately, for the MSGM, they are the same as those for the

SM [15]. The calculation of C2(MZ) is an involved procedure and a number of evaluations

exist [14,16,17]. We shall use the results of Ref. [17], which takes into account of the full-

leading-order logarithmic contributions, i.e., C2(MZ) =
∑8

i=1 aiη
bi = −0.1795, where ai

satisfy
∑

i ai = 0 [since at the electroweak scale, only the photonic penguin diagram has a

contribution to the b → sγ decay]. The numerical values for ai and bi have been a matter
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of debate, in the sense that different calculations give different results. Nevertheless, the

over all effect on C2(MZ) is insignificant, the difference being only about 1%. A comment

on the accuracy of eq. (3), however, is in order. There exist several uncertainties in using

this equation to calculate BR(b → sγ). For instance, eq. (2) is based on the spectator

quark model. The error in determining the strong interaction constant, αs(MZ), is still

large. The most significant uncertainties come from the absence of a complete evaluation of

the next-to-leading short-distance QCD corrections to BR(b → sγ), causing about a 25%

inaccuracy. To better determine the theoretical predictions for BR(B → Xsγ), it would

be necessary to calculate certain three-loop mixings and two-loop penguin diagrams [18].

In the rest of this paper, we will concentrate on the MSGM predictions for BR(b →

sγ). As mentioned above, this model contains many particles not present in the standard

model. Thus, besides the W boson contributions, there exist the penguin diagrams induced

by the charged Higgs bosons, the chargino-squarks, the gluino and the neutralinos. The

coefficients C7(MZ) and C8(MZ) were calculated for the minimal supersymmetric model

(MSSM) in Ref. [19]. (We have rederived these coefficients confirming their results.) It is

found that the gluino and neutralino contributions are small compared to other sources.

We will hence ignore their contributions below. A large contribution from the charged

Higgs boson in the MSSM was found in Ref. [20] and these authors thus concluded that a

slight improvement in the experimental bound on BR(b → sγ) will exclude the search for

the charged Higgs boson via the t → bH+ decay channel. However, these papers did not

consider the chargino-squark penguin diagrams. As it turned out, although the charged

Higgs boson enhances the standard model amplitude, the chargino-squark loops may con-

tribute to the amplitude constructively or destructively, depending on the parameters

chosen. In fact, as shown in Ref. [21], in the exact supersymmetric limit, the coefficients

for bsγ and bsg transition operators, C7(MZ) and C8(MZ), vanish exactly. Other papers

on the b → sγ decay in SUSY models can be found in [22]. We will follow the notations

of Ref. [21], and assume that the first two generations of squarks are degenerate in mass.

We then expect the contributions from these degenerate squarks to BR(b → sγ) to be

small, since their masses are proportional to m0
<
∼1 TeV. On the other hand, the scalar

top squarks, t̃1 and t̃2, are badly split in their masses, due to the large top mass, implied
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by the recent CDF data [23]. The stop mass matrix is given by

(

m2
t̃L

mt(At + µ cotβ)

mt(At + µ cotβ) m2
t̃R

)

, (4)

where m2
t̃L

and m2
t̃R

are given in Ref. [24]. Thus, the light stop mass is,

m2
t̃1

=
1

2

(

m2
t̃L

+ m2
t̃R

−
√

(m2
t̃L

− m2
t̃R

)2 + 4m2
t (At + µ cotβ)2

)

. (5)

One can demonstrate that, for a large portion of the parameter space, the light stop

(mass)2 may turn negative, signalling either the breaking of the color SU(3)C group or the

existence of tachyons in the theory. The requirement that m2
t̃1

be positive is very stringent

and could eliminate a considerably large domain in the parameter space [4].

Our strategy is to use the one-loop RGEs to calculate the mass spectrum of the

model relevant to b → sγ [all the up-type squarks, the charginos, and the charged Higgs

bosons]. We then use this spectrum to evaluate the ratio R via eq. (3) and eq. (2) to obtain

BR(B → Xsγ) = R · BR(B → Xceν̄e), and compare the results with the CLEO II bound.

Of the five parameters, mt is restricted by the CDF bound, mpole
t ≃ 174± 17 GeV [23]. In

our analysis, mt is the running top mass at MZ , which is related to the pole mass by [25]

mpole
t = mtρ

t
z[1 +

4αs(MZ)

3π
+ 11(

αs(MZ)

π
)2], (6)

where ρt
z ≃ ht(mt)/ht(MZ) is the ratio of the top Yukawa couplings at mt and MZ [We

assume that the Higgs VEVs, v1 and v2, and hence tanβ, do not change significantly

between mt and MZ ]. The pole mass given by eq. (6) is about 3 − 5% larger than the

running mass at MZ . The naturalness condition restricts m0 and mg̃ to be less than

O(1 TeV), and we allow them to lie between 100 GeV and 2 TeV. We parametrize At in

units of m0, and restrict |At/m0| ≤ 2.0. Notice also that the top mass is very close to

its Landau pole, mLandau
t = C sin β, where C ∼ 195 GeV. This implies that the error in

αs(MZ) plays an important role in the RGE analysis of the spectrum. Here, instead of

varying αs(MZ), we let αG vary between 1/24.11 and 1/24.5 with a fixed MGUT = 1016.187,

since a slight change in MGUT does not affect the coupling unification as significantly as a

change in αG. It turns out that αG = 1/24.11 gives, at the one-loop level and for ms = MZ ,
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the best fit to αs(MZ) = 0.118, α2(MZ) = 0.03358 ± 0.00011, and α1(MZ) ≡ (5/3)αY =

0.016985± 0.000020 for the MGUT cited above, and the two-loop corrections are small [4].

Decreasing αG corresponds to decreasing αs(MZ). We will discuss below the consequences

of varying αG.

We have surveyed a large domain in the parameter space described by eq(1). The

branching ratio depends importantly on the values of the parameters in this 4-dimensional

space. Significant deviations from the SM value can occur in certain regions of the pa-

rameter space. Characteristically the region where large deviations from SM arise occur

when m0, mg̃ are much smaller than their naturalness limits and tanβ gets large, i.e.,

typically larger than 10. Specifically in this region of the parameter space BR(b → sγ)

can be significantly below its SM predictions, and for certain points, an almost perfect

cancellation is observed. This is because the chargino-squark penguin diagrams contribute

destructively to the total amplitude at these points, with a coefficient ∼ 1/ cosβ ∼ tan β.

This destructive interference between various sources in MSSM has also been observed

previously [26] [the symmetric distribution of the branching ratios around the SM values

found in Ref. [26] is because those authors allowed tanβ to be as large as 60]. Similar de-

viations from the SM value can also occur for smaller tanβ, although this is less frequent.

For tanβ < 10.0, the deviations of BR(b → sγ) from the SM values are less dramatic.

In this region, the current CLEO bound is not stringent enough to strongly constrain the

MSGM. However, with a moderate, e.g., about 30%, improvement in the CLEO bound

constraints on the model will emerge.

Figures 1, 2, and 3 show plots of BR(b → sγ) as a function of the light chargino

masses, mW̃1
, and the soft supersymmetry breaking parameter, m0, for tanβ = 5.0,

|At/m0| = 0.5, mt = 160, 170 GeV, and α−1
G = 24.11, 24.5. In these graphs, all the

masses are in units of GeV. The graphs for mt = 150 GeV are similar to Figures 1, 2,

and 3, except that the branching ratios are smaller. We also impose a phenomenological

lower bound on the light chargino mass, i.e., mW̃1
> 45 GeV. These figures are character-

ized by four parameters, mt, α−1
G , and the signs of At and µ. The figures labeled by ‘a’

have At < 0, µ > 0, those by ‘b’ have At < 0, µ < 0, those by ‘c’ have At > 0, µ > 0

and those by ‘d’ have At > 0, µ < 0. These figures contain the following results. (1)
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The b → sγ branching ratio at the points at which At and µ have the same sign is in

general larger than that at the points where At and µ have the opposite sign. This can

be seen by comparing Figures 1a and 1d with Figures 1b and 1c. This is a generic feature

of the MSGM, because eq. (5) gives a smaller light stop mass when At and µ have the

same sign. The gaps in the lines for m0 = 1000 GeV in Figure 1a and for m0 = 600 and

1000 GeV in Figure 1b are due to the light stop turning tachyonic. These gaps occurs

only for At negative for the region in parameter space we have studied. Generally, the

constraint that the light stop remains non-tachyonic is most stringent for At < 0. (2) The

b → sγ branching ratio increases when mt increases. The dependence on mt is correlated

with other parameters. The parameters for Figure 1 (mt = 160, mpole
t ≃ 165) and those

for Figures 3 (mt = 170, mpole
t ≃ 175) differ only in mt. Remarkable is that a slight change

in mt (about 6%), for At negative (Figures 1a and 1b vs. Figures 3a and 3b) eliminates

a large part of the allowed parameter space. For example, while the values of m0 ranging

from 100 to 1000 GeV are all allowed for mt = 160 GeV, for both positive (1a) and nega-

tive (1b) µ, the only allowed values of m0 are below 200 GeV for mt = 170 GeV for both

positive (3a) and negative (3b) µ. However, if At is positive (Figures 1c, 1d, 3c, and 3d),

the same change in mt does not significantly affect the allowed parameter domain. The

reduction in parameter space can again be explained by the light stop turning tachyonic.

(3) Most interesting is the αG dependence of the branching ratio. To see this effect, let us

compare Figures 1 [α−1
G = 24.11, for which αs(MZ) = 0.118] with Figures 2 [α−1

G = 24.5,

for which αs(MZ) = 0.113]. For At negative, we again find that a larger part of the pa-

rameter space are excluded (1a vs. 2a, and 1b vs. 2b), while for At positive, the allowed

parameter space remains almost the same (1c vs. 2c, and 1d vs. 2d). Although the light

stop turning tachyonic is the reason for this, the physics involved is quite different from

the above. Qualitatively, one can attribute this phenomenon to the fact that ht is very

close to its Landau pole. Namely, a reduction in αG modifies various form factors defined

in Ref. [24], making ht closer to its Landau pole. This in turn is reflected in the light

stop turning tachyonic. The combined effects of simultaneous change in mt and αG is

very dramatic — the only allowed parameter space is m0 = 100 GeV for mt = 170 and

α−1
G = 24.5 when At is negative! This is because the simultaneous changes in both mt
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and αG add up almost multiplicatively to aggravate the closeness to the Landau pole [4].

For At positive, the change is not as large, and the allowed domain is still large. Similar

reduction of the allowed domain also exists for At with other negative values – the more

negative At is, the smaller the allowed domain remains.

In conclusion, we have performed a detailed study of the constraints from the b → sγ

decay on the MSGM. There are regions of the parameter space where the branching ratio

exceeds the CLEO II bound, and this region is excluded . However, there still exists a large

domain that satisfies the CLEO bound. A more accurate determination of the branching

ratio would further constrain this model. An interesting result of the analysis is that very

little allowed domain of the parameter space was found for At < 0 and mt in vicinity of

the CDF central value of 174 GeV for At < 0. Thus the allowed domain resides mostly in

At > 0 region.

This work was supported in part under NSF Grant Nos. PHY-916593 and PHY-

9306906.
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Figure Captions

Fig. 1 The branching ratio, BR(b → sγ), plotted with respect to the light chargino mass,

mW̃1
> 45 GeV, for tanβ = 5.0, the running mass mt = 160 GeV, |At/m0| = 0.5,

and α−1
G = 24.11, and for (a) At < 0, µ > 0; (b) At < 0, µ < 0; (c) At > 0, µ > 0;

and (d) At > 0, µ < 0. All masses are in units of GeV. The standard model gives a

branching ratio, BR(b → sγ) = 3.55×10−4. The discontinuity in the m0 = 1000 GeV

line for (a) and in the m0 = 600, 800 and 1000 GeV lines for (b) is due to the light

stop turning tachyonic.

Fig. 2 Same as Fig. 1 for αG = 1/24.5. The discontinuity in the m0 = 1000 GeV line for (a)

and for (b) is also due to the light stop turning tachyonic, as in Figure 1.

Fig. 3 Same as Fig. 1 for the running mass mt = 170 GeV. The standard model gives a

branching ratio, BR(b → sγ) = 3.66 × 10−4.
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