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THE TIMPORTANCE OF THE STRUCTURE OF THE POMERON

The whole of this talk will be based on the assumption that the
Pomeron is a simple factorisable Regge pole (with intercept one)
accompanied by the associated multi-Pomeron cuts which t-channel uni-
tarity certainly requires. This is the only j-plane structure for
the Pomeron which is known to be consistent with t-channel unitarity.
I shall talk about both the sign of the two;Pomeron cut and the de-
coupling results for the Pomeron which are derived from s-channel
unitarity. The common message will be that it is essential to con-
sider the "structure" of the Pomeron in terms of its s-channel inter-
mediate states if consistency between s-channel and t-channel results

is to be achieved.

Regge cuts from t-channel unitarity

Because of its technical complexity this is a difficult subject
to explain simply. It was a long time ago that Mandelstaﬁl) origi-
nally emphasized that the Feynman graphs which are associated with
the exchange of two Regge poles, and which might be thought to give
rise to Regge cuts, have a simpler intermediate state structure in

the t-channel than in the s-channel.

e.g. The sum over graphs of this form

l [ l I ] is associated with many s—-channel

t — ) )
states but essentially only with

the four-particle state in the
t-channel. More specifically since
it is the asymptotic limit s > o with t fixed which we want to con-

sider, we can clearly consider this limit in the neighbourhood of
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the lowest intermediate state in the t-channel, which is the four-
particle state. In fact it was by considering the t-channel discon-
tinuity that Mandelstam was able to show that the set of graphs shown
above does not give rise to a two-Reggeon cut but the set of graphs

where the ladders are joined by non-planar couplings does.

‘Mandelsﬁam's work suggested therefore that the two-Reggeon cut
could be studied through the four-particle unitarify integral. In
principle the aéymptotic behaviour of this integral can be studied in
terms of its Froissart-Gribov continuation to complex j. Not long
after Mandelstam's work Gribov, Pomeranchuk and Ter—Martirosyanz)
suggesfed a general S-matrix approach to this problem which was based
on Mandelstam's analysis. 1In fact I shall illustrate this approach

by considering the three-particle integral

in which the Reggeon-particle cut is generated. This is simpler to
consider than the four-particle integral and although the Reggeon-
particle cut does not contribute to the high-energy behaviour for ne-

gative t it is otherwise analogous to the two-Reggeon cut.

We consider first the partial wave projection of the integral

L
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where £, n, t; label the angular momentum, helicity, and energy of a
selected pair of the three intermediate state particles. Gribov et
al. then showed that if it was assumed that the multiple partial-
wave projections ajln had Froissart-Gribov continuations to complex
j, L, n and that the Froissart-Gribov continuation of (1) could be
obtained by performing Sommerfeld-Watson transformations on the sums

over n and %, then a cut would be generated as expected.

Unfortunately, subsequent investigationa’“) of these technical
assumptions suggested that this approach could not be carried through
and Gribov moved back to perturbation theory to justify the construc-
tion of a Reggeon Field Theory description of Regge cuts®). 1In fact,
I have now shown that these technical problems can be overcome.
Ignoring odd signature contributions the continuation of (1) to

complex j can be written in the form®)
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The basic points in deriving this result were the use of multiple
integral representations of amplitudes to define the continuations
a(j,%,n) and the proper treatment of the helicity sum. This sum is
written as a helicity contour integral with the contour in the form

shown in Fig. 1.
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Fig. 1 Helicity contour

At even integer j the two sets of poles shown in the figure pinch the
contour to give a pole whose residue is a finite sum over helicities
and which is isolated by the factor sin m/2 j in (2). The proper
treatment of helicity continuations and sums is also important in the

development of a Sommerfeld-Watson approach to multi-Regge theory6’7).

We can now discuss the genefation of a cut in (2) 8). A Regge
pole at % = a in a(j,?%,n) will give poles in the n-plane at n = a
@ -1, ... in the sum over (2 - n) in (2). The amplitudes a(j,%,n)
and a (j,%,n) will have nonsense wrong-signature inverse square root
branch-points at j = n - 1. The product of these will give a pole at
j =n - 1 which can pinch with the pole at n = a to give a pole in
the integral over t; in (2) at j = a(t;) - 1. Using Na(j,t) to de-
note the "fix-d-pole residue" of a(j,%,n) at j =n -1, n =4 =0 we
can write the relevant part of (2) in the form

i
16(27) 3" (3)
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Now we can see that when the pole at j = a(ty) - 1 hits the end point

L
of the integral at t; = (t? - m)? there will be a singularity at
. 5 2
i=of(e? -m?]-1. W

This is the Mandelstam or Reggeon-particle cut. Further manipulation
of the unitarity equations satisfied by Na(j’t) gives the discontinuity

across the cut in the form

disc a(j,t) = " (5)

!
=(t 2-m)? 5 ' -
isingi © (j[ ™" A% (e, 0,605 - ale) + 1N G0N G,
- dt,
8 m *

t sin ) u(tl)

Pictorially we can represent the generation of the cut by

=@ bt O iiE @ O SN

N—

So the discontinuity is given in terms of the fixed-pole residue of

the three-particle/Reggeon amplitude.

The generation of the two-Reggeon cut in the four-particle uni-

tarity integral can be discussed in exactly the same way.

T — T e

The discontinuity now involves the fixed-pole residue of the two

particle/two Reggeon amplitude N_ , (3,t)
Q. 02
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The real analyticity property of Nu1a2 gives that

[

2 nghng) - (9
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and the sign of the imaginary part of (8) is determined to be nega-

tive.

So if oy = ap = Pomeron we have the result that the two Pomeron
cut.contributesvnegétively,to’the total cross-section., It is very
difficult to give a éimple explanation of why the sign comes out
negative except to point out that the method is clearly independent
of the strength of the cguplings in the theory and so is the sign.
This means that the sign must be the same as that obtained from the
Mandelstam graphs in weak-coupling perturbation theory. It'is not
possible therefore to look for a positive signg) from the complicated
analytic continuation from positive to negative t which we have not
discussed. A complete discussion of this continuation will be given

in a future paperlo).



Regge cuts from the s-channel

There have been many attempts to understand Regge cuts through
the s-channel and the most recent are the papers by Abarbanelll) and
Chew?) which obtain a positive sign for the two-Reggeon discontinuity.
This positive sign is obtained by considering only the contributions
to the two-Reggeon cut coming from mulﬁi-Reggeon production amplitudes.
However, once an s-channel structure for a Reggeon -is admitted a
second method of generétion of the cut becomes available and it is
this which ultimately gives the negative sign for the cut. This point
has recently been emphasized by Halliday and Séchrajdalz) in a
detailed stﬁdy of weak-coupling perturbation theory. Essentially the

13)

same point has been made in the past by Caneschi , and also by Dash,

Fulco and Pignottilu) and more recently by Blankenbeclerls)

and by
Neffl®), The argument has usually been presented in terms of unitar-
ity corrections to multi-Regge exchange_changing the sign of the AFS

17)

cut . Neff has phrased the argument in terms of the currently po-

pular two-component model of particle production and this is probably

the easiest to understand.

Two production mechanisms are assumed which can be pictorially

represented as

(10)

The first mechanism is some general multiperipheral "single fireball"

production mechanism which builds up the constant total cross-section
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where ;| represent the contribution of the Pomeron to the four-particle
amplitude. The second mechanism corresponds ta "diffractive' produc-
tion of two firgballs and gives positive contributions to the two-
Pomeron cut contribution to the total cross-section. Amongst this
contribution is the original AFS contribution from the elasfic cross-—

sectionl7).

1 »

=TiT = i|T|? (12)
The positivity of this cut contribution is, of course, obvious to
_everyone. However, if we have two production mechanisms the first
thing unitarity does is to introduce absorptive corrections of one by
the other. So to the multiperipheral production mechanism we must

also add a rescattering effect which we can represent as

TN ——-
() -

There are now interference terms in the total cross-section of the

form
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Since -the Pomeron is pure imaginary this gives a negative contribu-
tion to the two Pomeron cut. Since there are two interference terms
of this sort they give exactly twice the AFS contribution and so

exactly reverse the sign of this contribution.

The positivity of the total cross-section is maintained by

adding
2

P (HE| ~ 33 0o

which gives a three Pomeron cut. We, therefore, see that the negative
sign of the two-Pomeron cut is explicitly compensated for by the

‘positive sign of the three-Pomeron cut.

The above argument is clearly over-simplified and incomplete but
it cén be made part of an iterative solutioﬁ of the unitarity eQua—"
tions'!3"!%) and the reversal of the sign of the tﬁo-Poﬁeron cut
remains. The above argument also describes in essence the way an.
overall negative sign emerges for the Mandelstam graph; in perturba-
tion theory, Of course, the contribution from the two-particle
intermediate state is exactly cancelled in perturbation theory aﬁd

we have to consider at least the four-particle intermediate state so
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that non-planar couplings of the Pomerons are allowed. However,
Halliday and Sachrajda have shown that for the Mandelstam graphs the
overall negative sign cdmes from s—channel "cuts" through the graph of
the form shown in Fig. 2a which exactly reverse the sign of the con-

tributions from cuts through the

graphs of the form of Fig. 2b.

- - -

\:' Therefore cuts through a Reggeon

(kﬁ exactly reverse the sign of contri-
butions from cuts which leave the

Reggeon untouched.

So the negative sign of the two—Pomeron cut is directly related
to the vital equation (11) above. This equation s;ys simply that the
Pomeron has a structure in terms of s-channel intermediate states®) .
This effect is neglected in the s-channel discussion of cuts by
Abarbanell!) and by Chew?) and also in the sum rule treatment of cuts
given by Kang, Moore.and Nicolescule). This is why these authors
obtain a positive sign. Since it is t-channel iteration which forces
a Regge pole to look something like a Feynman ladder graph and so
have many s-channel intermediate states it is not surprising that it

is necessary to take this structure into account to obtain consistency

between the s— and t-channel.

Pomeron decoupling theorems

We now want to discuss the relevance of the structure of the
Pomeron to the decoupling results that have been derived from s-chan-
nel unitarity expressed in the form of inclusive sum rules. The final

consequence of these arguments is that a Pomeron pole with intercept
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one must decouple from the total cross-section. Since the total
cross-section would then be given by the two-Pomeron cut it is clear
that this decoupling cannot be consistent with the negative sign cut.
Since the negative sign of the cut is connected with the structure of
the Pomeron it must be important to consider this structure in the de-

coupling arguments.

The first constraint derived from the unitarity sum rules was

the triple Pomeron zero.

The triple Pomeron zero

If the triple Pomeron coupling S~ which appears in the triple
Pomeron contribution to the one-particle inclusive cross-section does
not vanish when all three Pomerons have zero mass, then integrating
this contribution will give a total cross-section increasing like
log log s. It is therefore concluded that the zero mass triple
Pomeron coupling must vanishlg). However, once a structure is allowed
for the Pomeron the situation becomes much more subtle. Pictorially

the integral of the triple-Pomeron coupling can be represented as

The loop integral is now analogous to that considered above for the

AFS cut. This suggests that if we take account of the structure of

the Pomeron then there may be cancellations analogous to the cancel-
lation of the AFS cut that we have already discussed. In fact Halliday

and Sachrajda have shown that in the Feynman ladder graph model this
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contribution would be exactly cancelled by diagrams of the form (the

momentum of particle c¢ being integrated over)

where the Reggeon has been "cut open' at one end. The ladder graph
model cannot give a Pomeron with unit intercept but Halliday and
Sachrajda show that in general a contribution of this form will pro-
duce a negative log log s contribution to the total cross-section.

Of course, if this diagram does cancel the triple Pomeron contribution
then since it is non-leading relative to the triple Pomeron contribu-
tion in the internal triple Pomeron limit, it must give a negative
contribution to the inclusive cross-section in some region of phase
space. Again this negative contribution may be cancelled by yet
further contributions-possibly associated with multi-Pomeron cuts.

We can say therefore that the ladder model does not give a concrete
example of how the vanishing of the triple-Pomeron coupling may be
avoided but it does suggest that the structure of a Pomeron will be
such as to make the whole discussion of the asymptotic behaviour of
sum rule integrals highly non-uniform. As a result it is not possible
to make any statement about how the sum rules are satisfied pnce
contributions to multiparticle amplitudes are allowed which do not
correspond to any simple Regge diagrams but rather to unitarity cuts
through Reggeons. These contributions cannot be considered in detail

without a knowledge of the structure of a Reggeon.
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Although the sum rule cannot be said to require the triple
Pomeron zero the zero does seem td be required by t-channel unitarity.
t-channel unitarity gives the Regge cut discontinuity formulae, and
these formulae can be regarded as unitarity equations governing the
interaction of a Reggeon pole with its cuts. These eqqations can be
solved using either S-matrix or field theory techniques. The zero
mass triple Pomeron vertex which appears in the inclusive cross-sec-
tion can be identified with the triple Pomeron vertex governing the
interaction of a Pomeron pole with its cuts. In a Reggeon field
theory the decoupling comes about fromvrequiring that the bare
Pomeron intercept of one not be renormalized. ‘In this context the
triple Pomeron decoupling was discovered four years ago by Gribov and
Migda12°). Bronzan?!) has considered a model containing just sums
over Pomeron ladder graphs which simply illustrates this point. 1In

this model
[;;>P = r-~<::: + A/vv<:§: * «u~q<3{ + -f4:§:{: . ...‘

where the lines represent Pomerons. The integral equation for I;;p
given by this model has an effective singular potential coming from
the unrenormalized Pomeron exchange in the rungs of the ladders.

This singular potential leads directly to I;;p vanishing at the zero

mass point.

From the S-matrix point of view the triple Pomeron decoupling

can be understood as resulting from the collision of the Pomeron pole



- 14 -

and two—Pomeron cutzz). The Pomeron amplitudes =O=, ®Ox and ZO= have

the N/D representationSZ,a)

1
~Ox = 17

B(t,j) + —+— log [ - ac(t)]
(3]

[

A

RO = I (18) -

B(t,j) + —=— log [j - a (t)]
a'(zl-;t] ¢

o - A(t,]) (19)

B(t,j) +.——-}—— log [§ - a ()]

“(z9

where A and B do not have the two-Pomeron cut at j = 2ac(t) =

= 2ap(t/4) - 1. To obtain a selffconsistent Pomeron trajectory from
the denominator in these equaﬁions and to obtain the negative sign for
the two-Pomeron cut it is necessary23) to have a second order CDD pole
in A and B which passes through j = 1 at t = 0. This pole is arranged
to give a finite Pomeron contribution to 2Oz at t = 0, but because

vA!i appears in (18) in contrast to the A in (19) the Pomeron contribu-
tion to ~O~ vanishes at t = 0 giving the required triple Pomeron de-
coupling. The presence of CDD poles in the N/D representation is
dircctly related to the singular potential that appears in the field

theory approach to the problem.

Cardyzu) has recently shown that this mechanism which produces
the triple Pomeron zero also suppresses cut contributions to the
inclusive triple Pomeron limit by (log M?)~? instead of the single

logarithm characteristic of cut contributionms to two-body processes.
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Finally, we consider the implications of the triple Pomeron zero.

The Reggeon-Pomeroﬁ~partic1e vertex

There have been two arguments given that the zero in the triple
Pomeron vertex has implications for the Reggeon-Pomeron-particle vertex.
.. R P .
The aim is to show that the vertex t~A~~ vanishes when the Pomeron
has zero mass. This result can then be continued to the particle
pole on the Reggeon trajectory to conclude that the Pomeron must de-

couple from the total cross-section?®) .

Abarbanel, Gribov and Kanchelli?®) considered the subenergy dis-

continuity formula

n

2
disc Ijz‘%m =Z 7/ — (20)
M? — n

Using the Schwartz inequality together with the Mueller discontinuity

formula gives

2, ,
!

Taking the multi-Regge limit Eg and choosing the quantum numbers of
the particles so that the two outer exchanges are Pomerons but the
central one is a Reggeon, and going to zero mass of the Pomerons,

gives an inequality which can be written in the form

A Disc (Rem~nP)|? <

PP
| sl (22
P
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The vanishing of the right-hand side then requires the left-hand side
to vanish and this appears to give the required result. However, it
was shown by Moen and White??) that taking the discontinuity of RAE
removes that part of the vertex giving the total cross-section. In

this case taking account of the singularity structure of the Reggeon

is sufficient to weaken the otherwise strong result.

N L ‘R . P
Another derivation of the vanishing of the «<A..{ vertex has been
given by Jones, Low, Tye, Veneziano and Youngzs). They consider the
inclusive sum rule relating the one and two-particle inclusive cross-

sections and obtain an inequality which pictorially we can represent as

P d ,p
pM(:: J‘ R (23)
o > fvﬂfv<#3:::rF)

. . . P " .
The vanishing of Pm~<ﬁ:P at zero Pomeron mass then requires «-Q

to vanish similarly. Taking the internal Regge limit so that

P
P,W{%:-PNP

L T
and using factorisation then requires w~~~ to vanish. Since particle
d can carry quantum numbers the internal exchange can be a Reégeon
and this gives the required result. If both the amplitudes involved
here containcd only Regge poles so that the Pomeron contributions
gave the leading asymptotic behaviour even in t < O then this result
could only be avoided if non-uniformities were present at t =0 which

we do not expect to be the case for Regge pole amplitudes. However,

once cuts are taken into account, together with the structure of
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Reggeons and Pomerons, then non-uniformity of the asymptotic limits
involved can again be expected to prevent this argument going through
for analogous reasons to those we discussed when considering the
vanishing of the triple Pomeron vertex. This has been discussed by

Cardy and White in the context of the Feynman ladder graph model19529),
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