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1. = INTRODUCTION

There has recently appeared a fair amount of experimental as
well as theoretical work on the subject of pionic capture of nucleons, i.e.,
the reactions in which the target nucleus captures an incident nucleon and
1),2) has studied the (p,1r+)
reaction for a number of target nuclei in the mass region from deuterium to

14N, for 600 MeV protons and at forward angle. For the reactions going to

emits a pion. An experimental group at CERN

the ground state of the final nucleus the laboratory differential cross-section
13
C and

A group at Uppsala 3)’4) has measured differential cross-sections for the
12
C

ranges from some 30 pb/sr for deuterium to about 0.4 Mb/sr for
14
N.

target nuclei 9Be and at the proton energy 185 MeV. A number of final
nuclear states are observed in the experiment, partly with quite striking an-

gular distributions of pions.

On the theoretical side, the situation is somewhat unclear, and
several reaction mechanisms and models have been proposed. The one-nucleon
model of Eisenberg et al. 5):6) is based on the assumption that the incoming
nucleon emits a pion and is captured directly into a nuclear orbit. In the
absence of rescattering corrections, the cross-section is then directly pro-
portional to the square of the one—nucléon wave function in momentum space,
evaluated at the momentum transfer in question. Since the momentum transfer

is large the cross-section is very sensitive to the nuclear model 2). A model

7), the idea being to treat the

in the same spirit has been studied by Chatwin
basic reaction p - n + 1r+ as analogous to g nuclear stripping process. On
the other hand one has the models in which one considers two nucleons in the
basic pion-production process. Of this type is the model of Ingram et al. 8),
where the input is the cross-section for the reaction pp — d1T+. Another

9)

such model was considered by the present author sy the reaction being assumed

to take place by one-pion exchange through the (3,3) resonance.

One of the most characteristic differences between the one and
two-nucleon reaction mechanisms is their different predictions concerning the
rare (p,T ) capture mode. In the one-nucleon case this mode is forbidden,
whereas in the particular two-nucleon model of Ref. 9) the Tr+/1r- ratio is
of the order 10. Experimentally 10) this ratio is 100-200, which indicates
that the mechanism for a general (N,T) reaction is not as simple as assumed

in any of the models mentioned above.
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In the present paper we make an attempt at presenting a phe-
nomenological rather than a dynamic description of the (N,T") reactions.
Our treatment is based on the Mandelstam 11) model for the reactions NN — NNT .
In this model the reaction amplitude is decomposed into various angular
momentum modes, with strength parameters that can be adjusted to fit the
NN — NN and pp — dTT+ data. The same amplitudes are then used for the
nuclear case in an impulse approximation. Our model is thus similar in spirit
to that of Ingram et al. 8 ; however, in our case the nuclear reaction is
analyzed in terms of several NN — NN amplitudes rather than in terms of
a single pp — dTT+ cross-section, and the cross-section for the nuclear case
then depends strongly upon the angular momentum properties of the initial and

final nucleus.

The present model is a two-nucleon one in the sense that the
input is amplitudes connected with pion production by two nucleons. The reaction
diagrams that are considered are of the type shown in Fig. 1 of Ref. 9), including
exchange diagrams, but with no specific assumptions about the dynamics of the
process. In Ref. 9) the contributions from the two diagrams corresponding to
the one-nucleon mechanism with pion rescattering were not included, in order to
separate the contribution from the two-nucleon mechanism. In the present paper

these diagrams are taken into account ; in this sense the reaction mechanism

that we consider is therefore a mixture of the one end two-nucleon cases.

2. - THE MANDELSTAM MODEL FOR NN — NN

11) on the Mandelstam model

In our experience the original paper
is somewhat difficult to digest. For pedagogical reasons and because we need
a generalized version of the model we find it necessary to give an independent
and more or less self-contained presentation of it. We use units for which

A =c=1.

In terms of the transition amplitude 3~fi we can write the

centre—-of-mass differential cross-section for the reaction NN - NN as

d'e J(Ay_M eP YT e |* »
dad(cos@) d §d (cose) d¥ (‘m)qu;.. w-s2 % I ;tl .
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The kinematic variables are the total centre-of-mass energy W, the incident
nucleon momentum.~£in, the energy Sy and momentum i&' for the pion, and
the relative momentum ~E for the nucleons in the final state ; M 1is the
nucleon mass. The angles © and § are the usual direction angles for
the pion, and & is the angle between AE and ‘Q, the nucleon momenta in
the final state being P, = p =P -%3 and P, =p' = P -%3. The angle ¥
is equivalent but not identical to the ¢ angle for P, see below. We
refer to Fig. 1a-b for a graphical explanation of the various quantities
above, for the special case in which aain is chosen as the 2z axis. We
mention that a small term depending on cos® 1is neglected in the phase space
factor of Eq. (1).

The transition amplitude is expressed in terms of antisymmetrized
wave functions for both initial and final nucleon states. This means that the
transition operator need not be symmetrized, and the operator 3752 below by
definition produces the pion on nucleon 2. In terms of the i1nitial (unprimed
quantum numbers) and final (primed quantum numbers) spin and isospin states the

transition amplitude is

3.

(3

TPAS'S{T'R Tl £, $&TT)

ZLZZ T cbig, ¢IlssysimnITy (2)
Saq 5;11;'
X T(fé S’Sl Su.T !’ 1;1;tlfnh$S;TTi)

where Téw is the isospin component for the pion and the other gquantum numbers
refer to the nucleons, and where < j1jzjz1jz2ljjz > 1is a Clebsch-Gordan coef-
ficient. In the amplitude appearing on the right-hand side of Eq. (2) the
nucleons in the final state have definite 2z comporents for spin and isospin,

and

T (pps's) T T T T B 84 TR) = <R S'S ST RTLIRIEL S5, TR>,  (3)

1 L33

where the antisymmetrized wave functions are

$'+T'91
1o ¢S, St T Ty T T 7y = 2 {lp L7, +-1)

aar

\p', li»)‘i (4%
LS LS 2 14T, Y, 13 Tu % 117,27

‘.f-'u (S SQTTG.?u = 2.; {"!‘..7‘1 + (.1)541'01 ]“f‘.h7n§ l $ 5‘711 |T Ti>h. . (4)
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We decompose the initial state into partial waves with definite
orbital angular momentum £ and total angular momentum J in the usual

fashion, i.e.,

18,84 TT, 7= 2t Z}E ZALSmGITT> SS-rT-o,Z,oJ.d.
I 2 heed
*|Pif A Sm, TV ITT,7. (%)

The decomposition of the final NNT state (the nucleons are denoted below

by N and N2) is particular to the Mandelstam model : (1) the orbital

1

angular momentum ‘\-‘_ for the relative motion of the pion and N is coupled

2

to the spin ~§2 of N2 to a resultant angular momentum 1‘&_, this part of the

coupling procedure being the same as in the ordinary partial wave treatment of

MN scattering ; (ii) the angular momentum & and the spin 31 of N1 are

coupled to a resultant j ; (iii) the angular momentum _J, and the orbital
angular momentum n{&" of N1 are coupled to a total angular momentum J,
where A' should not be confused with the angular momentum for the relative

motion of N, and N,.. The isospin is treated in a similar fashion : (i) the

1 2
isospins T4 and ‘_T.z for M and N2 are coupled to x (ii) the result-
ant ¥ and the isospin T for N are coupled to a total isospin T. We
ann el 1 o

let q and q' denote the relative momenta of the pion and the nucleons with
Ao L el

momenta p' and p, and write
o ~n

1Pg s's' ¢ TR TT y=2 TTZZTLZLITLITTZLY
e T MR TR TRL S A R ANT T T,

* {4l w' | T I Lrde S 1547 CALA Salei? Ly, T ITT> (6)

« Q4TS ey Lpg ArjLids, T7 + GO g Ak LU, TT Y 1, T,
o~ an L

By writing p g in the first wave function on the right-hand side of Eq. (6),
o~~~
we indicate that N1 has momentum 3 and that N2 and the pion have relative
momentum ¢, correspondingly for p' q'.
M ol

The original version of the Mandelstam model applies to the
(3,3) resonance contribution and isospin T = 1 only. In our generalized
version of the model the matrix element of 3"12 taken between the states on

the right-hand sides of Egs. (5) and (6) is assumed to have the form



<‘t,TTi|(r4,La.1'L'J1h',J'J;| C{;l‘f";,,/(. Sm, TT,7ITT,>

- [} %.I’L'~A )
= FLal'2]%: SL,M“’.“ A,\u_,-u;rw

(7)
* Gl g @ T2 @ TP @I ED,

where F. is the pion mass and

3, :
F=amin>pnr et
W= 2M+p , Bh= (Rwt-ht

o, = Brere™ s miner® vy Go,4)

: 8
[al=2a+1, Cablc 1" = {(2a+1) @b+1)/(2c+0)}" , ete. (®)

The factor F is introduced just for later convenience, and le is the usual
normalized spherical harmonic (we use Condon-Shortley phase conventions through-

is due to the negative intrinsic parity of

out). The factor 5£'+£+A.,odd )L'

the pion. Apart from the factor (p/p
dynamics of the problem is contained in the strength parameters A, which

and the spherical harmonics, the

depend upon the various quantum numbers that are indicated by subscripts, and
in the amplitudes fypq - We shall later limit ourselves to s waves
(A=0,R =%, ¢=%2) and the resonant p wave (A =1, K =% =2), and
we take

$0i, (D=4, =1,

= - - 3
512; (Q‘) 41 (4‘) J(ﬁ) ‘0(1""00)"‘ ¥.: (""IF’)‘ az

(9)

W= ‘Lt'l'g"_' r, = 0.518,1.-') 5';”’ 0.08,

where we have used the same effective range formula as Mandelstam 1) for £(q).
In the Appendix, we have shown how the expression (7) for the matrix element

follows in a special simple model.
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It is, at this point, convenient to recouple the angular momenta
in such a way that the pairs 4£'A , S'S and T'T of quantum numbers appear in
the same C—-G coefficient. The gquantum numbers for the vector sums correspond-
ing to the first two of these pairs are denoted by g and h, whereas AI.'
and E‘ﬂ of course add up to the isospin “L of the pion. After summation over

the redundant 2z components the matrix element (2) vecomes
JCRa s T, 18,84 TT) =iF DTV IS ISI T, T T

)

*TTTIL e raaalrat w(s'sgd:AT) B(s'-r's-r:r?,\,e',e)
TLAALAM s

x

™M

v

%gz IEYR S;2|$Si7 (&lznlc’,g'? \2:" (f‘.")
(10)

1) $'+T 41

x {7)4.‘3* (t,i) + (- ‘Lwi; ‘J:')i"} )

where

B(S'T'STJ7AA'A)= Cal']l '-‘U-"’\S

$4T+L, odd 51'4‘4,\, odd ﬁl,SJ'

xzz Ztt,‘;u]‘u/(‘!{T;_ txT') W($'i7l :AT) W(A;?’{: R S') A)’,‘"-‘.IJ-,‘T)

' L' ' ' N Ddypay G
"«f.wf, (t‘zyz (plp) 4'\(,)%3 AL A m l” ), Y)‘(i) Y (f). (11)

In accordance with Eq. (9) we have at this point assumed that it is sufficient
to use the index A  rather than the set AR?Y of indices to define the
amplitudes f(q). The notation 8ZSJ indicates that the triangle condition
should be fulfilled for &, ~S~ and J.

y‘\z,g' of Eq. (11) trensform like angular
momentum eigenfunctions of rank g we are at liberty to rotate them to a

Since the quantities

system in which Q is the 2z axis and P (therefore also p, g, p' and q')
~n [aand MMe pae M A

are in the xz plane. The corresponding Euler angles are ® , Q and "f ,
where F +1r is the ¢ angle for the original (arbitrary) z axis in the
new system. With the notation (see Fig. 1c) ©ok=< D, Q, B= 3 p, Q,

~M M N N~
x = F - =93 g, Q and using the definition of Ref. 12) for the rotation

o M

matrices we have



' - . ¢-¢' ?’ -
1*;“5,; <s1?)££\ = %; L 8¢ Jé'g ((), §; ¥) 1f>\2'; (lt’ii) ,

— 2 ’ ) w/ (12)
Hawh ()= W74 T T A P () P ().

So far no consideration has been given to the interaction betweern
the nucleons in the initial and final states. As in Mandelstam's paper 11) we
take this interaction into account in relative s states only. As far as the
initial state is concerned we shall only consider one transition that involves
an s state, and since the energy for the initial relative motion is quite high
even at threshold we simply neglect the interaction between the initial nucleons.
Tor the final state the relative s state part of the matrix element is that
which is independent of © and QI , 1.e., the part which is obtained by taking
e = 0 =&nd averaging over 6. This part of the matrix element is then modified
by an effective range method, which means multiplying it by a spin dependent
s,(P) =1 + gs,(P) defined by Mandelstam 11). The matrix element
(10) then becomes ‘

function R

: $ ,
Fpa s, T T, PSS TR = 2iF " [T's'/s1 AT, T, 1T

«TZ7 I LTal el W(s'sqgl hT) ILLLSAS IS8
T i 4 & m 7 e

“412”"33')?;’(3:”) gZLS'g' J-s':r'srﬂ.; (@, coop) D;'lz ©,¢,%),

(13)
where
[4 rerer
Tyrisrazg (@ e00) = zz B(S'T sTJ?,\x,'uJ',TM, (&, o),
JS'T'J\L'7 (Q %0) = Z. Z <AL‘J ”"I?g> '7'1\" (a mb)
T, o (@, woe) = Ju, (8, woe) + G051 TP L (8- w00

+ 551..7« odd 5) ! 75,(9) "AL’ (Q) )
J;';j, (8, woe) = 14, (a) (plp)¥ PR (y) PO(P),

7 1 -A
Az' Q)= ‘S'd(woe) NN (4, co ). ”
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At this place some remarks should be inserted concerning the
relationship between the various kinematic variables that enter into the cal-
culations. When comparing the cross-sections for the various initial and
final charge states we keep the maximum pion energy 'Sz'max fixed and use

exact kinematics to find the relationship between _5 and the corresponding

max
laboratory kinetic energy Tl ab in the initial state. With initial and final
masses M, M, (M2 stationary in the laboratory) and Mi M) ' this means
that

]
'rh.bz %."1:1 (WH-HH:)) W'= (qn;.'&:a.x-”".)\ * &""“'" )‘

M= $Cm+m), Mo 2/ h). (15)

However, when calculating the cross-sections from the previous expressions we

use an average nucleon mass M = %(M + M ) and an average pion mass P = %

(‘u.',i + H"'Og regargless of the actual charge sta‘cesé with ’
(4M2+ oM )® +n and Pi (lW)2 - M. PFurthermore, we use

the approximate, 6 :Lndependent expression,

-%) | R =Rt-ut

May b

P*(Q) = w(a (16)

for the relative nucleon momentum in the final state, the exact expression being
the above multiplied by {1 - Q2 cosze (w -Sl)_z} —1. The final state nucleon
momentum p, the pion-nucleon relative momentum g and the angles & , B> Y

are functions of Q and 6, and are given by the expressions

E Y

Y = P“PQWO’%Q" , gt'%4.-,{(4'“'12'[4})"9"‘,4‘} ,
wo s (Puoe-2R) ) cooy= ¢ {(a+ib)Q +bPeos} | o= p-y,

=6 *2EW N -pt bra't2aw -ntept ) ez2g W (WHERR) o
-12

4 = (E'+n)*- gt w'=4% &

) ) N "1.'1“*2?&‘”0‘

That part of the matrix element which depends upon ~1‘3" and q' rather than
A
upon p and g is obtained from the above expressions by changing the sign

of the cos® terms, as has already been indicated in Eq. (14).

The matrix element (13) depends on ® , § and 4 only through
the rotation matrices D, which means that one can easily integrate over these

variables ; to find the total cross-section, one then has to integrate numerically



-9 -

over 51 (or Q) and 6. By keeping the (® dependence we can find the

angular distribution for the pion, which after summation over

Sé and ave-
raging over SZ

is found to be given by the expression

3 ] ' ]
e (T T lsTT)

dst o (wo @) d (w0 6)

x 2221231 Ca1thel w (s'Sqd:hT) LhLgolye?
Lee I 229

= 4D () [$7/s] T, TR

3}'1»;7431 (&, wop) ,,L‘* (@)l (18)

D, (R) = Cw,/w) (7, [P,) {znl (w-DY (a/p) (PIM) 77,

where AE. has been chosen as the 2z

axis and where the d functions are
defined as in Ref. 12). Integration over ® , and summation and averaging

over S' and S gives

e (T'T) T, de.

dbe (M T ITT) 21arr Ity T
d3 4 (cop) dx d(woe)
d"yTlf

=D, () I, (@, woo),

(19)

I, (0 co8)=CT'] 'ZZZEZ[S'J:,‘J”“""‘Jt (e uoo)l

In terms of the cross-sections G’T 0 the cross-sections for the reactions

induced by pp and pn initial states are

G'”Qrp“o = al; : 6‘11 )
[\ = G, =6 120,
ppapawt 2w o) (20)
= 2 1
c:rn Spnmne = 2% T %, )
= 3 3
Tonavmnnt = Tpnappr- - Oy T 9T E G0
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After having calculated the cross-sections (20) by the method
described above, it is necessary to introduce a correction which ensures that

unitarity is conserved. As described by Mandelstam, this amounts to multiplying

. 3 -1

each matrix element2 JS'T'STJ,@g by a factor {1 + (G’J,u/dJ,max)} , Where

J,max = 4“’[}:]/Pin and where G.J,u is the previously calculated, uncor-
rected total cross-section for the given J and charge state. For the pp
initi = + +
initial state we therefore fake O:_J,u G’J’1 c'J,Z G'J,d’ where G'd
is the cross-section for pp—- aW (see the next section), and for the pn
initial state G = + 2 .

g™ Tg,3 1205,

In the actual calculations we shall, as Mandelstam 11), limit
ourselves to S and P state production, i.e., to transitions with 4' =0
and 1. However, in addition to the Mandelstam resonant wave A = 1,

R=" =% we take into account the s waves A = 0, R= %, T = %, 2, since

we are interested in using the model also at energies near threshold. In order
to keep the number of phenomenological parameters down we neglect the small p

waves. Furthermore, for s wave, P state production, we include the initial

relative s state (£ = 0) only and neglect the £ = 2 contribution, which is
also allowed by the selection rules. In addition to the six Mandelstam parame-
5917 P1a’ Poa’ Pip and by (defined here with a different normaliza-
tion) we get the s wave parameters Ad, A

ters a,

] and B, the connection between

the previous general parameters AARjz'sz T

and the present ones being

ol

A=72%A

° 0L 001041 ' 4 wave S state J=0

) ? ’

A

otoo10¥1 )

4
= - * 2t =
A== Agtiorage T 2T A000121, 4 wave, S stefe, J=1,

B-- Aoi11o1"i° ) A4 wave P 5"@*0 ) J=1

? )

a = A1§zoa.1.{1 , r Wave S state , J='Z)

b_.-= A'zi":‘.y)rwave , P state , .J’,a;a 01)11,12)21)7_7_,

(b * 5%b,,),

(21)
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We mention already here that whereas Mandelstam 11) puts b =b =0 we

shall keep these parameters and instead take b1a = b2a = 0. We justify this

by using the simplified model in the Appendix j; in that model b2a is strictly

01? b1b and b, .

zero, whereas b1a is smaller in magnitude than b ob

With all b terms still included we find the non-zero matrix
elements shown in the Table, the quantities that enter being defined as

Torty (@, w00 = £{Tieg (Qem0) T 3,0 (0 cwd} | M, (@)F 5_;‘@~'>3&¢-;(4,m0»
T, 2 (0, )= (plp) conp y T,,0 (@ ca00) = 23 pfp) ainp

3'"; (@, co00) = § (q) (plp) cwook ,

3,000, 008) = §(g) oy | T, ! (2, c00)= 235(a) siny,

Tos (2, 000) = §(3) (plp) sinat

T (@, c000) = % $(9) (plp) {3 o0 (B+y) + cot ,

(22)
Toin (8, 200) = $(9) (plp) 2in (Py) , T, 0 (&, caos) = £(q) (plp) sinpainy-
By writing the parameters as A = lelexp(iﬁAo), etc., and
now taking b, = b, =0 we find that the quantities Ij,, of Eq. (19) are

T2 14,17, t1al*L,, 1AL, {an(py -4,) Ty, o (§ -4,) Tppp, 3

* “’MP I«o * lb‘lbltIm * “’lblt Inz )

I1o = ‘glz I1oa )

T, A T, *lal®Th, 1AL, | {‘40(45,,,‘%,) Iouv“";"(,b.:*&) INAB'k

+ lelLIMO..- lb‘blzIogq + 'b‘l.hl‘ ID”. )

(23)
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where

0=12 a=-12
W1t 21T, 1Y

I, " Sl 1* | I, = ${I7

i 00 Ioa ) s Looay = 10 (Tyan” Ioa) s Taay” ;Z‘R s {3, 7,01,.8,
Iy _:-’IIH: |* + '3“3«2**1.“" LI
T,® 213, 1513y e AP
I1,.* el E R LR I i +1|J‘,,,’I +3173,21"
* %’{l:r«;* T RGLRERE Al R T Al b O
I,,= 343,01 +215,01% Y
LA S '°{|J',,:*f1‘ (P 1,1t + 213,400 Y
rmln.-o’= i(r“'fl’* I:‘Mb) ) Ioub 1 (I°1Ab om.) ) oiA\,- 4 R1 (P13, m 7*"’ ""D&)

I“,”'Z{ IJM:’P" sz, o1 }

110

T, = 24zlg % +q Im, 1"+ + 31771+ |J‘"|}

110 111

3 1 T
012. =2 (5 IJ«:*P* IJ',:" +74 (A "m.P - I‘Tn:.*l 3"1": l

CTOTL Jima e 319,01

(24)
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3. - THE REACTION pp — 4T

The pp — dW ' reaction will serve as an example of the appli-
cation of the Mandelstam model to a nuclear final state ; furthermore, this
reaction is used in the determination of the Mandelstam parameters. Apart from

the fact that we include more parameters than in the original work 11)

our
treatment is also different in that we have found it necessary to take the
deuteron Fermi motion into account, at least in an approximative manner. In
the nuﬁerical calculations we treat the deuteron as a pure s state in the
np system. This is not to say that the d state contribufion is negligible,
the point being, however, that in the nuclear cases to be considered later we
use pure harmonic oscillator wave functions without tensor force admixture ;

it then seems more consistent to treat the deuteron in the same fashion.

We compute as before the cross—section in the centre-of-mass

system, where the angular distribution of the pion is approximately given by

die J (L _he Y151
d (0 @) d § &R w* P, ,ZZI !

(25)
Q*= Fwr{w-pt- gl - Ypihgl.

Here Md is the mass of the deuteron, whereas Q, W and Pin are as before

the pion momentum, the total energy of the system and the initial nucleon

momentum.

With the d state still included the deuteron wave function

in co-ordinate space is
3

4

o0
4B ee): Z U@ Y FER), Srdelo @t
]

L=0.2

(26)

YLSjZ is the usual spin angle function. We introduce the dimensionless

momentum space wave function

where

8

g, = aimul Traru e, (o0 -

©

and write the matrix element as

-3 -
I = 3 ¢a0ss) = Gm 2

s

iPE Z ittt Z 2 cung gy

L=ga n st
. o~ (28)
x $d2(p[p) 9, (P) Y (E) T(Pa1s001lP $511),
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where the matrix element & is given by Eq. (13) and d3

P = PZde(cose)d“f.
In analogy with the NN — NNW case we transform ?%(2) to the system with
Q as 2z axis and AE in the xz plane. We couple I and the gquantum number
g appearing in § to a resultant f and integrate over ¥ . The external
quantum numbers 1JZ and SSZ are recoupled so that they appear in the same

C—G coefficient, the resultant being denoted by b. The matrix element then

becomes
o, 2 b $
8, (3 188)= -G 07 utF %Z Z}z LZ(ﬂ C£33 LT w(13b4L:£S)
"Zitf)ﬁus }&h:)(;&joplbp)?:(é) Kz.sgw, (a) (29)

where, as before, Azin has been chosen as the original 2z axis, and where

= :tb i .
KLsgt:,(Q) L E7] lV(tTL7-j1)4§703'Lg7
(30)
xF, SP‘&P&(WO)?L(P’)P (e) J, 105143.% (d qub)
The quantities JS'T'STlJé have been dealt with in Section 2 ; however, in

the present case the variables are P and © rather than Q and 6. In

the NN - NNT case Q varies, and P 1is determined from Q by Eq. (16),
i.e., the quantities (17) wkich determine JS'T'STzJé are functions of Q

and 6. In the pp— AW ' case Q is fixed by Eq. (25), and the contributions
from the various values of P are integrated over the deuteron momentum dis-

tribution.

We sum over the 2z components JZ of the deuteron angular
momentum, average over initial spin states and integrate over § . The angular

distribution for the pion then becomes

Aoy 8y ()T Il TTTIIIILL WUT L SS)
diw@ & ¢ SLP $TLGL

x ¢
CLgoplbp> pF(0) 73: K,_s{’w‘t (a)l 50y

D, ()= uw,/w) (B, /P,) Can/w) (o) M~
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and the total cross-section is

= 13« C (4 2
v,= 1, :nlzzzz fJ]‘%?ZK ) |*

d LS4ALT 1’ <32)
Including the deuteron s state only (L = 0 and f = g)
and the same parameters as for the NN — NNT case we have
- 2 10 1 2 2 2
@, 2D, () {1A K, * 2y Ky, [P % Flal Iy, 1+ 206, 17 1K, 1Y
(33)

K,* p"ojmpgom R (P, Kagy (@) = p"oj P2dfg (p) R, m Mygry (8,7,

where Mkﬂ'g is defined in Eq. (22).

4. - THE REACTION A(p, W )a+

The nuclear pionic capture cross-section is calculated in the
laboratory system. We neglect a small angle dependent term in the phase space

factor and write the differential cross-section as

die _ (A2 HQ' s 2
dicsa®) 4§’ G g 2L, (54)

where Q' and Nrii are the momenta of the final gion and initial proton, the
oo d =
corresponding pion energy being ' = (“2+Q'2)2. In terms of the proton

) ) . .
kinetic energy T and the angle @® between »Ei and 3‘ we have

lab
Ple aM, To {1438CTin )Y | @' ot Cat+b)®
a=dle b=ele , ¢z T*-P ' @

b} )

d=1P.cwod® (T *-m*+pu?) , €° r‘,{T’- (m+p)*3 {T"‘(m-'a.)"})
T=T (35)

h‘r*"A*nn Mz="149..z)

Rl A’

MA and MA' being the masses of the initial and final nuclei. In the actual

calculations we use the value of Q' corresponding to ®' = 0.
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We have here taken the nuclear recoil into consideration (in an
approximate ma.nner) as far as the phase space factor is concerned, and we also
make another correction for the finite mass of the nucleus by adapting a proce-
dure from Ref. 13). This amounts to computing the matrix element in the absence
of recoil and then multiplying the result by a factor 3(42) = exp(%A"_1A2/eL 2),

where A" is the mean mass number for the initial and final nuclei and

A =Q' _-12i' It is here assumed that the nuclear states are described by

o L .

harmonic oscillator wave functions, with the shell model parameter o& normalized
so that the one-nucleon wave functions are proportional to exp( gelz 2 . We do

not consider recoil corrections in the internal dynamics s, these being less

important in the present model than in the one-nucleon case.

We consider the matrix element corresponding to the initial

nucleon states Y 7 = N L J,J T and § 5 = S and the final nucleon

11191921121 227727

states 'S' NJL"} :]J;JTéJ j =1,2. Here '52 indicates the incoming nucleon,
the other states are shell model states. The nucleon in state 31 has momentum

. . 1 _ ek
h&i, corresponding to a relative momentum NEin = g(gi El) for the initial nucleons.
The orbital motion of the final nucleons is separated into relative and centre-of-

mass motion, with quantum numbers NL and N'L', and momenta P and K =K. -0,

A~
respectively, where aléi =£i + ;- This introduces a Brody-Moshinsky 14) transform-
3 i 1T 171 1T, " = 1 1 1
ation bracket < NI, N'L', .\ IN1L1, N L 59 A >, where .A: AL’1+L2 .I:'+}._ . The

initial and final two=nucleon states are expressed in terms of states with definite
total spins S and S', and isospins T and T'. The antisymmetrized nuclear

matrix element can then be written as

T (s T 18660 = am® em il 2112

A st T

77212
T L AL A
x Uity EL’LL‘]i(NL,”'L',JJ/VL wILL A E 112 Z

"T85 T &y

Z
N
21
%2 4

( 3)
KA ENEN s's TR TLIT T Y L2 5,%,0 567 ¢1iTu Tl TTY
x32TTLTas 8 13 T 7 AL imy s, 130 T > LLin, 8, 13, 3,7
weny nmn
« LU K 1Ay L el Avy ((dP (g () 43 (PIp) ¥, (4) 3',,.L.(2’5K) g, 2P

xqz(gg) I RIIE) T (e s's T T 18, $6TT),

A~
~Mm

(36)
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where the matrix element % for the NN - NNW reaction is treated in
Section 2. The dimensionless harmonic oscillator wave functions gnz(p) are
proportional to exp(—%pz/aLz) and are normalized so that

SO g, ()7 vPap =

We choose the =z axis along the direction of ﬁgi’ and the
initial relative momentum P. ~ appearing in the matrix element (10) for the
elementary reaction now varies with gyt As in the deuteron case the quantities

J of Egs. (13), (14) depend upon the relative momentum P for the nucleons in
the final state, and we have

A A .g-l
!d's(f‘lﬂ,) Ym. (2*?) \/L"*(A]:) H g J}'T'sr,e:r’; ( D? (@ § g)
K raees (@) 5) §Z E télL]‘LLrng'lﬂn tsq0elieY SHQ),
(37)
Komgrmnss (@) ) = 147 S PP dleod) 9, (220) P (0)
* J—s‘r'srz.a'q (L) ;5 P, coo0) .

The cross-section then depends on the integrals

K R SO W T TR (

ST sTwLT ML ML L 75 ﬂ-) = L o Yyl.. \ ‘-(4/'1.' T K)
x an (g,,) y" "(K)‘I (0_) (? ) KS'T‘ST”LLJ‘, (@.', ?) ‘ (38)

By introducing the matrix element (13) in Eq. (36) and summing
over =z components where possible, we can obtain a, rather cumbersome, expres-
sion for the general matrix element 3;-(3" g SéTéw |~1 S, 32) We give the
cross-section explicitly only for the case of a (p,W ) reaction on nuclei
with closed J shells in the initial state, where the final state is assumed
to be well described by the same closed shells plus one outside neutron in the

state N _L_J We have

2 2%2°
12150 3 2 21 Z 5@ sl 115 s
$: I %2 S
N ;;: Z Zl Z 2 Z (a' ”L J J.ii.’;t)” L JJu";"' lzo, Lia;‘rt".r!‘l) stz%.)l:;
TS YLDy Taa Tae

(39)
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in which the summation over N1L1J1 goes over the closed shells. Since

polarizations are not considered the cross-section is independent of f",

and we have

~D(n)R(A‘)EJ‘]Zz\Z 2212

—do 2222227212
dicoo 6') ML3, WL WL U TS T TR g5 ¢

T
*ECTT) DL T, ML, N ML S'sThy $bed)

* LT 7 L Lsg0gllg> LEbgplomY Lel,yl,[bp> Lel!yn'lds>

€ hhy w

(40)

W nowe ¢ 2
SIT' STMLI AL W, L: L q4 (9::) l

where

D, (®) = 3 am (g lan) (£ 1) (@) W) ETT)= COTETTIW (117:TY),
DN,LT, MLT, 4L ML S'sTLy $bed) =0T LT o T

*[L, l.'.sca,l,]i :L'tﬂ”t LA La WL Al L, wyL, A :‘Z} )

*LI'ATW(I'ToL:£S) W(I'T Ly:£8) w(LLAs-A3")

13,1 EE A
X >( i Jp Ly 1hed )
$'A A SA b L (41)

d - ' - -
Y=3-h'y P=yth  f=wm-p.
The X coefficients are defined as in Ref. 15), and the 12J symbol is defined

as

abcod E g
{e §'7')s} = Z:Ebﬁ]uV(JhltG?d-th)uV(Aptii :u.li))((@b c‘) .
¢ jAL " S (42)

For given N1L1 and N2L2 t?e possible values of NL, N'L' and A follow from
14

the Brody-Moshinsky tables , and the limits on the other quantum numbers are
given by the truncated Mandelstam expansion and by the triangle conditions imposed

by the various coefficients of Egs. (40) and (41).
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5. = NUMERICAL RESULTS AND DISCUSSION

The total cross-section for the reaction pp — dﬂ'+ at low
energies 1s experimentally given by the expression 4= & (/) + B (Q/fL)B,
where the most recent analysis 16) gives ot = 0.188 mb and ﬁ» = 0.90 mb.
The et and P terms are associated with the |A112 and Ia|2 contributions
of Eq. (33), respectively, and we find IA1] = 0.11 and lal = 0.069. ©Near thresh-
old the cross-section for the pp — pp'[rO reaction is G] = 0.0BZ(Q@# )2 mb 17)

and we use this to obtain ]A = 0.12. The experimental information is not good

ol
enough to warrant a separate determination of bO1’ b b and b2b' However, we

assume the relationships ]b = 1.12lbo1l and = O.7O7|bo1l from the

1bl b2bI
Appendix to hold true and require as Mandelstam that the cross-section for

the pp — pnTI‘+ reaction at 660 MeV be GE = 11.4 mb ; this gives lbo1l =

= 0.032. By taking the pn — ppr_ cross-section at 405 MeV to be
¢, = 0.22 mb 18) ye finally obtain |B| = 0.96. If the relative rhases of
the various parameters are taken to be those of the Apperndix, the Mandelstam

parameters then become

A= 0.12, A=-0.11

R

B=-0.9¢, a=-0.069,

(43)

b,,= 0.032 b, =-0.035_ b, =0.022.

Before going on to the nuclear case we should like to make a few

remarks about the relative merits of the Mandelstam choice b1b = b2b = 0 and

the present assumption b1a = b2a = 0, the latter being based on the simple

model in the Appendix. We find that in practice it makes little difference
which choice is made, in that the fit to the experimental data can be made with
essentially the same accuracy in both cases. Mandelstam's main reason for
choosing b1b = b2b = 0 was the fact that these parameters, if sizeable, can
have a rather strong influence on the angular distribution of pions in the

reaction pp — d1r+ and cause a marked deviation from the approximate
% + cos2C) distribution which is observed experimentally in the 400-600 MeV

regior, and reproduced theoretically if b = 0. We find, however,

10 = P2p
that as long as the relative phases between A1, b1b and b2b are those of
Eq. (43), the angular distribution in actual fact remains essentially unchanged

b1b and b2b terms, the point being that the interference

terms counteract the effects of the terms proportional to ]b1b|2 and |b2b,2'

by inclusion of the

We take this to indicate that at least as far as the parameters A1, b1b and
b2b are concerned, the relative signs given by Eq. (43) are indeed the right
ones.
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We apply the results of Section 4 to the reactions
p + 2o %w* + 1% ana p + ‘e » ot o+ 5He, using harmonic oscillator
wave functions with the same size parameters as in Ref. 9). The differential
cross—section obtained for the carbon case at the incident proton energy
185 MeV is shown in Fig. 2 and Fig. 3, for the reactions leading to the ground
state and the 3%.09 MeV excited state in 13

sumed that 12G

C, respectively. It has been as-
can be described as a pure (15%)4(1p%)8 state, and that the

13

two levels of ¢ that are considered have one neutron in pure 1p% and

125 core. The curves marked (a) ccrrespond

ZS% states outside an unexcited
to the Mandelstam parameters (43), and should be compared with the experimental

curves from Ref. 4).

The agreement between theory and experiment is perhaps as good
as that in most calculations of absolute cross-sections for nuclear reactions,
but it is nevertheless clear that some improvements in the theoretical predict-
jons would be welcome. We note first of all that the results are quite sensi-
tive not only to the absolute values but also to the relative phases of the
Mandelstam parameters, both of which are subject to uncertainties. As an
example we have in the curves (b) of Figs. 2 and 3 shown the effect of increasing
the absolute values of Ao, A, and a by 25% and simultaneously changing the

1

signs of A and B, this in order to obtain a closer resemblance between the

0
theoretical and experimental curves of Fig. 3.

As far as the experimental curve of Fig. 3 is concerned, 1t
actually contains contributions not only from the 3.09 MeV state in 130, but
also from the states at 3.68 and %.85 MeV. We have tried to include the latter
in our calculations on the assumption that it is a pure 1d5 one-particle
state, but find that in that model its contribution tends t% £ill the dip in
the theoretical curve and make it less resemblant to the experimental one.

The 3.68 MeV state definitely involves core excitations and has not been con-

sidered.

The actual structure of the states that have been considered 1is
of course much more complicated than we have assumed here, and as a comparison
of Pigs. 2 ard 3 will indicate, the theoretical cross-section depends strongly
upon the shell structure of the state under consideration. In an improved
theory, including, e.g., the small p waves and perhaps higher waves in the
N amplitude and rescattering corrections, it should at least in principle
be possible to use the measured cross-sections to study the shell structure

of nuclear states in some detail.
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Figure 4 shows the theoretical differential cross-section for
the helium reaction at various energies for the incoming proton. We have con-
sidered the reaction leading to the ground state of 5He, described as a pure
1ps one-particle state, and the Mandelstam parameters are those of Eq. (43).
Onz sees clearly how the cross-section becomes more peaked in the forward di-
rection as the energy increases, and this trend will of course survive even

with other absolute values and phases of the Mandelstam parameters.

Finally, Fig. 5 shows the energy dependence of the forward
cross-section for both the carbon and the helium reactions, again for the
parameters (43). Curves 1, 2 and 3 correspond to the 1p%, 25% and 1d5

13

states in C, and curves 4 and 5 apply to the 1pz and 1p3 states 2

in 5He, the latter being identified with the broadzstate at 2.6 MeV. At
600 MeV curves 1 and 2 give the forward cross—sections 0.44 and 0.48 HDb/sr,
which compares quite favourably with the experimental results (0.75 £ 0.30)
and (0.77 + 0.30) f&b/sr 1) ; a reanalysis of the experimental data actually
shows that the measured cross-sections are about a factor 3 smaller than

indicated above 10). For the 5

He case the experimental cross-section is
(26 = 3) pb/sr 2), and the sum of the cross-sections from the curves 4 and 5
is only 5.8 ,Lb/sr. However, it does not take much of a change in the para-

meters to increase the theoretical cross-section considerably.

We have not investigated the ™ production processes in
any detail. By a very rough estimate we find that the present model can
give W-D’ﬂ- ratios which typically are around 50. We should like to point
out, however, that this number is very uncertain and subject to great sensi-
tivity to the input parameters and the angular momentum properties of the

states in question.
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APPENDIX

MANDELSTAM PARAMETERS IN THE OPE MODEL WITHOUT RECOIL

The purpose of this appendix is to show how the Mandelstam
parametrization of the NN — NNW reaction can be introduced in a simple
model for the dynamics of the process, namely the non-relativistic, static
one-pion exchange model. The reason for going through this. exercise is
twofold ; firstly, we feel that our understanding of the physics of the
Mandelstam model benefits from such an explicit comparison, and secondly,
it may be hoped that in this way we can arrive at some quantitative predict-

ions which will survive in a more adequate dynamical picture.

In the static limit the pion momenta Ai and :& (see Section 2)
are identical, and the momenta that are involved in the process are shown in
Fig. 6. Since we are only interested in the relationship between the various
amplitudes we neglect all common factors, including the propagator for the
exchanged pion (this should in reality contain corrections for off-shell effects,
different for the various states). In the non-relativistic limit the inter-

action operator in the lower vertex is

#,- g CE-4), (4.1)

where C 1is the appropriate operator in isospin space. The interaction ope-

rator in the upper vertex is

%z = Z E Z %Mﬁt ) (a.2)

where, for s waves (A=0, R= 5, = %—,%) and resonant p waves

(A=1, R="=13), we have
Wosp, = 9 F (@D, (1), F (= Fp (),
%112 = 4-1 F(ﬂ_) Dl (7-) (44')-1 {7-3.-q *1;6:;'(4"' 1_)} ) F(ﬁ) b F1zz (4),

~~ A

, (A.3)
Fare (4) = 40 S0 (@) exp {3500, (93
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in which D is the isospin operator. The operator % =%2m is applied
between the final state S! 1822Tz1Tz2T v > and the antisymmetrized initial
state SSZTTZ > in spin isospin space, and the transition matrix element is

proportional to

<PeS, ST I3"|P $$,TRY=712222121
W T 29 az %lf N® Y S s T Ty
(A.4)
*Lih 8, G 155,411 Tul TTRY L8005, TRy T L S0L ) Sar ST T?)
where

ST R )
yﬂo{t =1 ! F"‘ (Q.) D,‘(‘I.) ¢ (ss-f'r,add. g".i" Ss-rr,evcu S.'f:») )

‘a.f-“ = g" Flq) L} (2) ¢ (1) (4'4)"

133
({ zP 1 40 G. (r "Q)} (55*7 ‘qg" 1" $$+T odd T Pl.h) (A.B)

+ageg i )Y G 0L~ Seamota £1)) -

By expanding the momentum vectors in spherical waves and recoupling the angu-

lar momenta in such a way that the matrix element appears in a Mandelstam form
we find

(P& S ST T T 1§18, 58, TT 7= =373 :Z

13172
R A

R, X Ay

112
-~z

-~

¥

i

1 L-2'-n
| L
za Al ss-ﬂ’-&&,odd S,(,'u,u.,.u s.LS:!‘

%
QoM
o' ™M
QM

A

* ()Y I3 @) G @ IR G T Ly,

A

Sal44e?

* LAt Ay e, RV LELS M1 TTY Lnin T ITRY 41&1;',,1;‘1l»¢~¢i7(A .,

! '
* AJ\“{L'LU’ T ( p‘"? 4 ¢ ) )
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where

! ) = 2 3
A,\nq'l"z LT (P;'W)q.‘q ) = (Po’h/"‘) sS*T-ht, odd (S"G& ST‘I + 351*'31.0.(- 7_15“; S‘H)

«[245,, 5uq Gl R @EN*CsT WCr s 4
x (sm 3, 53;, - L/81%5,, 3, $35)

£2:375,, Suz (alg) Ip)*F(q) [411

R 133
)‘({_ 1+z‘3‘(’1)$§$‘0°$“2 S:‘i' X :1;
154
, 2 (A.7)
+28 (1443795, 5, N7 G {w dis i) wiainis i)
*(-1)"“%/(‘;1%.s:is)w(a'i‘l%%,')})] .
By comparison with the corresponding Mandelstam expression we have
( . ]
'S.x $) AML»,.&‘LJ'I:T C /"Aa,",c.'z,:rﬁcr ( P.w.,q,q’)~ (a.8)

To arrive at an expansion where the Mandelstam parameters are constants we can
-1
then replace (q/f&) F‘ (q) by the s wave scattering lengths a,2t ) and
\
use constant (effective) values for (g/q') and (Pin/fb), whereas f(q) in
) . 4.2 -2
Section 2 is the same as §f1‘N(q/fL) F(q)-

In this way we find the phase relationships given by Eq. (43).
Tor the Mandelstam parameters b, which only differ in j and J, we also use

the results from the OPE model to find the ratios between the absolute values,

which are given by

1a a
-4 .8 -1 -4 -2 (A.9)
AN CHART R RS A CL RS MR S I
Since b2a is zero and b1a is considerably smaller than the other non-zero

parameters, we have disregarded both b1a and b2a in the previous calcula-

tions.
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TABLE : Matrix elements JS'T'STJ&Jg for the reaction NN — NNPI.
[ [} €
1T s T E J g9 ‘Ts'r'srx,:rg

1 1 1 1 1 0 1 4  e3%,3.

114

1 0 0 T6ib, T,
1 M H 2858, m2b,) 7,
2 0 $Us) 3y, T,
Y Fiaoty, 50"
2 3007R,, T,
1 1 i (b b
A A
S CT TN
*2 - oV i, T,
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FIGURE CAPTIONS

Figure 1 Kinematics for the NN — NN’ reaction.

4)

P + 120-» W+'+ 13C(g.s.), and theoretical cross-sections
13

Figure 2 Experimental cross-section for the reaction

for a (0%,1p1) state in ¢. curve (a) corresponds to the
s

Mandelstam parameters (43). 1In curve (b) the absolute values
of AO’ A1 and a have been increased by 25%, and the signs
have been changed for AO and B.

Figure 3 Experimental cross-section for the reaction
p+ "% o qrt 4 1% (3.09 - 3.85 MeV), and theoretical
cross-sections for a (0+,QSL) state in 130. For the

notation (a) and (b), see the caption for Fig. 2.

Figure 4 Theoretical cross-sections for the reaction

P + 4He -wt s 5He(0+,1p%). The laboratory kinetic energy

for the incident- proton is given in MeV.

EE@EEE-? Theoretical forward cross-sections as functions of the
laboratory kinetic energy for the incident proton.
1 1 13 :
1) BC(O+,1p%) ;2) 30(0+,2s%) ;3) %c(0*,1a5)
2

5

4) He(0*,1p5) 5 5) He(0",Tpy).

Figure 6 The one-pion exchange model.
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