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The reaction p̄p → Λ̄Λ → p̄π+pπ− has been measured with high statistics at a beam momentum
of pp̄ = 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the
self-analyzing property of Λ/Λ̄ decay allows access to unprecedented information on the spin struc-
ture of the interaction. The most general spin-scattering matrix can be written in terms of eleven
real parameters for each bin of scattering angle, each of these parameters is determined with rea-
sonable precision. From these results all conceivable spin-correlations are determined with inherent
self-consistency. Good agreement is found with the few previously existing measurements of spin
observables in p̄p → Λ̄Λ near this energy. Existing theoretical models do not give good predictions
for those spin-observables that had not been previously measured.

PACS numbers: 24.70.+s,25.43.+t,13.75.Cs,13.85.Fb,13.88.te

I. INTRODUCTION

Measurements have been made of the p̄p → Λ̄Λ reac-
tion on a transversely polarized frozen-spin target. An
analysis is presented of data taken at the Low Energy An-
tiproton Ring (LEAR) at CERN, Geneva at pp̄ = 1.637
GeV/c corresponding to a center-of-mass energy which is
78 MeV above Λ̄Λ threshold.

This experiment, carried out by the PS185 collabora-
tion, expands upon a series of Ȳ Y production and re-
lated experiments [1, 2, 3, 4] which have previously been

∗Now at Indiana University,Bloomington, IN, 47405
†Now at Creative Services, St. Genis, France

performed by this collaboration using the same detec-
tor system. These covered wide-ranging kinematics from
very near threshold to higher energies at which the larger
cross section allowed high-statistics studies to be made.

Spin observables have long been of interest in
strangeness-production reactions in part because of the
characteristic strong polarization produced. The hy-
perons in the final state (the word ’hyperon’ will be
used loosely to include anti-hyperons) lend themselves
to study of spin dynamics because of the self-analyzing
power of mesonic hyperon decay. Thus, even before the
introduction of initial-state polarization in these studies,
the PS185 collaboration has been able to greatly expand
the world’s supply of data on spin observables, especially
for p̄p → Λ̄Λ. In particular, final-state polarization com-
ponents of both hyperons and correlations of all spin com-
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ponents of Λ and Λ̄ were accurately measured in addition
to differential cross sections.

The wealth of data produced by PS185 [1, 2, 3, 4] ex-
cited a great deal of theoretical activity [5, 6, 7, 8, 9, 10]
with several models enjoying reasonable success in fitting
the observations. Two distinct theoretical approaches,
meson-exchange [MEX] and quark-gluon [QG] inspired
models, have been used successfully to fit the p̄p → Λ̄Λ
data despite being based on fundamentally different re-
action dynamics.

Several authors [5, 6, 7] have constructed models based
on t-channel exchange of strange mesons. In order to
match the observed data, these meson-exchange models
require a strong tensor interaction and so a spin-flip from
the initial spin-triplet p̄p pair to the final spin-triplet Λ̄Λ
pair. Initial- and final-state interactions are modeled as
well but are found not to qualitatively change the spin-
flip character of these models.

The alternate quark-gluon inspired models[8, 9] are
based upon an assumed s-channel interaction between
q̄q pairs leading to the transformation to an s̄s pair. In
existing models the q̄q pair is assumed to have vacuum
quantum numbers (0+ for 3P0 q̄q pairs) or gluon quan-
tum numbers (1− for 3S1 q̄q pairs). Again there is a
dominance of the spin-triplet state (inspired by the em-
pirical fact that the singlet fraction is, on average, small).
In fact this construction assures pure triplet transitions.
(Since the spin of the Λ reflects the spin of the s-quark,
in the constituent quark model, triplet s̄s pairs guarantee
a triplet Λ̄Λ final state.) Here the assumed fundamental
s-channel q̄q → s̄s process does not flip the spin at all but
some spin-flip strength is introduced with the inclusion
of initial- and final-state interactions.

The difference in spin-flip predictions of MEX and QG
models was suggested [11] as a means of distinguishing
the validity of the two classes of models. Since each model
predicted strong triplet interactions, final-state spin cor-
relations were similar and measurement of final-state spin
alone was not sufficient to distinguish them. Sensitivity
could be found in measurement of the correlation between
initial-state spin and final-state spin. In particular, the
normal-to-normal depolarization and spin transfer were
expected to strongly select between the two classes of
models. These observables, often denoted Dnn and Knn,
respectively, are sensitive to the transfer of spin from the
initial-state proton to the final-state Λ (in the case of
Dnn) or Λ̄ (in the case of Knn). The ’n’ subscripts indi-
cate that the component of spin considered in each case
is the component normal to the scattering plane. Since a
large number of spin correlations will be discussed here, a
more general notation will be introduced below. In par-
ticular, Dnn and Knn will be denoted as Q[np, nΛ] and
Q[np, nΛ̄], respectively.

Experimental study of these particularly interesting
observables required a polarized target. A frozen-spin
target was constructed with such small dimensions that
Λ̄Λ pairs could exit the target before decaying. The suc-
cess of the present measurements relied upon the PS185

apparatus, this new target, and the superb properties of
the LEAR beam.

It was also noted [12] that such data contained enough
information to permit determination of not just a few
observables but the entire spin-structure of the reaction.
From this, all possible spin observables could then be
determined. That analysis has been successfully carried
out [13] and is reported here. A previous publication
[14] already reported the measured spin-transfer and de-
polarizations, extracted using the techniques which are
explained in the present publication. Interestingly, the
measured values disagree strongly with the predictions
from both classes of models, leaving opportunity for fur-
ther theoretical study. These results are also included in
the present paper.

II. SPIN CORRELATIONS

The density-matrix formalism lends itself to analysis of
systems composed of ensembles of non-interfering states,
such as occur in polarized systems. This formalism will
be used therefore to precisely define the spin-correlations
and to relate them to the observed final-state distribution
on the one hand and to the spin-scattering matrix, which
parameterizes the transition, on the other.

In this formalism, the expectation value of an ob-
servable represented by operator O can be written as
< O >= Tr(OρΛ̄Λ) where ρΛ̄Λ is a 4 × 4 density matrix
representing the final-state spin information. In Sec. II A,
we write ρΛ̄Λ in terms of the initial-state polarization

vectors, ~P p̄ and ~P p, and the p̄p → Λ̄Λ transition opera-
tor M(Θc.m.). Since the experiment actually detects the
final-state protons, antiprotons, and pions from the hy-
peron decays, the formalism is extended in Sec. II B to
relate the directions of these particles’ momenta to the
initial-state polarization vectors and the complete set of
the reaction’s spin-observables.

A. Spin Dynamics of p̄p → Λ̄Λ

The initial-state density matrix for spin- 1
2 particles

with polarization ~P can be written as

ρ =
1

2

(

I + ~P · ~σ
)

where I is the identity matrix and σi are the Pauli ma-
trices. In the following discussion, notation is greatly
simplified by defining P0 = 1 and σ0 = I. Then

ρ =
1

2

3
∑

k=0

Pkσk.
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For an initial state of a proton and anti-proton the initial-
state density matrix is

ρp̄p = ρp̄ρp =
1

4

3
∑

j,k=0

P p̄
j σB̄

j P p
k σB

k (1)

where σB̄
j and σB

k operate in the separate spin-space of
the anti-proton and proton, respectively, and a direct
product is implied.

Meanwhile, the density matrix after the interaction,
ρΛ̄Λ, can be written as an arbitrary linear combination
of direct products of σB̄

µ and σB
ν since these span the

space of Hermitian 4×4 operators

ρΛ̄Λ =

3
∑

µ,ν=0

WµνσB̄
µ σB

ν (2)

where the notation of σB̄ and σB from Eq. (1) have been
used in anticipation of the fact that an identification will
be made between the p̄ and Λ̄ anti-baryon spin spaces
and between the p and Λ baryon spin spaces.

Spin correlations are meaningful observables as long
as the coordinate system associated with each particle is
well defined. It is not necessary that the coordinate axes
used for one particle be aligned parallel to those used
for another. The following discussion of spin correlations
applies for any set of coordinates in which the spin com-
ponents of each particle are measured in some set of axes
defined in the rest frame of that particle. The specific
choice of coordinate axes for this analysis is described in
Sec. II C below.

It then follows (since Tr(σµσν) = 2δµν) that

4Wµν = Tr(σB̄
µ σB

ν ρΛ̄Λ).

Substituting this into Eq. (2) gives

ρΛ̄Λ =
1

4

3
∑

µ,ν=0

Tr(σB̄
µ σB

ν ρΛ̄Λ)σB̄
µ σB

ν . (3)

On the right hand side ρΛ̄Λ can be rewritten in terms
of ρp̄p, which is given in Eq. (1). If M is the transition
operator from the p̄p to Λ̄Λ state,

ρΛ̄Λ = Mρp̄pM † =
1

4

3
∑

j,k=0

P p̄
j P p

k MσB̄
j σB

k M †. (4)

Substituting this in Eq. (3) gives the identity

ρΛ̄Λ =
1

4

3
∑

µ,ν=0

3
∑

j,k=0

P p̄
j P p

k

1

4
Tr(σB̄

µ σB
ν MσB̄

j σB
k M †)σB̄

µ σB
ν .

(5)
Only the first term contributes to the unpolarized dif-

ferential cross section,

I0 =
Tr(ρΛ̄Λ)

Tr(ρp̄p)
=

1

4
Tr(MM †).

Factoring this out of the sum in Eq. (5) and defining

Q[jp̄, kp, µΛ̄, νΛ] =
1

4I0
Tr(σB̄

µ σB
ν MσB̄

j σB
k M †) (6)

allows Eq. (5) to be written as

ρΛ̄Λ =
1

4
I0

3
∑

µ,ν=0

3
∑

j,k=0

P p̄
j P p

k Q[jp̄, kp, µΛ̄, νΛ]σB̄
µ σB

ν . (7)

The spin dynamics of the p̄p → Λ̄Λ reaction at any
production angle, Θc.m., is entirely contained within the
quantities Q[jp̄, kp, µΛ̄, νΛ]. These Q’s are the observables
of the present experiment, which we shall refer to as the
’spin correlations’. The unpolarized differential cross sec-
tion is parameterized by I0. Although the functional de-
pendence will not be written explicitly, it is to be under-
stood that I0 and the Q’s are functions of Θc.m.. The Q’s
would be directly measurable if final-state spins could be
measured directly (and initial-state polarizations could
be chosen arbitrarily). For example, measurement of the
mean value of the product of the η-component of Λ̄ spin
and the ξ-component of Λ spin (given the initial p̄ po-
larized in the r direction and proton polarized in the s
direction) would be directly related to Q[rp̄, sp, ηΛ̄, ξΛ] by

< σB̄
η σB

ξ >=
Tr(ρΛ̄ΛσB̄

η σB
ξ )

Tr(ρΛ̄Λ)
=

P p̄
r P p

s Q[rp̄, sp, ηΛ̄, ξΛ]

N

where the normalization factor is given by

N = 1 + P p̄
r Q[rp̄, 0, 0, 0] + P p

s Q[0, sp, 0, 0]

+ P p̄
r P p

s Q[rp̄, sp, 0, 0]

The redundant particle-identification subscripts have
been introduced in the index list of Q to allow suppres-
sion of vanishing elements. Subsequently terms such as
Q[0, sp, 0, 0] will be written simply as Q[sp].

B. Angular Distribution of Decay Products

In fact Λ̄Λ final-state spin information is not directly
measured in this experiment. It can be inferred, how-
ever, from the angular distribution of the decay products
because of the self-analyzing nature of the Λ and Λ̄ de-

cays. For a Λ with polarization vector ~PΛ, the angular
distribution of the decay proton in the Λ rest frame is
given by

Ip(k̂
p) =

1

4π
(1 + α~PΛ · k̂p)

where α = 0.642± .013 is the self-analyzing power [15] of

Λ → pπ− and k̂p is a unit vector in the direction of the
proton’s momentum (in the Λ rest frame). Similarly, for
Λ̄ → p̄π+,

Ip̄(k̂
p̄) =

1

4π
(1 + ᾱ ~P Λ̄ · k̂p̄)
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where ᾱ = −α by CP-conservation.
The transition operator TΛ, representing Λ → pπ− de-

cay must give this observed angular distribution from

Ip(k̂
p) = Tr(TΛρΛT †

Λ) = Tr(TΛ
1

2
(I + ~PΛ · ~σ)T †

Λ)

It then follows that

Tr(TΛσiT
†
Λ) =

αkp
i

2π
if i ǫ{1, 2, 3} (8)

(where kp
i is the i’th directional cosine of the proton’s

momentum) while

Tr(TΛσiT
†
Λ) = Tr(TΛT †

Λ) =
1

2π
if i=0 (9)

For notational simplification, Eqs. (8) and (9) can be
combined into a single equation of the form of Eq. (8)
by extending the definition of kp

µ, defining kp
0 = 1

α
. Then

Eq. (8) can be used to find the angular distribution of
the final-state proton and anti-proton resulting from the
decay of the Λ and Λ̄,

Ifinal(Θc.m., Φc.m., k̂
p̄, k̂p) = Tr(TΛ̄TΛρΛ̄ΛT †

Λ̄
T †

Λ) =
I0(Θc.m.)

16π2

3
∑

µ,ν=0

3
∑

j,k=0

ᾱαQ[jp̄, kp, µΛ̄, νΛ]P p̄
j P p

k kp̄
µkp

ν (10)

where kp̄
µ has similarly been extended by defining kp̄

0 = 1
ᾱ
.

Eq. (10) provides the connection between the ob-
served distribution, Ifinal, and the spin correlations,
Q[jp̄, kp, µΛ̄, νΛ], which are functions of the production
angle Θc.m. and of the beam energy. If no further con-
straints were known, the spin correlations could be ex-
tracted (for each bin of Θc.m.) from the observed de-
cay angular distributions. In fact, as discussed in the
next section, the structure of the spin-scattering matrix
is subject to constraints which enforce parity and charge
conjugation symmetry. As a result the spin correlations
are not independent functions. Rather than attempting
to determine spin correlations independently, it is prefer-
able to determine the parameters of the spin-scattering
matrix and to use them to determine the spin correla-
tions of interest. This results in improved precision of the
resulting spin correlations and guarantees that they are
mutually consistent, obeying all constraints implied by
the structure of the allowed spin-scattering matrix [16].
It has been shown in reference [12] that measurements
of p̄p → Λ̄Λ → p̄π+pπ− with an unpolarized beam on
a transversely polarized target provide enough informa-
tion to fully constrain the spin-scattering matrix. This
then allows determination of all spin correlations, even
those with non-vanishing jp̄, for example, whose direct
measurement would require the use of polarized beam.

C. Coordinate systems

The emphasis of this experiment was the determina-
tion of correlations betweens spins, particularly between
initial-state target spin and and final-state spins. Com-
parison of initial- and final-state spin is complicated by
the fact that initial-state particles are moving at relativis-
tic velocity (β=.58) in the center of mass. Comparing all
spins in a common reference frame would then require

a relativistic boost of the spins. Such a boost of 2-D
spinors is not well defined. Consistent transformation to
a common reference frame would require use of relativis-
tic 4-spinors. This complication is avoided by defining
all such correlations in terms of the spin projections of
each particle in its own rest frame. As mentioned above,
it is not necessary for the coordinate axes used to de-
scribe the spin of one particle be parallel to those used
to describe the spin of another. Indeed, since there is no
common boost direction between particle rest frames it
is not generally possible to define the coordinate axes to
be all mutually parallel. It is conventional to use helicity-
based coordinates in which one axis is aligned with the
particle’s center-of-mass momentum direction.

The final-state polarization direction is inferred from
the angular distributions of the decay products in the rest
frames of the Λ and Λ̄. It is therefore natural to express
spin information for each of these hyperons with respect
to coordinate axes which are defined in their respective
rest frames. Similarly, it is natural to express the target
spin information with respect to axes which are at rest in
the lab frame. For notational completeness, although the
beam is unpolarized, its spin is expressed in a coordinate
system moving with the incident p̄.

The specific coordinate systems used in this analysis
are represented in Fig. 1. All four coordinate systems
share a common n̂ direction, which is the normal to the
scattering plane defined as a unit vector in the direction
of ~pp × ~pΛ (or equivalently in the direction of ~pp̄ × ~pΛ̄).
For the coordinate system associated with each particle
a second axis (̂lp, l̂p̄, l̂Λ, l̂Λ̄) is defined along the di-
rection of the particle’s momentum with respect to the
center of mass of the p̄p system. Finally the third axis
(m̂p, m̂p̄, m̂Λ, m̂Λ̄) is defined for each coordinate sys-

tem as m̂i = n̂i × l̂i so each (̂li, m̂i, n̂i) defines a right-
handed orthonormal set of basis vectors in the rest frame
of particle i.
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FIG. 1: The coordinate axes used to decompose each of the
individual particles’ spin directions are shown. The n̂ direc-
tion is common. The target polarization direction, which is
perpendicular to l̂p is also shown for a typical event in which
the normal to the scattering plane is at angle Φ relative to
the polarization direction.

It is of course important to take into account these
coordinate definitions when the results presented here
are compared to predictions or to other measurements.
The meaning of a specific spin correlation depends upon
the axes with respect to which it is defined. For exam-
ple, with this choice of coordinates, the angle between
m̂p and m̂Λ depends upon the scattering angle. This
must not be neglected when interpreting a result such
as the correlation between the m̂p-component of the ini-

tial proton spin and the m̂Λ-component of the final Λ
spin. These coordinates were also used in extracting the
previously published results [14] from this measurement.
Since those results involved correlations between normal
components of spin, there was no potential for ambiguity
in interpretation of those results.

With these coordinate definitions, n̂ is an axial vector
while m̂ and l̂ are polar vectors for each of the coordinate
systems. Then for any of the spins expressed in its respec-
tive coordinate system, σn is scalar under parity inversion
while σl and σm are pseudoscalar. Parity conservation
then requires that Q[rp̄, sp, ηΛ̄, ξΛ] must vanish if an odd
number of l’s and m’s appear in {r,s,η,ξ}. Since the tar-
get is transversely polarized in this experiment P p

l is zero.
This reduces the sum over k in Eq. (10) to run only over
k ǫ {0,m,n}. Furthermore, the unpolarized beam means
that only the j=0 terms survive. Further constraints on
Eq. (10) result from C-parity conservation which requires
that Q[jp̄, kp, µΛ̄, νΛ] = Q[kp̄, jp, νΛ̄, µΛ]. Additional sim-
plification results from Bohr’s rule [17] which requires,
for example that Q[np, mΛ̄, mΛ] = −Q[np, lΛ̄, lΛ]. Incor-
porating all these simplifications, Eq. (10) reduces from
a sum over 256 terms to

Ifinal(Θc.m., Φc.m., k̂
p̄, k̂p)

I0(Θc.m.)/16π2
=







































































1
+ Q[nΛ] (ᾱkp̄

n + αkp
n)

+ Q[nΛ̄, nΛ] ᾱαkp̄
nkp

n

+ Q[mΛ̄, mΛ] ᾱαkp̄
mkp

m

+ Q[lΛ̄, lΛ] ᾱαkp̄
l kp

l

+ Q[mΛ̄, lΛ] ᾱα(kp̄
mkp

l + kp̄
l kp

m)
+ Q[np] (PT cos (Φc.m.) + ᾱαPT kp̄

nkp
n cos (Φc.m.))

+ Q[np, nΛ̄] ᾱPT kp̄
n cos (Φc.m.)

+ Q[np, nΛ] αPT kp
n cos (Φc.m.)

+ Q[mp, mΛ̄] ᾱPT kp̄
m sin (Φc.m.)

+ Q[mp, lΛ̄] ᾱPT kp̄
l sin (Φc.m.)

+ Q[mp, mΛ] αPT kp
m sin (Φc.m.)

+ Q[mp, lΛ] αPT kp
l sin (Φc.m.)

+ Q[np, mΛ̄, mΛ] ᾱαPT (kp̄
mkp

m cos (Φc.m.) − kp̄
l kp

l cos (Φc.m.))
+ Q[np, mΛ̄, lΛ] ᾱαPT kp̄

mkp
l cos (Φc.m.)

+ Q[np, lΛ̄, mΛ] ᾱαPT kp̄
l kp

m cos (Φc.m.)
+ Q[mp, mΛ̄, nΛ] ᾱαPT kp̄

mkp
n sin (Φc.m.)

+ Q[mp, lΛ̄, nΛ] ᾱαPT kp̄
l kp

n sin (Φc.m.)
+ Q[mp, nΛ̄, mΛ] ᾱαPT kp̄

nkp
m sin (Φc.m.)

+ Q[mp, nΛ̄, lΛ] ᾱαPT kp̄
nkp

l sin (Φc.m.)







































































. (11)

Eq. (11) contains just 19 spin-correlations along with
I0. Since each term manifests a unique angular depen-
dence these spin-correlations are, in principle, directly
measurable by fitting Eq. (11) to the angular distribu-
tion observed in scattering from a transversely polar-
ized target. Although this is not the technique employed
here for determination of spin-correlations, these 19 spin-

correlations will be referred to as the being ”directly mea-
surable”.



6

III. SPIN-SCATTERING MATRIX

The transition operator M, introduced in Eq. (4),
transforms from the space spanned by direct products
of proton and anti-proton spinors to one spanned by the
direct products of Λ and Λ̄ spinors. Since it includes the
spin part of the transition, it is called the spin-scattering
matrix. It can be represented by a 4 × 4 complex ma-
trix. It is convenient to construct this operator from a
combination of direct products of ’baryon operators’ and
’anti-baryon operators’. Baryon operators will be defined
to be those which transform from the proton spin-space
to the Λ spin-space while leaving anti-baryon spinors un-
affected. Conversely, anti-baryon operators will trans-
form from p̄ spinors into Λ̄ spinors. This identification
of proton spinors with Λ spinors is just a convenience,
there is no loss of generality since the 16 direct products
considered will span the entire space of 4 × 4 Hermitian
matrices.

Constructing terms with definite symmetry properties
is simplified by choosing {IB, σB

l , σB
m, σB

n } as the baryon

operators and {IB̄, σB̄
l , σB̄

m, σB̄
n } as the anti-baryon oper-

ators. Although these operators have the same matrix
representations as the spin operators, they are actually
transition matrices having the space of proton spinors
as their domain and the Λ spinor space as their range.
For η ǫ {0, l, m, n}, each σB

η transforms eigenstates of
the η̂-component of proton spin to the same eigenstates
of the η̂-component of Λ spin, multiplied by the eigen-
value. Similarly, σB̄

η maps anti-proton η̂-eigenstates to
anti-lambda η̂-eigenstates. Under parity inversion, the
behavior of σB

n differs from that of σB
l and σB

m because n̂

is an axial vector while l̂ and m̂ are polar vectors. Given
that they act upon components of spinors and produce
components of spinors, the σB

η ’s have the same parity
properties as the corresponding components of spin, i.e.
σB

n is scalar under parity inversion while σB
l and σB

m are
pseudo-scalar.

Given these properties, the baryon and anti-baryon op-
erators may be used to construct a complete set of oper-
ators having good parity and C-parity and spanning the
direct-product space. A set of such operators is listed in
Table I along with their parity and charge conjugation
eigenvalues.

Conservation of parity and C-parity in the p̄p → Λ̄Λ re-
action requires [18] that only the terms with positive par-
ity and C-parity contribute to the spin-scattering matrix.
An arbitrary linear combination of the allowed terms can
be constructed by weighting each term by the coefficients
given in Table I. A conventional parameterization for M
[19] is

M =

1
2

{

(a + b)IBIB̄ + (a − b)σB
n σB̄

n + (c + d)σB
mσB̄

m

+(c − d)σB
l σB̄

l + e(σB
n IB̄ + IBσB̄

n )

+g(σB
mσB̄

l + σB
l σB̄

m)
}

(12)
Since overall phase is unimportant, the six complex pa-

Operator P C coefficient

IBIB̄ + + a + b

σB
n σB̄

n + + a − b

σB
l σB̄

l + + c + d

σB
mσB̄

m + + c − d

σB
n IB̄ + IBσB̄

n + + e

σB
n IB̄ − IBσB̄

n + − 0

σB
mIB̄ + IBσB̄

m − + 0

σB
mIB̄ − IBσB̄

m − − 0

σB
l IB̄ + IBσB̄

l − + 0

σB
l IB̄ − IBσB̄

l − − 0

σB
mσB̄

l + σB
l σB̄

m + + g

σB
mσB̄

l − σB
l σB̄

m + − 0

σB
n σB̄

m + σB
mσB̄

n − + 0

σB
n σB̄

m − σB
mσB̄

n − − 0

σB
n σB̄

l + σB
l σB̄

n − + 0

σB
n σB̄

l − σB
l σB̄

n − − 0

TABLE I: A complete set of operators spanning the space
of operators which transform from p̄p spinors to Λ̄Λ spinors.
These operators are constructed to have definite parity P and
charge-conjugation parity C. The P and C values are also
listed. The final column gives the coefficient by which each
term is weighted in forming M.

rameters {a,b,c,d,e,g} can be represented by just 11 real
parameters for each Θc.m.. Specifically, parameter ’a’ will
be chosen to be real and non-negative while the other five
parameters have real and imaginary parts. These param-
eters may be determined by an unbinned 11-parameter
simultaneous fit to the observed production and decay
angles of reconstructed p̄p → Λ̄Λ → p̄π+pπ− events, as
described in Sec. VD below. Once the parameters of the
spin-scattering matrix have been determined, a wealth
of spin-correlations can be calculated by substituting the
form of M given by Eq. (12) into the definition of the spin
correlation, Eq. (6). For example, Table II gives the re-
sults, in terms of {a,b,c,d,e,g}, for the 24 spin correlations
which could be directly measured with a transversely po-
larized target and unpolarized beam. In fact, Eq. (6) can
also be used to calculate other spin correlations which
would be directly measurable only with longitudinal tar-
get polarization and/or polarized beam.

Table II also lists names which have traditionally been
used to identify some of these spin correlations, A for
scattering asymmetry, P for final-state polarization, D
for depolarization, K for spin transfer, and C for final-
state spin correlations. Here C is also used for 3-spin
correlations between the target and final state. Caution
should be used in identifying these spin correlations with
those in other publications having the same traditional
name. The precise meaning of spin correlations involving
m and l depend critically upon the choice of coordinates.
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Spin Correlation Traditional I0 × Q ( = 1

4
Tr(σB̄

µ σB
ν MσB̄

j σB
k M†) )

Q[0p̄, 0p, 0Λ̄, 0Λ] = 1 I0 = 1

2
{|a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |g|2}

Q[nΛ̄, nΛ] Cnn
1

2
{|a|2 − |b|2 − |c|2 + |d|2 + |e|2 + |g|2}

Q[np, nΛ] Dnn
1

2
{|a|2 + |b|2 − |c|2 − |d|2 + |e|2 − |g|2}

Q[np, nΛ̄] Knn
1

2
{|a|2 − |b|2 + |c|2 − |d|2 + |e|2 − |g|2}

Q[nΛ] = Q[nΛ̄] Pn = P̄n Re(a∗e) − Im(d∗g)

Q[np] = Q[np, nΛ̄, nΛ] An = Cnnn Re(a∗e) + Im(d∗g)

Q[mΛ̄, lΛ] = Q[lΛ̄, mΛ] Cml = Clm Re(a∗g) + Im(d∗e)

Q[np, mΛ̄, mΛ] = −Q[np, lΛ̄, lΛ] Cnmm = −Cnll Re(d∗e) + Im(a∗g)

Q[mΛ̄, mΛ] Cmm Re(a∗d + b∗c) + Im(e∗g)

Q[lΛ̄, lΛ] Cll Re(−a∗d + b∗c) − Im(e∗g)

Q[np, lΛ̄, mΛ] Cnlm Re(e∗g) + Im(−a∗d + b∗c)

Q[np, mΛ̄, lΛ] Cnml Re(e∗g) + Im(−a∗d − b∗c)

Q[mp, mΛ] Dmm Re(a∗b + c∗d)

Q[mp, nΛ̄, lΛ] Cmnl Im(−a∗b + c∗d)

Q[mp, mΛ̄] Kmm Re(a∗c + b∗d)

Q[mp, lΛ̄, nΛ] Cmln Im(−a∗c + b∗d)

Q[mp, nΛ̄, mΛ] Cmnm Re(b∗e) − Im(c∗g)

Q[mp, lΛ] Dml Re(c∗g) + Im(b∗e)

Q[mp, lΛ̄] Kml Re(b∗g) + Im(c∗e)

Q[mp, mΛ̄, nΛ] Cmmn Re(c∗e) − Im(b∗g)

TABLE II: The first column lists the spin correlations which are directly accessible with a transversely polarized target and
unpolarized beam. The third column gives the indicated correlation (multiplied by I0) in terms of the parameters of the
spin-scattering matrix given in Eq. (12). The second column lists alternate names for the spin correlations.

IV. APPARATUS

With the exception of the polarized target and asso-
ciated trigger detectors, most of the equipment was the
same as that used in previous versions of the PS185 ex-
periment [1, 2, 3, 4]. A schematic view of the appara-
tus is shown in Fig. 2. A compact set of tracking de-
tectors was located just downstream of the target area.
Because of the forward boost of the Λ̄Λ system, the tra-
jectories of both particles passed through these tracking
chambers. This resulted in a large acceptance for the
full reconstruction of the charged tracks resulting from
p̄p → Λ̄Λ → p̄π+pπ−. Accurate measurement of the
topology of these charged tracks is sufficient, apart from
ambiguity of Λ vs. Λ̄, to completely reconstruct the kine-
matics of each event including the hyperon decay angles
whose distributions yield information on the final-state
spin. The ambiguity of Λ vs. Λ̄ is resolved by a solenoid
magnet further downstream which bends the trajectories
enough to allow the sign of the charge of tracks to be
determined.

The tracking detectors consisted of two detector stacks.
The first was 10 planes of multi-wire proportional cham-
bers with planes alternately oriented at ±45◦ relative
to the horizontal (the U and V directions). These had
a pitch of 1.27 mm and a separation of 1 cm between
planes. The second stack was 13 planes of drift chambers
oriented vertically and horizontally (the X and Y direc-

tions) with an average separation between planes of 1.35
cm. The 4 cm drift cells were read out by a pair of sense
wires separated by .42 mm, which resolved the usual left-
right ambiguity. A set of three similar but larger drift
chambers was located inside the solenoid magnet to de-
termine the direction of deflection of tracks by the 1 kG
magnetic field.

Since the beam passed through all these chambers, it
was necessary to desensitize the center of each chamber.
This was done by electro-plating additional metal onto a
3 to 10 mm length of the relevant sense wires to thicken
them at the position at which the beam would pass, pre-
venting gas amplification.

Four planes of microstrips with 100 µm pitch were lo-
cated upstream of the target. These provided tracking of
the individual incident p̄ for a fraction of the events. Four
planes provided no redundancy so a beam track could be
reconstructed only for events in which exactly one clus-
ter was found on each plane. This applied for only about
45% of events because of beam pile-up and detector-aging
in the high intensity beam. For other events the average
beam track was used.

The target was enclosed within a 4.2 cm diameter vac-
uum vessel. Scintillation counters were used to form a
trigger which exploited the charged-neutral-charged sig-
nature of p̄p → Λ̄Λ → p̄π+pπ− events by selecting events
in which a p̄ entered the target vessel, no charged parti-
cles left the target region and at least one charged particle
exited the tracking chambers. Figure 2b shows the scin-



8

FIG. 2: a) A schematic plan view of the detectors, magnet, and target. The solenoid field, shown in the positive y-direction,
could be reversed to reduce systematic uncertainties. Tracks from a typical event are superimposed. b) An expanded view of
the target region shows the beam-defining scintillators and the veto scintillators used to select events in which only neutral
particles exit the target. The hodoscope planes completed the trigger by requiring charged particles downstream of the decay
region.

tillators used to require an incident p̄ and to veto events
in which charged particles exit the target area. Figure
2a shows the two scintillator hodoscope planes which in-
dicated a charged decay product.

The most significant change in the apparatus from pre-
vious versions of PS185 was the change from a polyethy-
lene active target to a transversely polarized frozen spin
target[20]. As described above, it has been shown [12]
that this greatly expands the accessible spin information.
The target itself was a solid 9 mm long, 6 mm diam-
eter cylinder of frozen Butanol (C4H9OH) doped with
TEMPO (C9H18NO)[21]. The axis of the cylinder lay
along the beam direction. Figure 3 shows the nested
cryostats and the windows which allowed the beam to
enter and the Λ̄Λ to exit. An extremely compact de-
sign was achieved to hold the target at 60 mK within
a room-temperature outer vacuum vessel of only 2.1 cm
radius. Such a compact design was critical to the success
of the experiment as it allowed a significant fraction of
the p̄p → Λ̄Λ → p̄π+pπ− events of interest to be selected
by their neutral intermediate state. With a large target
vessel the hyperons would have decayed internally and
the trigger information would have been lost.

The target was polarized roughly every 22 hours by
surrounding it by a superconducting solenoid, with a field
of up to 5 T, and pumping with microwaves to achieve
dynamic nuclear polarization. Initial polarizations up
to 75.3% were achieved. In frozen spin mode, with a
holding field supplied by an internal solenoid, polariza-
tion lifetime was roughly 100 hours with beam on target.
The average polarization over the run was about 62%.

The polarization direction was vertical (transverse to the
beam) and could be chosen to be positive or negative to
reduce systematic errors.

The beam rate on target was approimately 6×105 an-
tiprotons per second. The integrated beam on target for
this measurment was 1.6 × 1011 antiprotons. Scaling by
the data acquisition live time of 79.2% yields an effective
integrated intensity of 1.27 × 1011 antiprotons.

V. DATA ANALYSIS AND CROSS SECTION

RESULTS

A. Event Reconstruction and Kinematic Fitting

The events of interest, p̄p → Λ̄Λ → p̄π+pπ−, are char-
acterized by their two-’Vee’ structure resulting from the
decay of the neutral hyperons. The first goal of the
analysis is to extract the small number of candidates
for this event topology from the very large number of
events (largely n̄n followed by n̄ annihilation) which sat-
isfy the charged-neutral-charged trigger condition. Less
than 0.1% of the recorded events were ultimately found
to be consistent with the p̄p → Λ̄Λ → p̄π+pπ− hypothe-
sis. The next goal is to determine which candidate events
match the constraints enforced by energy and momentum
conservation on real p̄p → Λ̄Λ → p̄π+pπ− events. This
is done by kinematic fitting of the event topologies in
the tracking chambers, which are in a region free of mag-
netic field. This fit also provides the best estimate of the
production and decay angles of interest and of their cor-
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FIG. 3: (Color online) Schematic cross-sectional view
through the cryostat system (four concentric vertical cylin-
ders) holding the frozen spin target (a horizontal cylinder).
Coordinates are indicated relative to the center of the target.
The antiproton beam entered through the four thin windows
on the left and interacted in the frozen butanol target. Hy-
perons escaped with relatively little interaction through the
large exit windows shown on the right. Dashed lines represent
20 µm titanium windows while dash-dot lines represent 40 µm
aluminum windows. Coils which provide the holding field are
shown shaded. The trigger selected only those events in which
the hyperons survived long enough to escape the cryostat and
pass the veto detectors before decaying.

relations. Additionally, information from the three drift
chambers within the solenoidal magnetic field is used to
determine the sign of the charged particles. If at least one
particle’s sign can be clearly determined, then the Λ-Λ̄
ambiguity can be resolved and the event can be used in
determining spin correlations.

When possible, microstrip information was used in the
kinematic fit to define the position and direction of the
incoming p̄. When this was not possible, average beam
position and direction were used. Because of the very
small emittance of LEAR’s adiabatically cooled beam,
this was sufficiently precise.

Drift chamber wire positions and time-to-distance cali-
brations were determined empirically from straight track
data. This allowed drift chamber hit positions to be ac-
curately determined, typically with better than 200 µm
resolution.

For candidate p̄p → Λ̄Λ → p̄π+pπ− events, hit posi-
tions were determined from MWPC wire positions and
from drift chamber wire position and time. A significant
walk correction was made for drift chamber hits based
upon time-above-threshold. Hits from all planes sharing

a common readout direction (X,Y,U, or V) were then
searched for 2-D track projections (X-Z, Y-Z, U-Z, or
V-Z). Drift chamber hit positions on a 2-D track candi-
date were iteratively improved by correcting drift-time
to position conversion to reflect the apparent slope of
the track. To allow for crossing tracks, a hit could be
included in more than one 2-D track. A maximum track
angle of 60◦ was allowed in each projection since tracking
was inaccurate beyond that range. Losses due to that cut
were accounted for as acceptance losses as discussed in
the Sec. V D.

Combinations of three or more of these 2-D tracks were
then considered as candidate 3-D tracks. The 45◦ rota-
tion of the MWPC projections relative to the drift cham-
ber projections helped eliminate spurious combinations.
Confidence-level cuts based on χ2 were used to determine
whether sets of 2-D projections were consistent with a
3-D track. Tracks constructed from just two 2-D projec-
tions were considered only if neither projection could be
used to form a 3-D track having more projections.

Candidate Vee’s were formed from pairs of 3-D tracks
having a distance-of-closest-approach consistent with
zero. These Vee’s were rejected if they were not consis-
tent with in-flight decay of a Λ in the momentum range
(471-1161 MeV/c) expected for p̄p → Λ̄Λ → p̄π+pπ−.
A single 3-D track was allowed to be included in more
than one Vee to avoid losing a real Vee by having a track
mis-assigned to a false Vee.

Pairs of Vee candidates (which did not share any 3-D
tracks) were then considered as candidates for kinematic
fitting. The pair was first tested for rough consistency
with the kinematic hypothesis. (e.g. Transverse com-
ponents of momentum, calculated independently from
the topology of each Vee, should be opposite and equal,
within errors.)

For all tracking cuts, simulated events (discussed in
Sec. VB) were used as a guide in setting confidence-
level cuts to avoid cutting good events. The simula-
tion included effects due to finite resolution and multiple-
scattering.

Kinematic fitting was based upon the fact that the
ideal topology of an event (neglecting finite resolution,
multiple-scattering, and interactions) can be completely
predicted in terms of 14 parameters:

− 3 components of beam momentum

− 3 coordinates of production vertex

− 2 decay lengths

− 2 production angles (Θc.m. and Φc.m.)

− 4 decay angles (θΛ, φΛ, θΛ̄, φΛ̄ ).

The production and decay angles are of greatest interest
since they hold the information on the spin dynamics. By
varying these 14 parameters it should be possible to find
a hypothesis which is consistent with the hits on the ob-
served Vee-pair, within errors. If satisfactory consistency
cannot be achieved then the pair can be rejected as not
originating from p̄p → Λ̄Λ → p̄π+pπ−. If an acceptable
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fit can be found, then it gives the best estimate of the 14
parameters.

When evaluating consistency of a hypothesized set of
parameters not only the measured track hits were used
but also a data point was included to represent, with ap-
propriate errors, the knowledge of the beam energy and
the beam direction for that event. Individual hits (as op-
posed to tracks) were treated as measurements in evalu-
ating the goodness of fit. The errors on the measurements
were not treated as being independent, however. Evalu-
ation of goodness of fit took into account the fact that
the errors in hit positions on any given track were cor-
related because of multiple-scattering. This correlation
was increased by the fact that the scattering did not al-
ways happen uniformly along a track but could be greatly
increased at points where the particle hit a wire of the
tracking chambers. Simulated events were used to study
the covariance introduced by multiple-scattering and to
ensure that the fitting procedure properly accounted for
it.

A generalization [13] of the Levenberg-Marquardt[23]
method was used to adjust the 14 parameters to minimize
a likelihood statistic (analogous to χ2) which accounted
for covariance due to multiple-scattering. The estimated
errors on parameters were assigned based on the covari-
ance matrix from the fit. As an example of the accuracy
of event-reconstruction, the azimuthal production angle
Φc.m.was typically determined with an r.m.s. error of
less than 0.4◦ (except when it diverged near the poles at
sin(Θc.m.) = 0). Also cos(Θc.m.) had a mean r.m.s. error
of roughly 0.04 for the worst-case events (Θc.m. ≈ 90◦)
falling roughly linearly to less than 0.004 for 0◦ and 180◦

scattering.

The fit was heavily over-constrained by the measured
topology of the event, along with the 12 constraints due
to 4-momentum conservation at all three vertices. A
rough measure of fit-quality, Q, was calculated by treat-
ing the likelihood statistic as if it were χ2-distributed and
calculating the confidence level. A flat distribution over
0 ≤ Q ≤ 1 would be expected from a true χ2 statistic.
The actual fit-quality distribution has a large peak be-
low Q = .008 resulting from unrelated background events
(such as anti-neutron annihilation) which produce large
numbers of tracks. This very sharp peak was cut early
in the analysis and will not be included in the discussion
of fit-quality which follows. The remaining Q distribu-
tion is shown in Figure 4. The peak at high fit-quality
(0.9 ≤ Q ≤ 1.0) is understood as resulting from events
in which no track was substantially deflected by hitting
a chamber wire. Conversely, the peak a low Q results
largely from events in which one or more track suffered
significant deflection. As shown in Figure 4, Monte Carlo
simulation correctly predicted the general shape of the
observed distribution, including the skew towards high Q
and the peaks at large and small Q. The small residual
differences are believed to result from imperfect modeling
of the multiple scattering and matter distribution.

Events with Q < 0.1 were rejected. This cut not only

FIG. 4: Distribution of fit-quality, Q, found by treating lik-
lihood as if it were distributed with a χ2 statistic. Shown
dashed is Monte Carlo prediction, normalized to the data over
the interval .1 ≤ Q ≤ 1.

cleanly rejected the spike of background events at very
low Q, it also rejected a significant fraction of the events
from quasi-free Λ̄Λ production on a bound proton in a
carbon, oxygen, or nitrogen nucleus in the target. The
efficiency of rejection of such events was tested by fitting
the p̄p → Λ̄Λ → p̄π+pπ− hypothesis to a dataset which
was collected using a pure carbon target. These events
showed a peak at low Q, with about half the events being
eliminated when events with Q < 0.1 were cut. The re-
maining tail extended across the Q distribution. Scaling
that data to the number of non-Hydrogen nuclei in the
doped Butanol target, the quasifree contamination can
be estimated as 1.7±0.1% of the final Λ̄Λ data set. Since
the protons involved are unpolarized, this is expected to
appear mostly as a dilution of the extracted spin observ-
ables. This effect has been included in estimates of the
systematic errors.

The cut was expected to reject approximately 9% of
good p̄p → Λ̄Λ → p̄π+pπ− events and so would be ex-
pected to not significantly bias spin correlations unless
there was a strong angular variation in the losses. Monte
Carlo simulated distributions for azimuthal production
angle and individual decay angles matched those of the
actual accepted angular distributions, without indication
of angular variation of the losses. Furthermore, analysis
of Monte Carlo simulated data with the same analysis
cuts showed the reconstructed spin-correlation and spin
scattering matrix parameters to be in agreement, within
expected statistical errors, with those used to generate
the Monte Carlo events.

Kinematic fitting in the field-free region cannot distin-
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guish the Λ from the Λ̄. Tracks were extended into the
solenoid and the three drift chambers there were searched
for triplets of hits which could be used to assign a charge
to at least one of the tracks. The hits were compared
to predictions based upon the reconstructed momentum
and angle of the track and both possible charges. Ex-
pected covariance of the hits, which was large because
of multiple-scattering in the coils of the solenoid, was
taken into account. Any track which was well fit by one
charge hypothesis acted as a ’vote’ for which Vee was
the Λ. In principle a single vote was sufficient to re-
solve the ambiguity and properly identify all four tracks.
Events with multiple votes occasionally had two tracks
which voted differently on which Vee should be identified
as the Λ. Additionally, 8% of the events were unusable
because they had no vote or had conflicting votes.

A näive estimate of the error rate of these individual
votes can be achieved by assuming the error rate is a con-
stant, uncorrelated with the number of votes. The rate of
inconsistency between the votes in two-vote events would
then imply a 3.1% error rate on individual tracks. As-
suming that the same error rate applies for those events
which have only a single vote leads to the estimate that
in total the Λ−Λ̄ identification was interchanged in 1.1%
of the reconstructed events.

More careful evaluation however shows that this näive
estimate under-predicts the actual rate of inconsistency
for multiple-vote events, indicating a correlation between
number of votes and error rate. Without adjustable pa-
rameters, the Monte Carlo simulation described in the
next section makes an excellent prediction of both the
observed distribution of number of votes per event and
the rate of inconsistent votes as a function of the number
of votes. This gives some confidence in the Monte Carlo
prediction that the actual fraction of events in which the
Λ − Λ̄ identification was interchanged is only 0.7% with
no marked dependence on Θc.m.. The smaller value re-
sults from the Monte Carlo’s prediction of a lower error
rate for single-vote events than for two-vote events.

Combining these two estimates, a (0.9±0.2)% misiden-
tification rate was assumed when correcting for contam-
ination as explained in Sec. VD. The estimated error
of ±0.2% was included in the systematic error analysis.
This contamination was negligible in all but the two most
back-angle bins.

A total of 30818 events were successfully kinematically
reconstructed as Λ̄Λ events with the Λ-Λ̄ ambiguity re-
solved.

B. Monte Carlo Simulation

An understanding of the angular dependence of accep-
tance is critical to successful extraction of spin scattering
information from angular distributions. The acceptance
function used to extract spin observables was evaluated
using a simulation designed to incorporate empirical de-
tector response along with predicted particle interactions.

The Monte Carlo simulation was also used in tuning algo-
rithms and setting cuts to optimize tracking, Vee-finding,
and fitting. Simulated events were also used to study sys-
tematic errors.

The GEANT-based [22] simulation included multiple-
scattering, δ-ray production, and hadronic interactions.
The latter was especially important for the final-state
p̄, which has a large annihilation cross-section. The de-
scription of the mass distribution included the target,
cryostat, scintillators, chamber foils, gas, and wires.

The position and response of detectors were deter-
mined empirically when possible and used as input for
simulation. Positions of trigger scintillators were deter-
mined by tracking through the micro-strip detectors us-
ing data from dedicated calibration runs taken with a
thick scatterer upstream of the microstrips. These data
were also used to determine tracking chamber positions
and to measure their efficiencies as a function of track
slope and position.

Simulation of the wire chambers included observed de-
crease in chamber efficiencies near the sense wires, the
observed effective size of the ’dead spot’ built into the
center of each plane, and the observed decrease in effi-
ciency on the neighboring drift chamber sense wire due
to field distortion at the ’dead spot’.

The effect of the trigger scintillators was an important
component of the simulation. Use of trigger scintillators
was essential to select out the rare events of interest. The
cryogenic target however made it impossible to place the
scintillators as close to the production point as had been
done in all previous versions of the PS185 experiment.
Therefore a large fraction of all p̄p → Λ̄Λ → p̄π+pπ−

events were lost because at least one hyperon decay oc-
curred upstream of the veto scintillators.

Figure 5 shows a comparison between simulated and
measured distributions, as an example of a test of the
simulation. The z component of vertex position of Λ
decay is shown. The distribution is seen to be well pre-
dicted by simulation, including the sharp rise due to the
position of the veto scintillators. The target, as shown
in Fig. 3b, is located upstream of this position but the
veto scintillators prevent triggers for events in which the
decay occurs further upstream.

C. Differential Cross Section

The Φc.m.-averaged differential cross section for Λ̄Λ
production at pp̄ = 1.637 GeV/c can be found from the
spin-matrix parameters {a,b,c,d,e,g}, determined as de-
scribed in the following sections, as

<
dσ

dΩΛ

> ≡
1

2π

dσ

d cosΘc.m.

= I0

=
1

2
{a2 + b2 + c2 + d2 + e2 + g2}.
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FIG. 5: (Color online) Comparison of the hyperon decay ver-
tex z-coordinate distributions between data (solid line) and
simulated data set (shaded).

FIG. 6: Results for the φ-averaged differential cross section
(solid). The previous measurement [2] at 1.642 GeV/c, scaled
by a factor of 1.26 to match present integrated cross section,
is superimposed (open diamonds).

The differential cross section so found is shown as dark
points in Fig. 6. The cross section is essentially iden-
tical to that found by counting Λ̄Λ events within each
cos(Θc.m.) bin and correcting for mean acceptance over
the angular distributions found below.

The unequal bin widths seen in Fig. 6 were chosen to
give roughly equal statistics of observed Λ̄Λ events in
each of sixteen cos(Θc.m.) bins. This allowed a stable fit
of the eleven spin-matrix parameters to be performed in
each bin. Uniform binning would have sacrificed forward-
angle cos(Θc.m.) resolution or resulted in low-statistics
fits at back angles leading to instability and large er-
rors. The cross section is discussed here, in advance of
the explanation of the fitting procedure, to motivate this
choice of cos(Θc.m.) bins, which applies to all subsequent
discussion of the matrix parameters.

The open points in Fig. 6 show a renormalized ver-
sion of a previously published result [2] from an ear-
lier version of the PS185 experiment using unpolarized
polyethylene target cells surrounded by scintillator. That
measurements were made at pp̄ = 1.642 GeV/c which is

very nearly the same beam momentum as the present
data, pp̄ = 1.637 GeV/c. For the purpose of compar-
ison of shapes, the older result has been scaled up by
a factor of 1.26 to match the integrated cross section
of 81.1 ± 0.5+5.8

−7.5 µb measured in the present experiment
(where the first error is statistical and the second is sys-
tematic). The systematic errors assigned to the present
measurement are larger than on earlier ones because the
cryogenic polarized target introduced larger uncertain-
ties in target thickness, target position relative to trig-
ger counters, and hadronic interactions. As described in
Sec. V E, these systematic errors have been realistically
estimated so an explanation is required for the apparent
discrepancy between the present and previous determina-
tions of total cross section. The normalization discrep-
ancy in early PS185 results has already been described in
an earlier publication [3]. Hadronic interactions and mul-
tiple scattering were not included in the custom-written
Monte Carlo simulation code used to determine accep-
tance corrections in early analyses of PS185 data [1, 2].
Versions of a GEANT-based simulation have been used
in calculating acceptances for more recent results [3, 4].
Inclusion of hadronic interactions and multiple scatter-
ing increased the estimated yield by 8-12%. With a
10 ± 2% adjustment in normalization, the older result
gives σ = 70.4 ± 0.4 ± 2.2 µb which roughly agrees with
the present result within errors. The spin-correlations
are insensitive to any systematic error on overall normal-
ization.

Comparison of the two data sets in Fig. 6 shows some
difference in shape of the distribution at forward angle.
The present analysis took into account correlated errors
due to track deflections caused by multiple-scattering.
This allowed events to be reconstructed which might oth-
erwise have been lost. The older analysis did not al-
low for multiple-scattering in event reconstruction. The
lost events would not have been compensated by accep-
tance corrections since multiple-scattering was not in-
cluded in the Monte Carlo simulation. Furthermore, esti-
mates of expected losses, found by disabling the multiple-
scattering correlation in fitting in the present analysis, in-
dicate that the effect is greatest at forward and back an-
gles, where hyperon momenta are low. The sharper peak
at forward angles seen in the present data is therefore
believed to be accurate while the older data is slightly
distorted by multiple-scattering losses.

D. Fitting Spin-scattering Matrix Parameters

For each bin in Θc.m., Eq. (11) represents the dis-
tribution of events across a 5-dimensional space of an-
gles (Φc.m., cos(θΛ̄), φΛ̄, cos(θΛ), φΛ) which will be
represented by a 5-dimensional vector, ~v for notational
convenience. With only roughly 2000 events in each
Θc.m. bin, performing a simple χ2-fit by subdividing
each of the five coordinates into bins is excluded. An
unbinned maximum-likelihood fitting technique was em-
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ployed. This is often called simply ’maximum-likelihood
fitting’ a name which fails to distinguish from other fit
methods such as χ2 minimization, which also correspond
to a maximum likelihood.

Unbinned fitting is a limiting case of fitting with Pois-
son statistics. If the data were binned into K bins with
nk being the number of events in bin k, then the likeli-
hood of the observed data set would be

L =

K
∏

k=1

e−φ(~vk,~a)∆~vk{
(φ(~vk,~a)∆~vk)nk

nk!
}

where φ(~vk,~a) is the probability density function which
depends on the eleven real parameters of the spin-
scattering matrix, here represented as the 11-dimensional
vector ~a. The volume of the k’th 5-dimensional bin is
∆~vk. If the number of bins, K, now becomes large com-
pared to the number of events, N , then nk will be zero
for most bins and will be unity for N bins. In this limit
the likelihood becomes

L =
K
∏

k=1

e−φ(~vk,~a)∆~vk

N
∏

j=1

φ(~vj ,~a)∆~vj

where the second product runs over only the occupied
bins. Neglecting background contamination, φ is the in-
tensity distribution, described by Eq. (11), scaled by the
integrated luminosity of the experiment, the solid angle
corresponding to the Θc.m.-bin considered, and the aver-
age acceptance probability for coordinates ~vk, ~vk.

Taking the log of L introduces a sum of ln(∆~vj) terms
which would diverge in the limit of infinitesimal bin size.
Since these terms are independent of ~a, discarding them
does not change the value of ~a which maximizes the like-
lihood. Let M′ represent −2 ln(L) with these terms dis-
carded. Then in the limit of infinitesimal bin size,

M′ = 2

∫

φ(~v,~a) d~v − 2
N

∑

j=1

ln(φ(~vj ,~a))

Maximization of the likelihood for a data set {~v1

... ~vN} can be accomplished by finding the pa-
rameters, ~a which minimize M′. Writing φ(~v,~a)
as µ(~v,~a)A(~v) where A is the acceptance and µ
is the remainder of the probability density function
(which, neglecting background contamination, would be

Ifinal(Θc.m., Φc.m., k̂
p̄, k̂p) scaled by the integrated lumi-

nosity and the solid angle),

M′ = 2

∫

µ(~v,~a)A(~v) d~v − 2

N
∑

j=1

ln(µ(~vj ,~a))

− 2

N
∑

j=1

ln(A(~vj))

The last term, which is independent of ~a, can be dis-
carded without affecting the position of the minimum.

This gives the final function to be minimized, which will
be called M.

The first term of M, which incorporates the accep-
tance function, could in principle be evaluated by Monte-
Carlo integration (with each simulated event being pro-
cessed by the analysis routines to see whether it would
be successfully reconstructed). However, minimization
of M would then require prohibitive re-evaluation of this
term for each new set of parameters ~a being tested. For-
tunately the structure of Ifinal in Eq. (11) permits a great
simplification. Each of the twenty terms of Eq. (11) can
be written as a product with an ~a-dependent dynamic
term (containing the Q’s and I0) multiplying a purely
geometric term, Gi(~v), which depends on ~v but not on
the parameters ~a. So µ can be written as

µ(~v,~a) =

20
∑

i=1

Di(~a)Gi(~v)

allowing the first term of M to be simplified since

∫

µ(~v,~a)A(~v) d~v =
20
∑

i=1

Di(~a)

∫

Gi(~v)A(~v) d~v

=
20
∑

i=1

Di(~a)Wi

where the weights Wi are the moments of the acceptance
which are independent of ~a and so need to be evaluated
only once by Monte-Carlo integration. To perform this
integration the simulation was used to generate events
uniformly distributed in ~v-space without weighting to
match the observed spin-correlations. The fitting pro-
cedure is then to search for ~a which minimizes

M = 2

20
∑

i=1

WiDi(~a) − 2

N
∑

j=1

ln(µ(~vj ,~a))

As explained above, an estimated (0.9 ± 0.2)% rate
of mis-identification of Λ and Λ̄ causes contamination
of Θc.m. bins with data from the supplementary angle.
Because the differential cross section is strongly forward-
peaked, this is a negligible effect except for the two most
back-angle bins. The predicted mis-identification rate
at forward angles leads to an 8% contamination of the
most back-angle bin. To allow for this, the µ(~v) used
in back angle bins was not simply Ifinal(~v,~a) scaled
by the integrated luminosity and solid angle. Rather,
Ifinal(~v,~a) was replaced by an appropriately weighted
linear combination of Ifinal(~v,~a) and the background
term Ifinal(~vreversed,~aforward) where ~vreversed is the cor-
responding point in ~v-space reached by reversing Λ and Λ̄
identification and ~aforward is the set of parameters which
applies for the forward-angle bin. Fitting of forward-
angle bins was carried out first to allow this contamina-
tion to be correctly modeled when fitting the back-angle
bins.
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Minimization in the 11-dimensional ~a-space was ac-
complished by the Polak-Ribière conjugate gradient
method [23]. To guard against false minima, each min-
imization was carried out multiple times with different
randomly-chosen starting points. For most cos(Θc.m.)
bins a common minimum was found in every search. In
the worst case the fit converged on false minimum less
than 65% of the time. Additionally, Monte Carlo simu-
lated data sets were generated with similar statistics and
spin-correlations to the actual data. Fitting these simu-
lated data sets demonstrated the robustness of the tech-
nique for converging on the proper minimum and allowed
determination of a scale of confidence level for numerical
values of M. Unlike χ2, M has no a priori expected
value for good fits because it is arbitrarily offset from the
true log-likelihood. There was no indication that M val-
ues obtained for the real data were systematically higher
than what was expected for a good fit, based on values
obtained for corresponding simulated data sets.

Use of the curvature matrix, based on the assump-
tion of parabolic behavior of M near the minimum, was
found to give inaccurate estimates of the errors on the ~a
parameters. Errors were instead determined by using a
’brute-force’ search of the space around the minimum to
find the maximum possible change in each parameter (in
conjunction with changes in all other parameters) con-
sistent with an increase of less than one in the value of
M. Since M differs from −2 ln(L) only by a constant
offset, a given change in M has the same interpretation
as the equivalent change in −2 ln(L). These maximum-
acceptable (positive- and negative-) changes in each pa-
rameter will be referred to as the ’1σ’ errors since they
cover the confidence interval which would be covered by
1σ in the case of Gaussian errors. Similarly, a ’2σ’ er-
ror bound on each parameter was found by finding the
maximum possible (positive or negative) change in each
parameter for which M would exceed its minimum value
by less than 4.

Once the best-fit parameters ~a have been found, I0

and all the Q’s can be determined (even those Q’s not
directly measurable in an experiment with unpolarized
beam and a transverse target polarization). But, since
the errors on the parameters are highly correlated, the
error on each spin-correlation cannot be determined by
simple lowest-order error propagation. Even if the corre-
lation matrix were determined, error propagation would
be unreliable. A far superior estimate of the error on each
spin-correlation comes from the same ’brute-force’ search
for ∆M = 1 and ∆M = 4 regions. At each point, all
quantities of interest, such as spin-correlations, were cal-
culated. The maximum positive and negative excursions
of each such quantity from its best-fit value, consistent
with ∆M < 1 and ∆M < 4, were taken to be the ’1σ’
and ’2σ’ errors, respectively, on that calculated quantity.

E. Systematic Errors

Overall normalization errors would not affect measured
spin-correlations but would directly change I0 and equiv-
alently the Φc.m.-averaged differential cross section pre-
sented in Fig. 6. Since the focus of the experiment was
on spin-correlations, overall normalization was not con-
trolled as carefully as other aspects of the experiment.
The length of the cylindrical frozen Butanol target was
measured to be 9.0±0.5 mm. An upper limit on the mis-
alignment of the target axis relative to the beam was 20◦

which could increase effective target thickness by up to
6%. The uncertainty in effective position of veto scintil-
lators relative to the target was estimated at 1 mm which
was found, through Monte Carlo simulation, to cause less
than 4% uncertainty in normalization. Statistical error
in the estimate of quasi-free contamination introduced a
negligible systematic error. The overall fractional sys-
tematic uncertainty, estimated by adding these contribu-
tions in quadrature, is +7.1%/−9.3%. This gives the sys-
tematic error, quoted above, on the total cross section,
σ = 81.1 ± 0.5+5.8

−7.5µb. This same fractional systematic

error applies to the bins of < dσ
dΩ > in Fig. 6. While

the normalization error cancels in spin-observables, all
spin-matrix parameters would scale by the square-root
of any overall normalization factor. Since this is a com-
mon factor on all terms, it is not included in the error
band assigned to each of these parameters. It should
be remembered that an overall normalization error of
+3.5%/−4.8% applies to the spin-matrix parameters.

The reconstructed angles for each event, ~vk =
(Φc.m., cos(θΛ̄), φΛ̄, cos(θΛ), φΛ), are not known ex-
actly but are extracted with known errors and corre-
lations. The method of unbinned maximum-likelihood
fitting treats each event as a precise point in the 5-
dimensional ~v-space and does not incorporate a method
of allowing for the finite errors on these points. Neglect-
ing these finite errors introduces a source of systematic
error in addition to the statistical error discussed above.
The method of estimating these systematic errors was
based on the use of simulated data with errors and event
statistics similar to the actual data. These simulated
data sets were generated based on spin-correlations cho-
sen to nearly match those found in the data. Simulated
events were kinematically fit giving ~vk’s with errors sim-
ilar to the real data. Unbinned maximum-likelihood fits
were then used to extract best-fit values of the spin-
transfer matrix parameters, which were then used to cal-
culate spin-correlations and all other variables of interest,
as described in the next section. The fitting process was
then repeated using the ideal ~vk’s which had been used
by the Monte Carlo to generate the simulated data. The
differences between best-fit values of each variable fit to
the simulated data and the best-fit values fit to the ideal
~vk’s was a measure of the systematic error in that variable
because of the finite resolution of the ~vk’s. Changes in
each variable of interest were calculated independently,
rather than using error-propagation to extract the ex-
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pected effect. Ideal fits were compared to fits using kine-
matically fit finite-resolution data for ten different simu-
lated data sets. Additionally, since kinematic fitting was
quite time-consuming, the statistics of this study were
augmented by generating an additional 20 data sets by
simply smearing each ideal ~vk by its estimated resolution
rather than simulating an event and operating the full
analysis chain on it. Estimates of systematic error due to
finite resolution were thus found as the r.m.s. shift from
the zero-resolution value for each variable of interest in
each Θc.m. bin. This contribution typically dominated
the overall systematic error estimates which are shown
with each variable in the next section.

The non-hydrogen nuclei in the target were unpolar-
ized so quasi-free events mis-identified as free p̄p →
Λ̄Λ → p̄π+pπ− events will exhibit no correlation to target
polarization direction. The effect of the small quasi-free
contamination can therefore be estimated by introducing
an appropriate fraction of isotropically-distributed simu-
lated events in place of some of the events of a simulated
data set. The estimated quasi-free contamination (from
analysis of carbon-target data) was typically only about
1% but rose to 3% at farthest back-angle. Systematic
errors for each variable of interest were again found by
determining the r.m.s. shift of that variable caused by
the simulated contamination. This small contamination
generally caused smaller systematic errors than did the
effects of finite resolution.

Several precautions were taken to reduce systematic
effects due to target polarization. The direction of target
polarization was reversed during data collection to can-
cel systematic effects due to any up-down asymmetry of
the detectors. Average target polarization was measured
by Nuclear Magnetic Resonance measurements at the be-
ginning and end of each data-collection period (between
target re-polarizations) to improve estimates of its value
at intermediate times. Data-collection periods were typ-
ically limited to a quarter of the polarization lifetime to
keep the polarization high and to improve accuracy of
estimated polarization. The probability density function
used to weight each measurement in the unbinned fit was
not based upon an average polarization but on the best
estimate of the polarization at the time that event was
recorded.

An additional systematic error results from uncertainty
in initial polarization and from possible inhomogeneities
in target relaxation. The fractional error in measured
target polarization is estimated at ∆P/P = 2.3%. The
average polarization measured at the end of a data-
collection period could not determine whether depolar-
ization was non-uniform due to beam heating. However
the target was kept cold enough that relaxation time was
not strongly temperature-dependent. Inhomogeneity of
depolarization is estimated to contribute an uncertainty
of at most ∆P/P = 3.8% just before repolarization.
These errors combined to give a worst-case estimate of
∆P/P = 4.5% at the end of the data-collection period.

The maximum systematic error due to polarization was

estimated by shifting polarizations by 4.5% and deter-
mining the size of the shift of extracted observables of
interest. This was found to be a smaller error than that
due to resolution or quasifree background. All three ef-
fects were added in quadrature bin-by-bin for all variables
of interest to obtain the overall systematic error estimate
which is plotted as an error band at the bottom of plots
of each variable of interest.

VI. SPIN CORRELATION RESULTS

Figures 7 and 8 show the best-fit values of the 11 pa-
rameters of the spin-scattering matrix fit to the data in
bins of Θc.m.. Parameter ’a’ is chosen to be real (and
non-negative) so Im(a) is zero. On each point the dark
bar indicates the ’1σ’ error range while the light bar rep-
resents the ’2σ’ error. Because of the actual shape of the
M-hypersurface, some of the error bars are highly asym-
metric and the ’2σ’ error is often very different from twice
the ’1σ’ error. The black band at the bottom of each plot
indicates the estimated systematic error. Overall normal-
ization error is not included in the systematic-error band.
These, and other results presented below are available in
table form[24].

Table II shows how each of the 19 directly measurable
spin-correlations (and I0) can be calculated from the pa-
rameters ~a for the spin-scattering matrix. While the spin-
correlations can be calculated directly from the best-fit
values of the parameters, as explained above, their er-
rors cannot be found by propagation of the errors on the
parameters. Results for I0 (= < dσ

dΩ > ) have already
been shown in Fig. 6 above. Results for the polarization
Q[nΛ] = Q[nΛ̄], often denoted PΛ and PΛ̄, are shown in
Fig. 9 as filled circles with ’1σ’ and ’2σ’ errors indicated.
Also shown are results from the previous PS185 measure-
ment [2] at pp̄ = 1.642 GeV/c which can be seen to be
in good agreement. Similarly Fig. 10 shows those 2-spin
correlations which can be measured without a polarized
target. These correlations of the spins of the final-state
Λ and Λ̄ are commonly denoted Cmm, Cml, Cnn, and Cll.
Again good agreement is seen with the previous results.

A particular combination of these observables, which
has direct physical interpretation, is the singlet fraction
(the fraction of Λ̄Λ pairs which are produced in a spin-
singlet state) which can be written as

SF =
1

4
(1 − Q[nΛ, nΛ̄] + Q[mΛ, mΛ̄] + Q[lΛ, lΛ̄]) (13)

This can be calculated directly from the spin-scattering
matrix parameters as

SF =
|b − c|2

4I0
(14)

This is shown in Fig. 11. Again the errors have been as-
signed by directly determining the limits of change in SF

for a maximum acceptable change in log-likelihood. Pre-
vious PS185 results [2] at pp̄ = 1.642 GeV/c are shown
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FIG. 7: Fit results for spin matrix parameters a, b, and c. The arbitrary phase is chosen by constraining the parameter a
to be real and non-negative. Statistical errors are shown on each data point, with 2σ error bars superimposed (dashed). The
estimated systematic error width is shown at the bottom of each plot (dark-shaded region).

for comparison. The earlier results were determined from
Eq. (13) using spin-correlations which had been sepa-
rately extracted from the data. Unphysical negative val-
ues could then occur as a result of statistical fluctuations
or heightened sensitivity to systematic errors in the lin-
ear combination of observables. The present results were
extracted using Eq. (14) and so are constrained to be
non-negative throughout the range of their error bars. It
is interesting to note that the often-accepted empirical
rule that SF = 0 for this reaction is clearly broken at
back angles.

Figure 12 shows results for Q[np, nΛ] and Q[np, nΛ̄]
conventionally denoted as Dnn and Knn, respectively.
These results, which have already been published in [14],
are seen to disagree strongly with predictions from both
meson-exchange [7] and quark-gluon [9] models. While
these results have been published, the present paper is
the first to document the details of the technique used
to extract them. Measurement of these spin-correlations
was the main goal of this experiment because two com-
peting classes of models made differing firm predictions
for these observables. While both classes of model
had enjoyed success in explaining the observations made
with unpolarized targets, these results suggest that ad-
ditional dynamics will have to be included into the mod-
els. The wealth of additional spin-dynamics information

presented below may help constrain and test refinements
made to match the surprising results in these two spin-
correlations.

The remaining 12 directly measurable spin-correlations
are shown in Fig. 13 The first of these, Q[np], is the
analyzing power, often denoted An. The remainder are
correlations between initial proton spin and components
of one or both final-state spins. Errors are seen to be
small enough, even on most 3-spin correlations, to allow
structures to be clearly resolved. This underscores the
advantage of fitting the spin-scattering matrix parame-
ters. If these directly measurable spin-correlations had
been determined by a direct fit of Eq. (11) to the ob-
served distribution, their errors would have been much
larger and so meaningful structure would have been im-
possible to extract in most cases.

Of the 256 spin-correlations, Q[jp̄, kp, µΛ̄, νΛ], defined
by Eq. (6), one is trivially unity and 128 are constrained
to be zero by parity conservation of the strong interac-
tion. An additional 88 can be neglected because symme-
try requires that they are identical to (or the negative
of) another one which is being considered. In this sense
there are 39 non-trivial spin correlations in addition to
I0. These cannot be said to be forty independent ob-
servables since they can be expressed in terms of just
eleven real parameters of the spin-scattering matrix at
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FIG. 8: Fit results for spin matrix parameters d, e, and g. Statistical errors are shown on each data point, with 2σ error bars
superimposed (dashed). The estimated systematic error width is shown at the bottom of each plot (dark-shaded region).

FIG. 9: Current results for polarization, Q[nΛ] = Q[nΛ̄]
(filled circles). The previous measurement [2] at 1.642 GeV/c
is superimposed (open squares). Statistical errors are shown
on each current data point, with 2σ error bars superimposed
(dashed). The estimated systematic error width is shown at
the bottom of each plot (dark-shaded region).

each Θc.m.. However there are 40 quantities which would
be directly measurable given arbitrary beam and target
polarization. Of these, twenty (including I0) are directly

measurable in the present experiment and have been pre-
sented above. However, since the spin-scattering matrix
is fully determined, the remaining 20 spin-correlations
can equally well be extracted just as the directly mea-
surable ones are in the present analysis. The eight such
observables shown in Fig. 14 would be directly measur-
able (i.e. would appear explicitly in the description of the
angular distribution) without a polarized beam if the tar-
get were longitudinally polarized. Although the target
polarization in the present experiment is purely trans-
verse, these observables are still determined, and in some
cases determined quite accurately, in this present mea-
surement. Similarly, Fig. 15 gives the results for spin ob-
servables which would be directly measurable only if the
antiproton beam were polarized. Again, some of these
are quite well determined by the present data set. In
rare cases a double-minimum in the log-likelihood func-
tion, M, results in disjoint regions falling within the 1σ
limit. These are indicated in Fig. 15 by a second disjoint
error bar.

VII. DISCUSSION AND CONCLUSIONS

The method of determining the spin-scattering matrix,
suggested in [12] has been successfully applied in practice.
This is a unique case in which the full spin structure of a
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FIG. 10: Current results for previously measured spin correlations between Λ̄ and Λ (filled circles). Previous measurements [2]
are superimposed (open squares). Statistical errors are shown on each current data point, with 2σ error bars superimposed
(dashed). The estimated systematic error width is shown at the bottom of each plot (dark-shaded region). The spin correlations
shown are a) Q[mΛ̄, mΛ], b) Q[mΛ̄, lΛ], c) Q[nΛ̄, nΛ], and d) Q[lΛ̄, lΛ].

FIG. 11: Current results for singlet fraction SF (filled cir-
cles). The previous measurement [2] is superimposed (open
squares). Statistical errors are shown on each current data
point, with 2σ error bars superimposed (dashed). The esti-
mated systematic error width is shown at the bottom of each
plot (dark-shaded region).

two-fermion interaction has been determined from a sin-
gle measurement. The self-analyzing property of hyper-
ons combined with a transversely polarized target allows
this unusual access to the spin structure of the produc-
tion of strange-anti-strange quark pairs. The data set of
about 2000 events per Θc.m.-bin has proven sufficient to
accurately determine the parameters and from them to
learn the spin-correlations as well as other functions such
as SF and < dσ

dΩ >. By construction, the results are guar-
anteed to be internally consistent, obeying all constraints
imposed by the symmetries of the strong interaction un-
der parity and charge conjugation. Numerical values for

these results are available [24].

Apart from the small background subtraction at back-
angles, all results shown for each angular bin have been
obtained completely independently of the results at other
angular bins and are based on non-overlapping sets of
events. The smooth variations as a function of Θc.m. seen
in most of the spin-correlations is in no way built-in to the
analysis technique. The fact that the angular variation
of the data appears smooth is a reassurance that the
entire chain of event reconstruction and data analysis is
performing reasonably and extracting meaningful results.
Similarly the fact that the bin-to-bin ’scatter’ in the data
appears to be consistent with the assigned error bars is
an independent verification of the validity of the method
of error analysis.

The most important aspects of these results, relating
to Q[np, nΛ] and Q[np, nΛ̄] have already been presented
in [14]. As shown in Fig. 12, the measured values of
these spin-correlations differ markedly from the predic-
tions of a meson exchange (MEX) model [7] (solid line)
and a quark-gluon-inspired (QG) model [9] (dotted line)
despite the fact that both these models reasonably de-
scribe the significant spin-structure observable with an
unpolarized target.

All MEX models generally predict a large tensor inter-
action which couples spin-triplet p̄p initial state to spin-
triplet Λ̄Λ final state, flipping the spin in the process. For
this reason, both the spin transfer, Q[np, nΛ̄], and the de-
polarization, Q[np, nΛ], are predicted to be strongly nega-
tive. This prediction holds even in the presence of initial-
and final-state interactions, which have been included in
the prediction shown by solid lines in the figures. The
measured values are far less strongly negative than the
predictions and, in fact, are positive at forward angle in-
dicating that both final-state particles tend to be aligned
with the initial proton spin. Furthermore, Q[np, nΛ̄] is
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FIG. 12: Results for spin transfer observables Q[np, nΛ] (often called depolarization, Dnn) and Q[np, nΛ̄] (often called spin-
transfer, Knn) at 1.637 GeV/c, compared to MEX model prediction [7] (solid) and QG model prediction [9] (dashed) at
1.642 GeV/c. Statistical error bars are shown on each data point, with 2σ error bars superimposed (dashed). The estimated
systematic error width of the measurement is shown at the bottom of each plot (dark shaded region).

strongly positive at back angles meaning that the nor-
mal component of the proton’s spin is transferred to the
Λ̄ in contrast to the MEX prediction.

All existing calculations using QG models have been
restricted to 3P0, ’vacuum’ terms, and 3S1 ’gluon’ terms.
So the interaction is purely spin triplet, having SF = 0
built into the model. Here there is a much smaller tensor
interaction and so less spin-flip. It was because of this
characteristic difference between QG and MEX models
that Q[np, nΛ] was first suggested [11] as an observable
which would distinguish experimentally between the two
classes of model. A vanishing singlet fraction necessarily
implies that Q[np, nΛ] = Q[np, nΛ̄]. This is reflected in
the predictions of the QG model shown as dotted lines in
Fig. 12. As shown in Fig. 11, however, the singlet fraction
is distinctly non-zero at back angles, in violation of the
assumptions of the existing models. This manifests itself
in the data as a large difference in back-angle behavior
of the two distributions.

Apart from large Θc.m. and very small Θc.m., the QG
model is seen to dramatically over-predict both Q[np, nΛ]
and Q[np, nΛ̄]. Predictions have also been made [25] for
the transfer of other components of proton spin to the
spin of the Λ and Λ̄. These are compared to the data
in Fig. 16. While the disagreement is not as striking,
partly because of the relatively larger error bars, it is
clear that significant modification of the model will be
needed to match these correlations and to predict the

others reported here. A modification which is clearly
required is inclusion of singlet strength, such as 1S0.

While a great wealth of information has been gained
on the spin dynamics of p̄p → Λ̄Λ at pp̄ = 1.637 GeV/c,
few conclusions can be drawn because theoretical models
lag significantly behind in understanding the data at this
point. Availability of this data may inspire increased
theoretical activity.

Among the most precisely determined spin correlations
is one which has not previously been measured. The an-
alyzing power (a correlation of spin only with scattering
angle, not with other spins) Q[np] (Fig. 13a), usually
denoted An, is constrained to vanish at cos(Θc.m.) =
±1 but has now been determined to be strongly posi-
tive in the forward hemisphere and mostly negative for
back angles. The complex angular structures of the 2-
spin correlations, Q[mΛ̄, mΛ], Q[mΛ̄, lΛ], Q[nΛ̄, nΛ], and
Q[lΛ̄, lΛ], (Fig. 10 a through d, respectively) although
consistent with previous measurements [2], is now re-
vealed in far more detail. Among the 3-spin correlations,
some of the directly measurable ones show the cleanest
structure with Q[np, mΛ̄, lΛ] (Fig. 13k) and Q[np, lΛ̄, mΛ]
(Fig. 13l) showing remarkably similar behavior, while
it is not trivially expected that they should be equal.
A distinctly different structure is seen in Q[np, mΛ̄, mΛ]
(= −Q[np, lΛ̄, lΛ]) (Fig. 13j) which is more compressed
to forward angles. Even some of the 4-spin correla-
tions are determined well enough to unveil distinct an-
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FIG. 13: Results for the twelve additional spin observables which appear directly in the measured angular distribution.
Statistical and systematic error estimates are displayed, as above. The spin observables displayed are a) Q[np], b) Q[mp, mΛ],
c) Q[mp, lΛ], d) Q[mp, mΛ̄], e) Q[mp, lΛ̄], f) Q[mp, mΛ̄, nΛ], g) Q[mp, nΛ̄, mΛ], h) Q[mp, nΛ̄, lΛ], i) Q[mp, lΛ̄, nΛ], j) Q[np, mΛ̄, mΛ],
k) Q[np, mΛ̄, lΛ], and l) Q[np, lΛ̄, mΛ]

gular structure. Regions of non-vanishing correlation are
seen for example in Q[mp̄, lp, mΛ̄, mΛ], Q[mp̄, lp, mΛ̄, lΛ],
and Q[mp̄, lp, lΛ̄, mΛ] (Figs. 15h, 15i, and 15k, respec-
tively). It would be fruitless to speculate on the meaning
of each of these structures individually. A coherent pic-
ture will required theoretical modeling to simultaneously
explain all available spin-correlations or equivalently to
directly predict the coefficients of the spin-scattering ma-
trix. This difficult task is made all the more difficult
by the strength of the initial- and especially final-state
interactions. But even in their presence, the physics re-
duces to just eleven real parameters at each angle. There

may be advantages to comparing theories to the experi-
mentally determined spin-matrix parameters. They may
tie in more directly to the underlying spin physics of
the model. Also the process of determining the quality
of the agreement is simplified by removing the ’double-
counting’ which is inherent in comparing up to 40 spectra
when all the physics reduces to just eleven sets of param-
eters.
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FIG. 14: Results for eight spin observables which do not appear directly in the measured angular distribution. Direct
measurement of an individual one of these observables would require a longitudinally polarized target proton but would not
require beam polarization. Statistical and systematic error estimates are displayed, as above. The spin observables displayed
are a) Q[lp, mΛ], b) Q[lp, lΛ], c) Q[lp, mΛ̄], d) Q[lp, mΛ̄, nΛ], e) Q[lp, nΛ̄, mΛ], f) Q[lp, nΛ̄, lΛ], g) Q[lp, lΛ̄], and h) Q[lp, lΛ̄, nΛ].
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