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We relate bulk fields in Randall-Sundrum AdS5 phenomenological models to the world-volume fields
of probe D7 branes in the Klebanov-Witten background of type IIB string theory. The string constructions
are described by AdS5 � T

1;1 in their near-horizon geometry, with T1;1 a 5d compact internal manifold
that yields N � 1 supersymmetry in the dual 4d gauge theory. The effective 5d Lagrangian description
derived from the explicit string construction leads to additional features that are not usually encountered in
phenomenological model building.
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I. INTRODUCTION

Phenomenological models in a slice of AdS5 have re-
cently provided a new alternative to the usual four-
dimensional (4d) supersymmetric models in addressing
the hierarchy problem. These models generalize the
Randall-Sundrum model (RS1) [1] by allowing for the
presence of bulk fermion and gauge fields. A striking
feature of these models is that they are conjectured to be
dual to 4d gauge theories with a composite Higgs and top
quark [2]. In all these bottom-up constructions the bulk
fields are put in by hand. However one would like to seek a
more fundamental description of these fields from a string
construction where, in particular, the ‘‘preons’’ of the
composite states are identified. In this article we begin a
study to determine the possible top-down constructions.

From the top-down there are various well-defined string
constructions that, in the near-horizon geometry, are well-
described by an AdS5 � X5 background, with X5 a five-
dimensional (5d) compact manifold. The simplest example
is the one that appeared in the seminal works on the AdS/
CFT correspondence, where X5 � S5 [3–5]. However, in
the X5 � S5 case the dual 4d gauge theory has N � 4
supersymmetry, which is too restrictive for phenomeno-
logical purposes.

More interesting for our present purposes is the
Klebanov-Witten (KW) construction [6], where X5 �
T1;1 ’ �SU�2� � SU�2��=U�1�. In this case, the dual de-
scription is a 4d N � 1 superconformal gauge theory. The
theory is unregulated in the infrared (IR), corresponding to
a naked singularity in the geometric picture. The resolution
of this singularity leads to the more refined, Klebanov-
Strassler (KS) construction [7]. In both the KW and KS
backgrounds, the geometry is noncompact, extending to
infinity in the direction associated with the AdS5 radius.
Correspondingly, the ultraviolet (UV) of the dual gauge
theory lacks a regulator. On the gravity side of the duality,

this can be addressed if the geometry is completed by a
compact Calabi-Yau (CY) manifold in the region far from
the ‘‘throat’’. When this is done in the KS construction, as
has been considered by Giddings, Kachru, and Polchinski
(GKP) [8], the spectrum is normalizable and discrete. This
is very much like the RS1 setup: the tip of the KS throat
represents the IR brane, and the compact CY represents the
UV brane. The general picture is sketched in Fig. 1.

However, it is expected that the effective 5d action
describing the dimensional reduction of the string model
on X5 will differ in a variety of ways from typical phe-
nomenological AdS5 actions. Ultimately, we want to com-
pare the two classes of effective actions, to delineate the
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FIG. 1. A KS throat with a CY glued on to regulate the UV of
the dual gauge theory. The KS tip serves to regulate the IR of the
dual gauge theory. A section of AdS5 is asymptotically contained
in the throat. The CY and the KS tip are, respectively, to be
thought of as refinements of the UV and IR branes of RS1. Much
of the throat can be approximated by the significantly simpler
KW solution that we study in the text. Furthermore, for the
construction that we study, the end of the D7 brane provides an
alternative IR boundary, as far as quark fields are concerned.
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extent to which they differ, and to better understand the
circumstances in which they agree. Furthermore, we would
like to obtain string-inspired constraints on the 5d phe-
nomenological models. For instance, what 5d bulk masses
are possible, what are the boundary conditions at the
branes, and what is the possible field content? In this article
we address some of these questions.

The construction that is studied here involves embed-
ding a D7 probe brane in the KW geometry. In this way
bulk matter and gauge fields are introduced; i.e., fields that
are not already contained in the N � 2 AdS5 supergravity
multiplet associated with type IIB compactification on T1;1

[9–12]. In the dual 4d gauge theory, this corresponds to the
introduction of ‘‘quark’’ flavors. The D7 brane wraps an
internal cycle of the internal 5d compact space T1;1 in such
a way that it ‘‘disappears’’ at some distance from the tip of
the throat, much as in the AdS5 � S

5 models with probe
branes [13–15]. This ending of the D7 brane leads to an IR
boundary for the theory. In the dual 4d gauge theory, it has
the effect of bare masses for the quarks. The IR cutoff of
the KS background corresponds to the confinement scale of
the dual gauge theory. We will work in the heavy quark
limit, so that the flavors are not propagating degrees of
freedom near the confinement scale. Thus, for the inves-
tigation that follows, the IR cutoff of KS is not a detail that
we will need. For this reason, we will utilize the simpler
KW geometry.

Next we give a summary of the remainder of this article:
(i) In Sec. II we outline the bosonic fluctuations asso-

ciated with embedding a probe D7 brane in the KW
background, following Levi and Ouyang [16]. We
introduce a reparameterization of the embedding
coordinates that allows us to describe the action of
the embedding scalars as a function of the AdS5

radius. We extract the effective 5d action that de-
scribes the corresponding modes that are indepen-
dent of the angular coordinates of the internal 5d
space T1;1. We briefly address the boundary terms
that appear for these scalars. We find that a certain
convenient simplification occurs. Finally, we sum-
marize the action of the D7 brane world-volume
vector boson, and make some remarks on the ef-
fective 5d compactification.

(ii) In Sec. III, we isolate the regime in which the scalar
action can be mapped into conventional AdS5 for-
mulations, such as phenomenological models in a
slice of AdS5. We show that both bulk and bound-
ary masses arise. The bulk mass-squared is nega-
tive, but satisfies the Breitenlohner-Freedman
bound [17,18], just as in the cases of probe branes
in AdS5 � S

5 geometries [13–15]. We describe
how effects near the IR boundary where the D7
brane ends can be translated into an effective de-
scription that resembles what is typically consid-
ered in model-building applications. In particular,
we show how Cauchy boundary conditions at the

IR boundary of the effective AdS5 regime are ge-
neric, and how they emerge from Dirichlet bound-
ary conditions that occur at the radius where the D7
brane ends.

(iii) In Sec. IV we make concluding remarks and outline
some outstanding issues. In particular, our present
findings indicate the need for a thorough under-
standing of the harmonics on the somewhat com-
plicated geometry of the internal 3-manifold of the
embedding, and of the detailed effects near the end
of the D7 brane—items that we have touched on,
but mostly left to future work.

(iv) In the Appendix we discuss the geometry and
topology of the D7 embedding. We show that the
3-manifold wrapped by the D7 brane at fixed AdS5

radius is topologically equivalent to S3. This justi-
fies an angle-independent assumption that is made
in the main text. Of course this assumption is only
valid for fields that can be expanded on scalar
harmonics of the 3-manifold. We also identify the
isometry group of the embedding.

II. D7 BRANES IN THE KLEBANOV-WITTEN
BACKGROUND

Let us begin by reviewing the KW background [6]. The
ten-dimensional (10d) metric is given by

 ds2
10 � H�r��1=2���dx�dx� �H�r�1=2ds2

6;

ds2
6 � dr2 � r2ds2

T1;1 ; H�r� � 1�
L4

r4 ;
(2.1)

where L is the curvature length and ds2
T1;1 is the metric for

T1;1,
 

ds2
T1;1 �

1

9

�
d �

X
i�1;2

cos�id�i

�
2

�
1

6

X
i�1;2

�d�2
i � sin2�id�2

i �: (2.2)

The base of the conifold is determined by

 z1z2 � z3z4; zi 2 C; (2.3)

where by definition, zi � r3=2. The angular dependence of
the zi that give rise to (2.2) can be found in [6]. We work in
the near-horizon limit r� L and approximate the ‘‘warp
factor’’ H�r� 	 �L=r�4. Unless otherwise stated, we will
work in L � 1 units (i.e., dimensions are restored in what
follows via r! Lr, x� ! Lx�, etc.).

A. Scalar fluctuations of the D7 brane embedding

Following Levi and Ouyang [16], the embedding of the
D7 brane is characterized by

 z1 � r3=2 sin
�1

2
sin
�2

2
e�i=2�� ��1��2� 
 �> 0: (2.4)

TONY GHERGHETTA AND JOEL GIEDT PHYSICAL REVIEW D 74, 066007 (2006)

066007-2



Equivalently, r � r0��i� and  �  0��i� with

 r3=2
0 sin

�1

2
sin
�2

2
� �;  0 � �1 ��2: (2.5)

Thus the minimum radius is r � �2=3. Since the AdS5

regime is in the near-horizon limit r� 1, in order for
the flavors on the D7 brane to behave as fields in AdS5 in
some regime it is necessary that�2=3 � 1. We assume that
this is true in what follows. The embedding studied here is

among those that have been shown to be consistent in the
analysis of [19].

The fluctuations of the brane in the two orthogonal
directions are given by the scalar modes1

 r � r0�1� ��;  �  0 � 3�; (2.6)

where �, � are generally functions of the eight world-
volume coordinates of the D7 brane. The induced metric
on the D7 brane is

 �g0�ab � diag�r2
0���; g�i�j ; g�i�j

�; g�i�j �
1
6�

1
9 cot2 �1

2
1
9 cot�1

2 cot�2

2
1
9 cot�1

2 cot�2

2
1
6�

1
9 cot2 �2

2

 !
;

g�i�j
�

1
6 sin2�1 �

1
9 �1� cos�1�

2 1
9 �1� cos�1��1� cos�2�

1
9 �1� cos�1��1� cos�2�

1
6 sin2�2 �

1
9 �1� cos�2�

2

 !
;

(2.7)

where ‘‘diag’’ denotes a block diagonal matrix. The Dirac-Born-Infeld (DBI) action,

 SDBI � ��7

Z
d4xd2�d2�

�����������������������������������������������������
’?�g� � ’?�B� � 2�	0F

q
; (2.8)

with �7 � �2��
�7	04g�1

s , contains the scalar fluctuations (2.6) through perturbations of the pullback ’?�g� �
g0 � 
g0��;�� of the 10d metric to the D7 brane world-volume. We will return to the world-volume 2-form F � dA
in Sec. II D below. The pullback of the NS-NS 2-form ’?�B� will be neglected in our analysis, since we are interested in
fields that carry flavor quantum numbers. Note that the B-field vanishes in the KW background. To quadratic order, the
action for the scalar fluctuations (2.6) is:
 

S � ��7

Z
d4xd2�d2�

� ����������
�g0
p

�
gab0

2C
�@a�@b�� @a�@b�� �

4

C

�
sin2 �i

2

�
�1
�@�i

��
2

C2

�
sin2 �i

2

�
�1

cot
�j
2
@�j��@�i

��
�

� @�i

� ����������
�g0
p

C
cot
�i
2
�3�2 � 2��

��
; (2.9)

where it has been convenient to define

 C � 1�
2

3
cot2

�1

2
�

2

3
cot2 �2

2
; (2.10)

and implicit sums over a; b 2 fx�; �i; �ig, with � 2
f0; . . . ; 3g, and i, j 2 f1; 2g. Thus we agree with Eq. (29)
of Levi and Ouyang [16]; note, however, that we have
explicitly included the boundary terms that occur in the
simplifications (integration by parts) that lead to (2.9).

Our interest is in the lightest states, which are not excited
modes on the internal compact space T1;1. Setting @�i

� 0
and integrating over the �i coordinates we find:

 S � �4�2�7

Z
d4xd2�

� ����������
�g0
p

�
gmn0

2C
�@m�@n�

� @m�@n��
�
� @�i

� ����������
�g0
p

C
cot
�i
2
�3�2 � 2��

��
;

(2.11)

where we now have indices m, n 2 fx�; �ig. To proceed
further, we must extract the radial dependence that has
been hidden in the angular variables �i; cf. (2.5).

B. A radial reparametrization

It is convenient to introduce a scaled radius: r0 � �2=3r̂.
We can express the D7 brane embedding (2.5) in the
equivalent form

 2 � r̂3=2�cos�� � cos���; �� 

1

2
��1 � �2�:

(2.12)

We will eliminate �� in favor of the coordinates r̂, ��. The
domain of �� depends on r̂, and is given by

 �� 2 ���0�r̂�; �0�r̂�
; �0�r̂� 

�
2
� sin�1r̂�3=2:

(2.13)

Taking into account the Jacobian of the transformation, we
have

1This is the definition of � that was actually used in [16],
although version 1 of the preprint had a typo [20].
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 Z �

0
d�1

Z �

0
d�2������

Z 1
1
dr̂
Z �0�r̂�

��0�r̂�
d��

�
6

r̂5=2 sin���r̂;���
�����; (2.14)

where

 sin���r̂; ��� � �1� �cos�� � 2r̂�3=2�2
1=2: (2.15)

We will reduce to a 5d effective theory by imposing ��
independence, corresponding to no excitation in this com-
pact coordinate. The validity of this for the eight-
dimensional (8d) scalars �, � rests on the fact that at fixed
r̂ the D7 brane wraps a 3-manifold that is topologically
equivalent to S3, as shown in the Appendix. In the reduc-
tion to 5d, the 8d scalars should be expanded on scalar
harmonics of this 3-manifold, which will include the con-
stant ‘‘‘ � 0’’ mode. This translates into a ��, �i inde-
pendent mode in the coordinates that are used here.

Note that we retain the parameterization (2.6) of the D7
embedding fluctuations, although we have now taken r as a
parameter of the D7 brane world-volume. In fact, it is not
difficult to show that � can be reinterpreted as a fluctuation
of �� away from �� � ���r̂; ��� determined from (2.12).

The quantity C that appears in (2.10) can be written as:

 C �
1

3
��1� 4r̂3=2 cos�� � r̂

3�1� cos2���
: (2.16)

We also find that the metric density of the old coordinates
takes the form
 ����������

�g0
p


 �8=3
���������������������
�g�r̂; ���

q
;���������������������

�g�r̂; ���
q

�
C
9
r̂�r̂3=2 cos�� � 1�:

(2.17)

For the metric ĝmn in the new coordinates m, n 2
fx�; r̂; ��; �ig, we have

 

�������
�ĝ

p
�

6�8=3
���������������������
�g�r̂; ���

p
r̂5=2 sin���r̂; ���

�
2�8=3C�r̂3=2 cos�� � 1�

3r̂3=2 sin���r̂; ���
;

(2.18)

in accordance with (2.14). The components of the new
metric ĝ are given in (2.27) below. In the new coordinates
we obtain the action:
 

S � �4�2�7

Z
d4x

Z 1
1
dr̂
Z �0�r̂�

��0�r̂�
d��

� �������
�ĝ

p �
ĝij�r̂; ���
2C�r̂; ���

� �@i�@j�� @i�@j��
�
� t:d:

�
; (2.19)

where “t:d:” � total derivatives, r̂, �� dependence has
been made explicit, and now i, j 2 f�; r̂g. The transformed
inverse metric ĝij is just the one that follows from the

change of coordinates. We only need2:

 ĝ ij �
ĝ�� 0

0 ĝr̂ r̂

� �
�

��4=3r̂�2��� 0

0
�
1� 1

C

�
r̂2

0
@

1
A:

(2.20)

We still must integrate over the �� dependence that ap-
pears explicitly in the Lagrangian. To this end we define
the following r̂-dependent functions3:

 F1�r̂� 

Z �0�r̂�

��0�r̂�
d��

�������
�g
p

sin��C
�r̂; ���;

~F1�r̂� 

Z �0�r̂�

��0�r̂�
d��

�������
�g
p

�C� 1�

sin��C2 �r̂; ���:

(2.21)

Then the effective 5d action for ��,�i independent modes
is:
 

S � �24�2�8=3�7

Z
d4x

Z 1
1
dr̂
�
1

2
��4=3r̂�9=2F1�r̂�

� ����@��@��� @��@��� �
1

2
r̂�1=2 ~F1�r̂���@r̂��

2

� �@r̂��
2
 � t:d:

�
: (2.22)

In Fig. 2 we show the functions F1 and ~F1, each of which
vanishes at r̂ � 1. We will have more to say about these
functions below.

FIG. 2. The functions F1�r̂� and ~F1�r̂�, defined in (2.21). Both
functions are well-described by the approximation (3.4).

2There are also ĝr̂�� and ĝ�i�j components that we are able to
ignore because of our angular independence assumption. These
components of course make an implicit appearance in the overall
measure that appears in (2.19). cf. (2.27) below.

3Note that these definitions are expressed in terms of the old
metric density with �8=3 scaled out, the quantity

���������������������
�g�r̂; ���

p
defined in (2.17), rather than the new metric density (2.18).
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C. Boundary terms

Next, we briefly describe the total derivative terms that
appear in (2.11). These yield boundary terms at �1;2 � 0
and �. To elucidate the relation of these boundaries to the
r̂, �� coordinates, we have mapped r̂ into a finite domain in
Fig. 3. This figure takes into account the r̂-dependent
domain of ��, Eq. (2.13). Along the �1 � � boundary,
we can write �2 � �2�r̂� � �� 2�0�r̂�. A similar state-
ment holds along the �2 � � boundary, with �1 � ��
2�0�r̂�. It is therefore straightforward to express these two
boundary terms as integrals over r̂, with �� � ��0�r̂�. (It
will be seen below that these boundary terms vanish.) At
the �2 � 0 boundary, we can write �1 � 2��. A similar
statement holds on the �1 � 0 boundary, where �2 �
�2��. These two boundary terms can therefore be ex-
pressed as integrals over �� 2 �0;�

�
2
 with r̂! 1. The

latter limit will require some care. Corresponding to the
total derivative terms in (2.11), we define

 H�1�i ��1; �2� � 2
����������
�g0
p

C�1 cot
�i
2
�;

H�2�i ��1; �2� � 3
����������
�g0
p

C�1 cot
�i
2
�2:

(2.23)
Then it is easy to show that the total derivatives can
formally be written as the following boundary action:

 Sb � �8�2�7

Z
d4x

X
i;	�1;2

�Z 1
1
dr̂
��������@�0

@r̂

���������H�	�i ��;�� 2�0� �H
�	�
i ��� 2�0; ��
 �

Z �=2

0
d��H

�	�
i �2��; 0�

�
Z 0

��=2
d��H

�	�
i �0;�2���

�

� �8�2�7

Z
d4x

X
i;	�1;2

�Z �=2

0
d��H

�	�
i �2��; 0� �

Z 0

��=2
d��H

�	�
i �0;�2���

�
: (2.24)

Here we provide an intermediate expression in order to
emphasize that the boundaries with �� � ��0 (first line)
give vanishing contributions. This is fortunate, since they
would otherwise give bulk contributions as far as the 5d
reduction is concerned. The final expression is just the r̂!
1 boundary terms, which should be interpreted in terms of
limits. Boundary conditions on � will have to be imposed
such that the result is well-defined.

D. Gauge fields

Under dimensional reduction, the 8d vector boson Aa of
the world-volume D7 brane U�1� gauge theory decom-
poses into a 5d gauge field A� and three real scalars
A��;�i

. We now extract the quadratic action and equations
of motion for these fields. We will then make some brief
comments regarding these modes. We will point out the
difficulties that arise from the vector harmonic analysis of
the A��;�i

modes due to the nontrivial 3-manifold that they
are compactified on.

It is straightforward to expand the DBI action (2.8) to
quadratic order in the 8d field strength Fab. In addition, the

Wess-Zumino (WZ) term needs to be considered, due to
the nontrivial 4-form background that is present in the KW
construction

 SWZ �
1

2
�2�	0�2�7

Z
C4 ^ F ^ F;

C4 � �8=3r̂4dx0 ^ � � � ^ dx3:
(2.25)

The F ^ F that appears in the WZ action can only have
‘‘legs’’ along the r̂, ��, �i directions, which we will label
collectively by 	, � etc. Altogether, we have

 

SF2 � �2�	0�2�7

Z
d4xdr̂d��d2�

�
�

1

4

�������
�ĝ

p
FabFab

�
1

8
�8=3r̂4�	�

F	�F



�
; (2.26)

where the metric is given by

r̂ = 1 1 = 2

r̂ = ∞, –– = π/ 2

r̂

1 =

2 = π

π

θ 2 = 0

r̂

θ− θ

θ θ

θ

θ

r̂ = ∞, –– = −π/2θ

= ∞, –– = 0θ

θ 1 = 0

FIG. 3. Relation between coordinates �1;2 and r̂, ��, taking
into account the r̂-dependent domain of �� for the D7 embed-
ding, given in (2.13). The boundaries at �1;2 � � correspond to
�� � ��0�r̂�, where �0�r̂� is monotonically increasing in r̂,
from �0�1� � 0 to �0�1� � �=2. The boundary at r̂ � 1 con-
sists of two segments, distinguished by positive and negative ��.
These correspond to �2;1 � 0. The r̂ � 1 boundary is just a point
in this 2d subspace.
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ĝ�� � ��4=3r̂�2���;

ĝr̂ r̂ � �1� 1=C�r̂2;

ĝr̂�� � r̂5=2C�1 sin��;

ĝ���� � �4r̂3=2 cos�� � 3C� 1�=2C;

ĝ�i�j �
r̂3

4C

5�cos�������
cos21

2�������
�4

�4 5�cos�������
cos21

2�������

0B@
1CA;

(2.27)

with �� defined in (2.12), and
�������
�ĝ
p

, given in (2.18),
contributing the same coefficient �8=3 as appears in the
WZ term. The equations of motion are

 0 � @a�
�������
�ĝ

p
Fab� � 4�8=3r̂3�bjk@jAk; (2.28)

where �bjk � 0 unless b 2 f��; �ig, and by definition j,
k 2 f��; �ig, the coordinates of the internal 3-manifold X3

at fixed radius r̂ (see the Appendix).
Since the fields Ak are vectors on X3, it is necessary to

expand them on vector harmonics ofX3. This analysis is far
from trivial, for a couple of reasons. First, the metric of X3

depends on r̂. Second, even at r̂! 1, where the metric of
X3 becomes independent of r̂, the geometry of the 3-
manifold is not simple, as is discussed in the Appendix.
To determine the vector harmonics requires an analysis
comparable to that done in Refs. [9–12] for the 5-manifold
T1;1.

It is easy to check that the 5d vector boson �A�; Ar̂� has
vanishing bulk mass. Note that this mode corresponds to
the constant scalar harmonic on the compact 3-manifold
X3. From the AdS5 supersymmetry that is present in the
model, we know that there must be a 5d real scalar partner
with bulk mass-squared m2 � �4=L2. This must emerge
from the analysis of the modes A�� , A�i

, and would be a
nontrivial check of the supersymmetry that is beyond the
scope of the present work. In addition there will also be a
massless (Dirac) fermion corresponding to the gaugino.

III. RELATION TO 5D EFFECTIVE THEORIES

In this section we relate the above string construction to
the sort of 5d effective theories that are generally contem-
plated in phenomenological applications [2]. Our first task
is to show that, in an appropriate limit the scalars described
above behave like fields in AdS5.

A. The AdS5 regime

The action for a massive real scalar field in a semi-
infinite slice of AdS5 is given by
 

S � �
1

2

Z
d4x

Z 1
R
dr
�
r
L
���@��@���

r5

L5
@r�@r�

�
r3

L3 m
2�2

�
; (3.1)

where our coordinate conventions are summarized by the
metric:

 ds2
5 �

r2

L2 ���dx
�dx� �

L2

r2 dr
2: (3.2)

We would like to find a regime where the action (3.1) is a
good approximation to the action of �, � (2.22). We expect
this to be possible since in the near-horizon regime (r�
L� the supergravity background is AdS5 � T

1;1. The com-
plication is that the D7 brane is embedded into this space in
a way that constrains angles in T1;1 to be related to the
AdS5 radius r via (2.5). This complicates the radial depen-
dence of the �, � action, as can be seen from the various
expressions in the previous sections.

However, from (2.12) it is easy to see that in the r̂! 1
limit, the embedding approaches �� 
 ��, which is inde-
pendent of the radius r̂. Recall that since r̂ � r=�2=3, r̂�
1 corresponds to r� �2=3 and therefore to remain in the
near-horizon limit, we also require r� L. Thus we want
to examine the above expressions in the regime �2=3 �
r� L. In the L � 1 units used above, this is equivalent to

 r̂� 1; �2=3 � 1: (3.3)

We will extract the leading order Lagrangian under these
assumptions and compare to (3.1). Our finding is that the
usual, conformally coupled scalar action is recovered.
Deviations from this action due to subleading terms (loga-
rithmic in r̂) are related to the breakdown of conformal
invariance near the mass threshold of the flavors of the dual
gauge theory, corresponding to the end of the D7 brane
probe at r � �2=3.

After a careful numeric and analytical study of the
integrals (2.21), we find that

 F1 	
1

6
r̂5=2 lnr̂; (3.4)

to an approximation that is good to five significant digits at
all values of r̂. It is possible to obtain an exact expression
for F1 in terms of elliptic functions, which gives (3.4),
corrected by subleading logs. Also, ~F1 	 F1 in an approxi-
mation that becomes exact in the r̂! 1 limit; in fact, it
can be seen from Fig. 2 that the two functions are nearly
equal for all values of r̂. However, for r̂ � O�1�, in relative
terms the right-hand side of (3.4) is a poor approximation
to ~F1.

To obtain an action corresponding to the form (3.1), the
following field redefinitions must be made:

 � � r̂3=2�lnr̂��1=2�0 � � r̂3=2�lnr̂��1=2�0: (3.5)

Note that to an excellent approximation, this is just a
rescaling by F�1=2

1 and an appropriate power of r̂. Taking
into account the powers of r̂ that arise from (2.22) and
(3.4), the following radial gradient term occurs in the
Lagrangian:
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r̂2 lnr̂�@r̂��
2 � r̂5�@r̂�

0�2 �

�
15

4
�

1

2 lnr̂
�

1

4�lnr̂�2

�
r̂3�02

� t:d:; (3.6)

with an identical equation for �. Substitution of (3.5) and
(3.6) into (2.22) yields the bulk action
 

S��0� 	 �2�2�8=3�7

Z
d4x

Z 1
R̂
dr̂
�
r̂

�4=3
���@��0@��0

� f�r̂��r̂5�@r̂�0�2 � r̂3m2�r̂��02

�
; (3.7)

and an action for �0 that is the same. We have introduced
the ratio

 f�r̂� � ~F1�r̂�=F1�r̂� 	 1 for r̂� 1: (3.8)

In (3.7), a cutoff R̂� 1 on the radial integration has been
introduced. The effects of integration over r̂ 2 �1; R̂
, as
well as total derivative terms could, for instance, be in-
corporated into an effective boundary action. This is dis-
cussed in Sec. III B below. For R̂� 1, it is a good
approximation to take f�r̂� � 1 in (3.7), which is what
we do in the following.

The r̂-dependent mass is

 m2�r̂� � �
15

4
�

1

2 lnr̂
�

1

4�lnr̂�2
: (3.9)

The terms proportional to 1= lnr̂ or its square are sublead-
ing in the r̂� 1 regime. In Fig. 4 we display the mass
(3.9). In the r̂! 1 limit,m2�r̂� becomes infinitely negative.
As a consequence, physical solutions must satisfy Dirichlet
boundary conditions:

 lim
r̂!1

�0�r̂� � lim
r̂!1

�0�r̂� � 0: (3.10)

The approach to zero at r̂ � 1 must be stronger than lnr̂. In

Ref. [16], it is stated that for regularity the original fields
�;� should satisfy Neumann boundary conditions at �1 �
�2 � 1, equivalent to r̂ � 1. Taking into account the factor�������

lnr̂
p

that appears in (3.5), it is clear that a finite �;� at
r̂ � 1 implies a vanishing �0; �0. Thus the two findings on
boundary conditions at r̂ � 1 are consistent.

The mass degeneracy for �0; �0 is a consequence of 5d
supersymmetry in the AdS5 regime: the real scalars �0; �0

combine into a complex scalar of a 5d supersymmetry
hypermultiplet.

If we return to the variables r � r̂�2=3 and R � R̂�2=3,
and reintroduce the AdS5 radius L explicitly by scaling the
fields �0 ! �0=L, �0 ! �0=L, we obtain
 

S��0� 	 �2�2L�5�7

Z
d4x

Z 1
R
dr
�
r
L
���@��

0@��
0

�
r5

L5
�@r�

0�2 �
15

4L2

r3

L3 �
02

�
; (3.11)

and similarly for �0. Here we have neglected the sublead-
ing logs in the mass terms and the prefactor (3.8).

For �0, �0 we obtain a negative mass-squared:

 m2 � �
15

4L2 >�
4

L2 ; (3.12)

where the inequality expresses the fact that the mass-
squared satisfies the Breitenlohner-Freedman bound
[17,18]. The explanation of the negative mass-squared is
similar to that given for probe branes in AdS5 � S

5 ge-
ometries [13–15]. We show in the Appendix that at fixed r̂
the D7 brane wraps a 3-manifold that is topologically
equivalent to S3. The radius of this S3 shrinks to zero as
r̂! 1. It is therefore a topologically trivial 3-cycle in the
conifold. The negative mass-squared corresponds to a
‘‘slipping mode.’’

The bulk mass is independent of the scale �2=3, as it
should be, since that is an IR boundary scale. The �
dependence has also disappeared from the overall factor
in front of the action, which also makes sense from this
perspective. The purely numerical value �15=4 arises
from the radial independence of the embedding �� 
 ��
that occurs in the r̂! 1 limit. In fact,�15=4 is interesting
because it is nothing but the conformally coupled scalar in
AdS5 [21,22], and corresponds to the Laplacian eigenvalue
for the lowest mode of scalar harmonics on T1;1 [9–12].
Since we are considering only modes that are independent
of the T1;1 coordinates, they do not ‘‘know’’ that the D7
brane is actually restricted to a submanifold of T1;1. This
explains the equivalence to the lowest T1;1 scalar harmonic.

The O�1= lnr̂� mass terms in (3.9) represent the leading
effect of the breaking of conformal symmetry due to � �

0. In the dual gauge theory this parameter is related to the
Yukawa and mass parameters of massive ‘‘flavor probes’’
that have been added to the original KW construction. At
scales where the mass of these flavors is noticeable, the
conformal symmetry is broken. The threshold for these

FIG. 4. The mass that is defined in (3.9). It approaches the
constant value �15=4 at large r̂. The infinitely negative value at
r̂! 1 gives rise to the Dirichlet boundary conditions (3.10).
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flavors corresponds to r̂ � 1, where the D7 brane ends. Far
away from this tip, at r̂� 1, the dual gauge theory is at
energy scales far above the threshold, where universal
behavior dominates and scaling dimensions become
apparent.

B. Effective boundary action

On physical grounds, there is one boundary condition
(BC) at r̂ � 1 that must be satisfied: since the fields end
there, and this should happen continuously, we have
Dirichlet BCs (3.10). It was seen above that this naturally
emerges from infinitely negative mass terms. Solving the
equations of motion in the region r̂ 2 f1; R̂g, we can im-
pose one more BC, generally Cauchy, at R̂. Thus, we obtain
a discrete set of permissible Cauchy BCs at R̂, parame-
trized by the functional condition:

 G��0�x; R̂�; @r̂�0�x; R̂�
 � 0 8 x; (3.13)

and similarly for �0. This constraint may then be translated
into an effective boundary action involving a Lagrange
multiplier  :

 S0 �
Z
d4x �x�G��0�x; R̂�; @r̂�0�x; R̂�
: (3.14)

 is interpreted as a boundary field; we can give it dynam-
ics on the boundary, provided it still has the effect of setting
G � 0 to a good approximation.

From Fig. 4, we see that to a first approximation the r̂ 	
1 effects just impose Dirichlet BCs at r̂ � R̂ � O�1�:

 G��0�x; R̂�; @r̂�
0�x; R̂�
 	 �0�x; R̂�: (3.15)

That is, Fig. 4 shows that R̂ of just ‘‘a few’’ suffices to
approach the constant value of m2 � �15=4; the require-
ment R̂� r̂ is stronger than is actually needed, in order to
render the log corrections in (3.9) negligible. Thus, the
leading order behavior is just that of a conformally coupled
scalar with Dirichlet BCs at the IR boundary.

C. Auxiliary scalar action

Here we briefly touch on an alternative effective descrip-
tion of the small r̂ behavior. The approach here is modeled
after what was done in [23]. One introduces two scalars
h�0;�0 to imitate the effect of the r̂-dependent part of the
masses (3.9). These auxiliary scalars are static, in the sense
that for the modes that couple to �0, �0, we can neglect
dependence on 4d spacetime coordinates. For this to work,
it is necessary to replace the r̂-dependent parts of the mass
terms for �0, �0 with
 

�2�2�8=3�7

Z
d4x

Z 1
R̂
dr̂
�
r̂5��@r̂h�0 �2 � �@r̂h�0 �2


� r̂3�V�h�0 ; h�0 � � h�0�02 � h�0�02

�
: (3.16)

The potential V is engineered such that once the equations

of motion for h�0;�0 are imposed the profile of the auxiliary
scalars is just

 h�0 � h�0 � m2�r̂� �
15

4
: (3.17)

We will not pursue this effective description further, since
the ‘‘microscopic’’ description of Sec. III B that is available
from the string construction is more fundamental and
elegant. The only point that we wish to make is that the
unusual small r̂ behavior of the scalar action can be mim-
icked by a coupling to a quasistatic scalar with a nontrivial
profile for its lowest mode—something that a low-energy
phenomenologist might be more likely to consider.

IV. CONCLUSIONS AND OUTLOOK

The introduction of probe D7 branes in the Klebanov-
Witten background provides a more fundamental descrip-
tion of 5d phenomenological models in a slice of AdS5. In
this article we have concentrated on the AdS5 regime that
exists for a single D7 brane embedded into the Klebanov-
Witten background and derived the effective 5d action for
the scalar fluctuations. Whereas there is a significant de-
parture from the conventional scalar in AdS5 near the end
of the D7 brane, far away from that region the D7 embed-
ding fluctuations become conformally coupled scalars of
AdS5. Furthermore by supersymmetry there are also
(massless) 5d bulk fermions.

In addition we have shown that in the AdS5 regime there
are massless gauge fields. These fields mimic the bulk
gauge fields considered in 5d phenomenological models
in a slice of AdS5. Again by supersymmetry we then infer
that in the 5d bulk there are also massless (Dirac) fermions
and a massive scalar with m2 � �4=L2. Thus, probe D7
branes can provide all the necessary 5d bulk fields required
for phenomenological model-building.

The simple setup that we have considered in this article
can be generalized to provide a more realistic 5d phenome-
nological model that incorporates the standard model,
although a number of outstanding questions remain.

In particular one would like a full understanding of the
5d supergravity that occurs when the super-D7 brane ef-
fective action and type IIB supergravity is reduced on the
8d subspace AdS5 � X3, where we recall that X3 is the
r̂-dependent D7 embedding into T1;1. At r̂� 1, this would
determine the complete multiplet structure for the bulk 5d
supergravity and matter fields. Eventually supersymmetry
will also need to be broken so that a realistic low-energy
spectrum is obtained. One possible way would be to study
flux compactifications as in GKP [8].

To construct models with semirealistic gauge groups in
the bulk, multiple D7 branes need to be considered—
corresponding to a nonabelian gauge group generalization.
Standard model matter can then be obtained by studying
intersecting D7 brane models, where strings stretched be-
tween multiple D7 branes in the internal compact coordi-
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nates gives rise to matter with the usual standard model
quantum numbers.

Normally 5d phenomenological models are compacti-
fied on S1=Z2 orbifolds, with corresponding bulk and
boundary masses. Thus, a detailed examination of the
effective boundary action or auxiliary scalar action, as
sketched in Sec. III B and III C, would be necessary. This
may also require studying the D7-brane fermion action for
the Klebanov-Witten background, following the tech-
niques of [24–26], supplemented by an analysis of spinor
harmonics on X3. However, as noted earlier, information
about the bulk fermion masses already follows from the
scalar mass-squared analysis, due to AdS5 supergravity
constraints.

The most important aspect of the 5d phenomenological
models is their dual holographic interpretation as compos-
ite 4d theories [2]. The probe D7 branes introduce funda-
mental ‘‘quarks’’ in the dual gauge theory. Identifying the
corresponding operators in the dual gauge theory, espe-
cially with a realistic standard model spectrum, would
elucidate the holographic correspondence of composite
states, like the top quark and Higgs scalar field. This
remains one of the most interesting avenues to study
further.

Furthermore various refinements could also be intro-
duced to the simple Klebanov-Witten construction that
has been considered in this work. As mentioned in the
Introduction, one could introduce an IR cutoff for nonp-
robe modes by generalizing to the Klebanov-Strassler
background [7]. Here, the conifold (2.3) is deformed:

 z1z2 � z3z4 � �2: (4.1)

The parameter � determines the IR cutoff, and consistency
of the supergravity theory requires a background three-
form flux. This is a significant complication for the spectral
computation. The D7 brane probes of this background have
been studied, for instance, in [27,28]. The embeddings that
were chosen are somewhat different from (2.5). For all
these D7 embeddings, the main results will be essentially
the same: there is an AdS5 regime far away from where the
D7 brane ends; the end of the D7 brane can be replaced by
an effective boundary action, or an auxiliary scalar; the
small 5d radius regime, near where the D7 brane ends,
differs significantly from AdS5.

In summary, probe D7 branes in the Klebanov-Witten
background provide a more fundamental description of 5d
phenomenological models in a slice of AdS that solve the
hierarchy problem. This framework allows bulk fields to be
introduced and leads to the possibility of explicitly con-
structing the dual theory.
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APPENDIX: GEOMETRIC DETAILS OF THE D7
BRANE EMBEDDING

Here we provide some brief remarks on the geometry of
the D7 embedding relative to the AdS5 � T1;1 background.

First recall the standard argument that shows that T1;1

has isometry group SU�2� � SU�2� �U�1�. The conifold
Eq. (2.3) that defines T1;1 may be expressed alternatively in
coordinates

 z1 � w1 � iw2; z2 � w1 � iw2;

z3 � w3 � iw4; z4 � ��w3 � iw4�;
(A1)

yielding
 

X
i

w2
i � det�w412 � i�awa� � 0: (A2)

Here we have expressed the constraint in terms of a com-
plex quaternion equation, which has the SU�2�1 �
SU�2�2 �U�1� invariance

 w412 � i�awa ! ei	U�w412 � i�awa�V;

U 2 SU�2�1; V 2 SU�2�2:
(A3)

The T1;1 base is the intersection of this with the S7 2 C4 of
radius r3=2:
 X
i

jwij2� r3,Tr�w412� i�awa��w412� i�awa�y �2r3:

(A4)

This also has the invariance (A3), demonstrating that
SU�2� � SU�2� �U�1� is an isometry of T1;1.

On the other hand, when the embedding z1 � � is
imposed, we have a 4d real manifold Y4 embedded in the
C3 parametrized by z2, z3, z4:

 �z2 � z3z4: (A5)

This has a U�1� �U�1� invariance with charges (2, 1, 1)
and �0; 1;�1� for the three complex coordinates, respec-
tively. There is also a scaling symmetry �:

 �: z2 ! �2z2; z3;4 ! �z3;4; � 2 R�: (A6)

We declare the base of Y4 to be X3 � Y4=�, since any point
in Y4 can be reached from the application of � to a
representative in X3. We can parameterize Y4 by the pair
z3, z4, which it is useful to write as

 z3 � �ei	 cos


2
; z4 � �ei� sin



2
; (A7)

with 
 2 �0; �
, 	, � 2 �0; 2��, and � 2 �0;1�. This is
just C2 � R� � S3, or a family of 3-spheres with radii �.
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Note that (A5) has a solution z2 for every value of z3, z4, so
that the entire R� � S3 is contained in Y4. Also note that
for each value of z2, there corresponds at least one pair z3,
z4. Thus the entire Y4 is parametrized by the R� � S3

(A7). Alternatively, the base X3 is the intersection of Y4

with any S3 2 C2�z3; z4� corresponding to:

 jz3j
2 � jz4j

2 � �2: (A8)

The Eq. (A5) just tells us how the R� � S3 parametrized
by �, 
, 	, � is embedded into C3�z2; z3; z4�.

Next note the homeomorphism determined by the con-
tinuous deformation of (A5):

 �z2 � �1� s�z3z4; s 2 �0; 1
: (A9)

At s � 1 the embedding is just z2 � 0 with z3, z4 arbitrary.
Thus the topology of Y4 is just R� � S3, and the topology
of X3 is S3. The geometry of Y4 is different, since it is only
the projection into C2�z3; z4� that is geometrically de-
scribed by R� � S3, much as an ellipse in 3d can be
projected onto a circle in a 2d plane.

It is of interest to relate Y4 to the conifold geometry,
particularly the coordinate r. This relation follows from

 r3 �
X4

i�1

jzij
2 � �2 � �2 �

1

4�2 �
4sin2
: (A10)

First, note that as r! �2=3, the X3 ’ S
3 radius � shrinks to

zero. This is, in detail, how the D7 brane ‘‘ends’’ in the
AdS5 radial dimension. Next note that if we fix r, the X3 ’
S3 radius becomes a function of the polar angle 
. The
entire domain of 
 has a solution, with ��
� falling in the

range

 2��r3=2 ��� � ��
� � r3 ��2: (A11)

The lower limit is saturated at 
 � �=2, whereas the upper
limit is saturated at 
 � 0, �. Thus at fixed r the D7
embedding corresponds to a 3d ellipsoid. At r! 1 the
‘‘squishing’’ disappears and we just have an S3. This
suggests that a harmonic analysis at r! 1 in terms of
the coordinates 
, 	, � should be relatively straightfor-
ward, involving just the S3 harmonics.

The U�1� �U�1� isometry of the 4d manifold Y4 is also
an isometry of the 3d base, as is apparent from (A8). This
isometry group will be reflected in the spectrum of eigen-
modes and angular dependence. A thorough harmonic
analysis on this 3d space X3 at arbitrary AdS5 radius r is
however, beyond the scope of the present article.

Finally consider the r̂! 1 embedding in terms of the
conifold coordinates. In this limit, the embedding is purely
angular and is given by the sum:

 

X13 
 f�i; �i;  j�1 � 0;  � �1 ��2g

� f�i; �i;  j�2 � 0;  � �1 ��2g: (A12)

The two subspaces intersect at �1 � �2 � 0. Each sub-
space clearly contains an S2 parametrized by ��i;�i�, i � 1
or 2. As a consequence, an expansion on spherical harmon-
ics Y‘m��i;�i� is valid, i � 1 or 2 depending on the sub-
space. This affords a further justification for our
assumption of �� � ��1 � �2�=2 independence in the r̂!
1 limit for the 8d scalars �, �.
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