
ar
X

iv
:h

ep
-t

h/
06

05
21

2 
v3

   
7 

Se
p 

20
06

UMN-TH-2502/06

FTPI-MINN-06/15

CERN-PH-TH/2006-095

hep-th/0605212

August 2006

Bulk fields in AdS5 from probe D7 branes

Tony Gherghetta∗a,b and Joel Giedt†c

aSchool of Physics and Astronomy, University of Minnesota,

Minneapolis, MN 55455, USA

bTheory Division, CERN, CH-1211 Geneva 23, Switzerland
cWilliam I. Fine Theoretical Physics Institute, University of Minnesota,

Minneapolis, MN 55455, USA

Abstract

We relate bulk fields in Randall-Sundrum AdS5 phenomenological models to

the world-volume fields of probe D7 branes in the Klebanov-Witten background

of type IIB string theory. The string constructions are described by AdS5×T 1,1

in their near-horizon geometry, with T 1,1 a 5d compact internal manifold that

yields N = 1 supersymmetry in the dual 4d gauge theory. The effective 5d

Lagrangian description derived from the explicit string construction leads to

additional features that are not usually encountered in phenomenological model

building.

∗tgher@physics.umn.edu
†giedt@physics.umn.edu

http://arXiv.org/abs/hep-th/0605212


1 Introduction

Phenomenological models in a slice of AdS5 have recently provided a new alter-

native to the usual four-dimensional (4d) supersymmetric models in addressing the

hierarchy problem. These models generalize the Randall-Sundrum model (RS1) [1]

by allowing for the presence of bulk fermion and gauge fields. A striking feature of

these models is that they are conjectured to be dual to 4d gauge theories with a com-

posite Higgs and top quark [2]. In all these bottom-up constructions the bulk fields

are put in by hand. However one would like to seek a more fundamental description

of these fields from a string construction where, in particular, the “preons” of the

composite states are identified. In this article we begin a study to determine the

possible top-down constructions.

From the top-down there are various well-defined string constructions that, in

the near-horizon geometry, are well-described by an AdS5 × X5 background, with

X5 a five-dimensional (5d) compact manifold. The simplest example is the one that

appeared in the seminal works on the AdS/CFT correspondence, whereX5 = S5 [3–5].

However, in the X5 = S5 case the dual 4d gauge theory has N = 4 supersymmetry,

which is too restrictive for phenomenological purposes.

More interesting for our present purposes is the Klebanov-Witten (KW) construc-

tion [6], where X5 = T 1,1 ≃ (SU(2)×SU(2))/U(1). In this case, the dual description

is a 4d N = 1 superconformal gauge theory. The theory is unregulated in the infrared

(IR), corresponding to a naked singularity in the geometric picture. The resolution of

this singularity leads to the more refined, Klebanov-Strassler (KS) construction [7].

In both the KW and KS backgrounds, the geometry is noncompact, extending to

infinity in the direction associated with the AdS5 radius. Correspondingly, the ul-

traviolet (UV) of the dual gauge theory lacks a regulator. On the gravity side of the

duality, this can be addressed if the geometry is completed by a compact Calabi-Yau

(CY) manifold in the region far from the “throat”. When this is done in the KS

construction, as has been considered by Giddings, Kachru and Polchinski (GKP) [8],

the spectrum is normalizable and discrete. This is very much like the RS1 setup: the

tip of the KS throat represents the IR brane, and the compact CY represents the UV

brane. The general picture is sketched in Fig. 1.

However, it is expected that the effective 5d action describing the dimensional

reduction of the string model on X5 will differ in a variety of ways from typical

phenomenological AdS5 actions. Ultimately, we want to compare the two classes of
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effective actions, to delineate the extent to which they differ, and to better understand

the circumstances in which they agree. Furthermore, we would like to obtain string-

inspired constraints on the 5d phenomenological models. For instance, what 5d bulk

masses are possible, what are the boundary conditions at the branes, and what is the

possible field content? In this article we address some of these questions.

The construction that is studied here involves embedding a D7 probe brane in the

KW geometry. In this way bulk matter and gauge fields are introduced; i.e., fields

that are not already contained in the N = 2 AdS5 supergravity multiplet associated

with type IIB compactification on T 1,1 [9–12]. In the dual 4d gauge theory, this

corresponds to the introduction of “quark” flavors. The D7 brane wraps an internal

cycle of the internal 5d compact space T 1,1 in such a way that it “disappears” at some

distance from the tip of the throat, much as in the AdS5 × S5 models with probe

branes [13–15]. This ending of the D7 brane leads to an IR boundary for the theory. In

the dual 4d gauge theory, it has the effect of bare masses for the quarks. The IR cutoff

of the KS background corresponds to the confinement scale of the dual gauge theory.

We will work in the heavy quark limit, so that the flavors are not propagating degrees

of freedom near the confinement scale. Thus, for the investigation that follows, the

IR cutoff of KS is not a detail that we will need. For this reason, we will utilize the

simpler KW geometry.

Next we give a summary of the remainder of this article:

• In §2 we outline the bosonic fluctuations associated with embedding a probe D7

brane in the KW background, following Levi and Ouyang [16]. We introduce

a reparameterization of the embedding coordinates that allows us to describe

the action of the embedding scalars as a function of the AdS5 radius. We

extract the effective 5d action that describes the corresponding modes that are

independent of the angular coordinates of the internal 5d space T 1,1. We briefly

address the boundary terms that appear for these scalars. We find that a certain

convenient simplification occurs. Finally, we summarize the action of the D7

brane worldvolume vector boson, and make some remarks on the effective 5d

compactification.

• In §3, we isolate the regime in which the scalar action can be mapped into

conventional AdS5 formulations, such as phenomenological models in a slice of

AdS5. We show that both bulk and boundary masses arise. The bulk mass-

squared is negative, but satisfies the Breitenlohner-Freedman bound [17,18], just
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Figure 1: A KS throat with a CY glued on to regulate the UV of the dual gauge

theory. The KS tip serves to regulate the IR of the dual gauge theory. A section

of AdS5 is asymptotically contained in the throat. The CY and the KS tip are,

respectively, to be thought of as refinements of the UV and IR branes of RS1. Much

of the throat can be approximated by the significantly simpler KW solution that we

study in the text. Furthermore, for the construction that we study, the end of the D7

brane provides an alternative IR boundary, as far as “quark” fields are concerned.
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as in the cases of probe branes in AdS5×S5 geometries [13–15]. We describe how

effects near the IR boundary where the D7 brane ends can be translated into

an effective description that resembles what is typically considered in model-

building applications. In particular, we show how Cauchy boundary conditions

at the IR boundary of the effective AdS5 regime are generic, and how they

emerge from Dirichlet boundary conditions that occur at the radius where the

D7 brane ends.

• In §4 we make concluding remarks and outline some outstanding issues. In

particular, our present findings indicate the need for a thorough understanding

of the harmonics on the somewhat complicated geometry of the internal 3-

manifold of the embedding, and of the detailed effects near the end of the D7

brane—items that we have touched on, but mostly left to future work.

• In the Appendix, we discuss the geometry and topology of the D7 embedding.

We show that the 3-manifold wrapped by the D7 brane at fixed AdS5 radius is

topologically equivalent to S3. This justifies an angle-independent assumption

that is made in the main text. Of course this assumption is only valid for fields

that can be expanded on scalar harmonics of the 3-manifold. We also identify

the isometry group of the embedding.

2 D7 branes in the Klebanov-Witten background

Let us begin by reviewing the KW background [6]. The ten-dimensional (10d)

metric is given by

ds2
10 = H(r)−1/2ηµνdx

µdxν +H(r)1/2ds2
6,

ds2
6 = dr2 + r2ds2

T 1,1, H(r) = 1 +
L4

r4
, (2.1)

where L is the curvature length and ds2
T 1,1 is the metric for T 1,1,

ds2
T 1,1 =

1

9

(

dψ +
∑

i=1,2

cos θi dφi

)2

+
1

6

∑

i=1,2

(

dθ2
i + sin2 θi dφ

2
i

)

. (2.2)

The base of the conifold is determined by

z1z2 = z3z4, zi ∈ C, (2.3)
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where by definition, zi ∼ r3/2. The angular dependence of the zi that give rise to

(2.2) can be found in [6]. We work in the near-horizon limit r ≪ L and approximate

the “warp factor” H(r) ≈ (L/r)4. Unless otherwise stated, we will work in L = 1

units (i.e., dimensions are restored in what follows via r → Lr, xµ → Lxµ, etc.).

2.1 Scalar fluctuations of the D7 brane embedding

Following Levi and Ouyang [16], the embedding of the D7 brane is characterized by

z1 = r3/2 sin
θ1
2

sin
θ2
2
e

i
2
(ψ−φ1−φ2) ≡ µ > 0. (2.4)

Equivalently, r = r0(θi) and ψ = ψ0(φi) with

r
3/2
0 sin

θ1
2

sin
θ2
2

= µ, ψ0 = φ1 + φ2. (2.5)

Thus the minimum radius is r = µ2/3. Since the AdS5 regime is in the near-horizon

limit r ≪ 1, in order for the flavors on the D7 brane to behave as fields in AdS5

in some regime it is necessary that µ2/3 ≪ 1. We assume that this is true in what

follows. The embedding studied here is among those that have been shown to be

consistent in the analysis of [19].

The fluctuations of the brane in the two orthogonal directions are given by the

scalar modes1

r = r0(1 + χ), ψ = ψ0 + 3η, (2.6)

where χ, η are generally functions of the eight worldvolume coordinates of the D7

brane. The induced metric on the D7 brane is

(g0)ab = diag (r2
0ηµν , gθiθj

, gφiφj
),

gθiθj
=

(

1
6

+ 1
9
cot2 θ1

2
1
9
cot θ1

2
cot θ2

2
1
9
cot θ1

2
cot θ2

2
1
6

+ 1
9
cot2 θ2

2

)

,

gφiφj
=

(

1
6
sin2 θ1 + 1

9
(1 + cos θ1)

2 1
9
(1 + cos θ1)(1 + cos θ2)

1
9
(1 + cos θ1)(1 + cos θ2)

1
6
sin2 θ2 + 1

9
(1 + cos θ2)

2

)

, (2.7)

where “diag” denotes a block diagonal matrix. The Dirac-Born-Infeld (DBI) action,

SDBI = −τ7
∫

d4x d2θ d2φ
√

ϕ⋆(g) + ϕ⋆(B) + 2πα′F , (2.8)

1This is the definition of χ that was actually used in [16], although version 1 of the preprint had

a typo [20].
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with τ7 = (2π)−7α′4g−1
s , contains the scalar fluctuations (2.6) through perturbations

of the pullback ϕ⋆(g) = g0 +δg0(χ, η) of the 10d metric to the D7 brane worldvolume.

We will return to the worldvolume 2-form F = dA in §2.4 below. The pullback of

the NS-NS 2-form ϕ⋆(B) will be neglected in our analysis, since we are interested in

fields that carry flavor quantum numbers. Note that the B-field vanishes in the KW

background. To quadratic order, the action for the scalar fluctuations (2.6) is:

S = −τ7
∫

d4x d2θ d2φ

{√−g0

[

gab0

2C
(∂aχ∂bχ+ ∂aη∂bη)

+
4

C
(sin2 θi

2
)−1χ∂φi

η − 2

C2
(sin2 θi

2
)−1 cot

θj
2
∂θj

(χ∂φi
η)

]

−∂θi

[√−g0

C
cot

θi
2

(

3χ2 + 2χ
)

]}

, (2.9)

where it has been convenient to define

C = 1 +
2

3
cot2 θ1

2
+

2

3
cot2 θ2

2
, (2.10)

and implicit sums over a, b ∈ {xµ, θi, φi}, with µ ∈ {0, . . . , 3}, and i, j ∈ {1, 2}. Thus

we agree with eq. (29) of Levi and Ouyang [16]; note, however, that we have explicitly

included the boundary terms that occur in the simplifications (integration by parts)

that lead to (2.9).

Our interest is in the lightest states, which are not excited modes on the internal

compact space T 1,1. Setting ∂φi
= 0 and integrating over the φi coordinates we find:

S = −4π2τ7

∫

d4x d2θ

(√−g0

[

gmn0

2C
(∂mχ∂nχ+ ∂mη∂nη)

]

−∂θi

[√−g0

C
cot

θi
2

(

3χ2 + 2χ
)

])

, (2.11)

where we now have indices m,n ∈ {xµ, θi}. To proceed further, we must extract the

radial dependence that has been hidden in the angular variables θi; cf. (2.5).

2.2 A radial reparameterization

It is convenient to introduce a scaled radius: r0 = µ2/3r̂. We can express the D7

brane embedding (2.5) in the equivalent form

2 = r̂3/2(cos θ− − cos θ+), θ± ≡ 1

2
(θ1 ± θ2). (2.12)
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We will eliminate θ+ in favor of the coordinates r̂, θ−. The domain of θ− depends on

r̂, and is given by

θ− ∈ [−θ0(r̂), θ0(r̂)], θ0(r̂) ≡
π

2
− sin−1 r̂−3/2. (2.13)

Taking into account the Jacobian of the transformation, we have
∫ π

0

dθ1

∫ π

0

dθ2(· · · ) =

∫ ∞

1

dr̂

∫ θ0(r̂)

−θ0(r̂)

dθ−
6

r̂5/2 sin θ+(r̂, θ−)
(· · · ), (2.14)

where

sin θ+(r̂, θ−) =
[

1 − (cos θ− − 2r̂−3/2)2
]1/2

. (2.15)

We will reduce to a 5d effective theory by imposing θ− independence, corresponding to

no excitation in this compact coordinate. The validity of this for the eight-dimensional

(8d) scalars χ, η rests on the fact that at fixed r̂ the D7 brane wraps a 3-manifold

that is topologically equivalent to S3, as shown in the Appendix. In the reduction to

5d, the 8d scalars should be expanded on scalar harmonics of this 3-manifold, which

will include the constant “ℓ = 0” mode. This translates into a θ−, φi independent

mode in the coordinates that are used here.

Note that we retain the parameterization (2.6) of the D7 embedding fluctuations,

although we have now taken r as a parameter of the D7 brane worldvolume. In fact,

it is not difficult to show that χ can be reinterpreted as a fluctuation of θ+ away from

θ+ = θ+(r̂, θ−) determined from (2.12).

The quantity C that appears in (2.10) can be written as:

C =
1

3

[

−1 + 4r̂3/2 cos θ− + r̂3(1 − cos 2θ−)
]

. (2.16)

We also find that the metric density of the old coordinates takes the form

√−g0 ≡ µ8/3
√

−g(r̂, θ−),
√

−g(r̂, θ−) =
C

9
r̂(r̂3/2 cos θ− − 1). (2.17)

For the metric ĝmn in the new coordinates m,n ∈ {xµ, r̂, θ−, φi}, we have

√

−ĝ =
6µ8/3

√

−g(r̂, θ−)

r̂5/2 sin θ+(r̂, θ−)
=

2µ8/3C(r̂3/2 cos θ− − 1)

3r̂3/2 sin θ+(r̂, θ−)
, (2.18)

in accordance with (2.14). The components of the new metric ĝ are given in (2.27)

below. In the new coordinates we obtain the action:

S = −4π2τ7

∫

d4x

∫ ∞

1

dr̂

∫ θ0(r̂)

−θ0(r̂)

dθ−

{

√

−ĝ

×
[

ĝij(r̂, θ−)

2C(r̂, θ−)
(∂iχ∂jχ + ∂iη∂jη)

]

+ t.d.

}

, (2.19)
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where “t.d.” = total derivatives, r̂, θ− dependence has been made explicit, and now

i, j ∈ {µ, r̂}. The transformed inverse metric ĝij is just the one that follows from the

change of coordinates. We only need:2

ĝij =

(

ĝµν 0

0 ĝr̂r̂

)

=

(

µ−4/3r̂−2ηµν 0

0 (1 − C−1)r̂2

)

. (2.20)

We still must integrate over the θ− dependence that appears explicitly in the La-

grangian. To this end we define the following r̂-dependent functions:3

F1(r̂) ≡
∫ θ0(r̂)

−θ0(r̂)

dθ−

√−g
sin θ+C

(r̂, θ−),

F̃1(r̂) ≡
∫ θ0(r̂)

−θ0(r̂)

dθ−

√−g(C − 1)

sin θ+C2
(r̂, θ−). (2.21)

Then the effective 5d action for θ−, φi independent modes is:

S = −24π2µ8/3τ7

∫

d4x

∫ ∞

1

dr̂

{

1

2
µ−4/3r̂−9/2F1(r̂)η

µν (∂µχ∂νχ+ ∂µη∂νη)

+
1

2
r̂−1/2F̃1(r̂)[(∂r̂χ)2 + (∂r̂η)

2] + t.d.

}

. (2.22)

In Fig. 2 we show the functions F1 and F̃1, each of which vanishes at r̂ = 1. We

will have more to say about these functions below.

2.3 Boundary terms

Next, we briefly describe the total derivative terms that appear in (2.11). These yield

boundary terms at θ1,2 = 0 and π. To elucidate the relation of these boundaries to the

r̂, θ− coordinates, we have mapped r̂ into a finite domain in Fig. 3. This figure takes

into account the r̂-dependent domain of θ−, Eq. (2.13). Along the θ1 = π boundary,

we can write θ2 = θ2(r̂) = π − 2θ0(r̂). A similar statement holds along the θ2 = π

boundary, with θ1 = π − 2θ0(r̂). It is therefore straightforward to express these two

boundary terms as integrals over r̂, with θ− = ±θ0(r̂) (it will be seen below that these

2There are also ĝr̂θ
− and ĝφiφj components that we are able to ignore because of our angular

independence assumption. These components of course make an implicit appearance in the overall

measure that appears in (2.19). Cf. (2.27) below.
3Note that these definitions are expressed in terms of the old metric density with µ8/3 scaled out,

the quantity
√

−g(r̂, θ−) defined in (2.17), rather than the new metric density (2.18).

8



Figure 2: The functions F1(r̂) and F̃1(r̂), defined in (2.21). Both functions are well-

described by the approximation (3.4).

boundary terms vanish.). At the θ2 = 0 boundary, we can write θ1 = 2θ−. A similar

statement holds on the θ1 = 0 boundary, where θ2 = −2θ−. These two boundary

terms can therefore be expressed as integrals over θ− ∈ [0,±π/2] with r̂ → ∞. The

latter limit will require some care. Corresponding to the total derivative terms in

(2.11), we define

H
(1)
i (θ1, θ2) = 2

√−g0 C
−1 cot

θi
2
χ,

H
(2)
i (θ1, θ2) = 3

√−g0 C
−1 cot

θi
2
χ2. (2.23)

Then it is easy to show that the total derivatives can formally be written as the

following boundary action:

Sb = −8π2τ7

∫

d4x
∑

i,α=1,2

{
∫ ∞

1

dr̂

∣

∣

∣

∣

∂θ0
∂r̂

∣

∣

∣

∣

[

H
(α)
i (π, π − 2θ0) +H

(α)
i (π − 2θ0, π)

]

+

∫ π/2

0

dθ− H
(α)
i (2θ−, 0) +

∫ 0

−π/2

dθ− H
(α)
i (0,−2θ−)

}

= −8π2τ7

∫

d4x
∑

i,α=1,2

{
∫ π/2

0

dθ− H
(α)
i (2θ−, 0) +

∫ 0

−π/2

dθ− H
(α)
i (0,−2θ−)

}

.(2.24)

Here we provide an intermediate expression in order to emphasize that the boundaries

with θ− = ±θ0 (first line) give vanishing contributions. This is fortunate, since they

9
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r̂ = 1
θ1 = θ2

r̂ = ∞, θ− = π/2

r̂ = ∞, θ− = 0

r̂ = ∞, θ− = −π/2

s s

s

s

θ1 = π

θ2 = π

θ2 = 0

θ1 = 0

-

6

r̂

θ−

Figure 3: Relation between coordinates θ1,2 and r̂, θ−, taking into account the r̂-

dependent domain of θ− for the D7 embedding, given in (2.13). The boundaries at

θ1,2 = π correspond to θ− = ±θ0(r̂), where θ0(r̂) is monotonically increasing in r̂,

from θ0(1) = 0 to θ0(∞) = π/2. The boundary at r̂ = ∞ consists of two segments,

distinguished by positive and negative θ−. These correspond to θ2,1 = 0. The r̂ = 1

boundary is just a point in this 2d subspace.

would otherwise give bulk contributions as far as the 5d reduction is concerned. The

final expression is just the r̂ → ∞ boundary terms, which should be interpreted in

terms of limits. Boundary conditions on χ will have to be imposed such that the

result is well-defined.

2.4 Gauge fields

Under dimensional reduction, the 8d vector boson Aa of the worldvolume D7 brane

U(1) gauge theory decomposes into a 5d gauge field Aµ and three real scalars Aθ−,φi
.

We now extract the quadratic action and equations of motion for these fields. We

will then make some brief comments regarding these modes. We will point out the

difficulties that arise from the vector harmonic analysis of the Aθ−,φi
modes due to

the nontrivial 3-manifold that they are compactified on.

It is straightforward to expand the DBI action (2.8) to quadratic order in the 8d

field strength Fab. In addition, the Wess-Zumino (WZ) term needs to be considered,

10



due to the nontrivial 4-form background that is present in the KW construction:

SWZ =
1

2
(2πα′)2τ7

∫

C4 ∧ F ∧ F, C4 = µ8/3r̂4dx0 ∧ · · · ∧ dx3. (2.25)

The F ∧ F that appears in the WZ action can only have “legs” along the r̂, θ−, φi

directions, which we will label collectively by α, β etc. Altogether, we have:

SF 2 = (2πα′)2τ7

∫

d4x dr̂ dθ− d
2φ

{

− 1

4

√

−ĝFabF ab +
1

8
µ8/3r̂4ǫαβγδFαβFγδ

}

,(2.26)

where the metric is given by:

ĝµν = µ−4/3r̂−2ηµν , ĝr̂r̂ = (1 − 1/C)r̂2,

ĝr̂θ− = r̂5/2C−1 sin θ−, ĝθ−θ− = (4r̂3/2 cos θ− + 3C − 1)/2C, (2.27)

ĝφiφj =
r̂3

4C





5−cos(θ−−θ+)

cos2 1

2
(θ−+θ+)

−4

−4 5−cos(θ−+θ+)

cos2 1

2
(θ−−θ+)



 ,

with θ± defined in (2.12), and
√−ĝ, given in (2.18), contributing the same coefficient

µ8/3 as appears in the WZ term. The equations of motion are

0 = ∂a(
√

−ĝF ab) − 4µ8/3r̂3ǫbjk∂jAk, (2.28)

where ǫbjk = 0 unless b ∈ {θ−, φi}, and by definition j, k ∈ {θ−, φi}, the coordinates

of the internal 3-manifold X3 at fixed radius r̂ (see the Appendix).

Since the fields Ak are vectors on X3, it is necessary to expand them on vector

harmonics of X3. This analysis is far from trivial, for a couple of reasons. First, the

metric of X3 depends on r̂. Second, even at r̂ → ∞, where the metric of X3 becomes

independent of r̂, the geometry of the 3-manifold is not simple, as is discussed in the

Appendix. To determine the vector harmonics requires an analysis comparable to

that done in Refs. [9–12] for the 5-manifold T 1,1.

It is easy to check that the 5d vector boson (Aµ, Ar̂) has vanishing bulk mass.

Note that this mode corresponds to the constant scalar harmonic on the compact

3-manifold X3. From the AdS5 supersymmetry that is present in the model, we know

that there must be a 5d real scalar partner with bulk mass-squared m2 = −4/L2.

This must emerge from the analysis of the modes Aθ−, Aφi
, and would be a nontrivial

check of the supersymmetry that is beyond the scope of the present work. In addition

there will also be a massless (Dirac) fermion corresponding to the gaugino.
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3 Relation to 5d effective theories

In this section we relate the above string construction to the sort of 5d effective

theories that are generally contemplated in phenomenological applications [2]. Our

first task is to show that, in an appropriate limit the scalars χ, η described above

behave like fields in AdS5.

3.1 The AdS5 regime

The action for a massive real scalar field in a semi-infinite slice of AdS5 is given by

S = −1

2

∫

d4x

∫ ∞

R

dr

{

r

L
ηµν∂µφ∂νφ+

r5

L5
∂rφ∂rφ+

r3

L3
m2φ2

}

, (3.1)

where our coordinate conventions are summarized by the metric:

ds2
5 =

r2

L2
ηµνdx

µdxν +
L2

r2
dr2. (3.2)

We would like to find a regime where the action (3.1) is a good approximation to the

action of χ, η (2.22). We expect this to be possible since in the near-horizon regime

(r ≪ L) the supergravity background is AdS5 × T 1,1. The complication is that the

D7 brane is embedded into this space in a way that constrains angles in T 1,1 to be

related to the AdS5 radius r via (2.5). This complicates the radial dependence of the

χ, η action, as can be seen from the various expressions in the previous sections.

However, from (2.12) it is easy to see that in the r̂ → ∞ limit, the embedding

approaches θ− ≡ θ+, which is independent of the radius r̂. Recall that since r̂ =

r/µ2/3, r̂ ≫ 1 corresponds to r ≫ µ2/3 and therefore to remain in the near-horizon

limit, we also require r ≪ L. Thus we want to examine the above expressions in the

regime µ2/3 ≪ r ≪ L. In the L = 1 units used above, this is equivalent to

r̂ ≫ 1, µ2/3 ≪ 1 . (3.3)

We will extract the leading order Lagrangian under these assumptions and compare

to (3.1). Our finding is that the usual, conformally coupled scalar action is recovered.

Deviations from this action due to subleading terms (logarithmic in r̂) are related to

the breakdown of conformal invariance near the mass threshold of the flavors of the

dual gauge theory, corresponding to the end of the D7 brane probe at r = µ2/3.

After a careful numeric and analytical study of the integrals (2.21), we find that

F1 ≈
1

6
r̂5/2 ln r̂ , (3.4)
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to an approximation that is good to five significant digits at all values of r̂. It is

possible to obtain an exact expression for F1 in terms of elliptic functions, which

gives (3.4), corrected by subleading logs. Also, F̃1 ≈ F1 in an approximation that

becomes exact in the r̂ → ∞ limit; in fact, it can be seen from Fig. 2 that the two

functions are nearly equal for all values of r̂. However, for r̂ = O(1), in relative terms

the r.h.s. of (3.4) is a poor approximation to F̃1.

To obtain an action corresponding to the form (3.1), the following field redefini-

tions must be made:

χ = r̂3/2(ln r̂)−1/2χ′, η = r̂3/2(ln r̂)−1/2η′. (3.5)

Note that to an excellent approximation, this is just a rescaling by F
−1/2
1 and an

appropriate power of r̂. Taking into account the powers of r̂ that arise from (2.22)

and (3.4), the following radial gradient term occurs in the Lagrangian:

r̂2 ln r̂(∂r̂χ)2 = r̂5(∂r̂χ
′)2 −

(

15

4
− 1

2 ln r̂
+

1

4(ln r̂)2

)

r̂3χ′2 + t.d., (3.6)

with an identical equation for η. Substitution of (3.5)-(3.6) into (2.22) yields the bulk

action

S(χ′) ≈ −2π2µ8/3τ7

∫

d4x

∫ ∞

R̂

dr̂

{

r̂

µ4/3
ηµν∂µχ

′∂νχ
′

+f(r̂)
[

r̂5(∂r̂χ
′)2 + r̂3m2(r̂)χ′2

]

}

, (3.7)

and an action for η′ that is the same. We have introduced the ratio

f(r̂) = F̃1(r̂)/F1(r̂) ≈ 1 for r̂ ≫ 1. (3.8)

In (3.7), a cutoff R̂ ≫ 1 on the radial integration has been introduced. The effects

of integration over r̂ ∈ [1, R̂], as well as total derivative terms could, for instance, be

incorporated into an effective boundary action. This is discussed in §3.2 below. For

R̂ ≫ 1, it is a good approximation to take f(r̂) = 1 in (3.7), which is what we do in

the following.

The r̂-dependent mass is:

m2(r̂) = −15

4
+

1

2 ln r̂
− 1

4(ln r̂)2
. (3.9)

The terms proportional to 1/ ln r̂ or its square are subleading in the r̂ ≫ 1 regime. In

Fig. 4 we display the mass (3.9). In the r̂ → 1 limit, m2(r̂) becomes infinitely negative.
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Figure 4: The mass that is defined in (3.9). It approaches the constant value −15/4

at large r̂. The infinitely negative value at r̂ → 1 gives rise to the Dirichlet boundary

conditions (3.10).

As a consequence, physical solutions must satisfy Dirichlet boundary conditions:

lim
r̂→1

χ′(r̂) = lim
r̂→1

η′(r̂) = 0. (3.10)

The approach to zero at r̂ = 1 must be stronger than ln r̂. In ref. [16], it is stated that

for regularity the original fields χ, η should satisfy Neumann boundary conditions at

θ1 = θ2 = 1, equivalent to r̂ = 1. Taking into account the factor
√

ln r̂ that appears

in (3.5), it is clear that a finite χ, η at r̂ = 1 implies a vanishing χ′, η′. Thus the two

findings on boundary conditions at r̂ = 1 are consistent.

The mass degeneracy for χ′, η′ is a consequence of 5d supersymmetry in the AdS5

regime: the real scalars χ′, η′ must combine into a complex scalar of a 5d supersym-

metry hypermultiplet.

If we return to the variables r = r̂µ2/3 and R = R̂µ2/3, and reintroduce the AdS5

radius L explicitly by scaling the fields χ′ → χ′/L, η′ → η′/L, we obtain

S(χ′) ≈ −2π2L−5τ7

∫

d4x

∫ ∞

R

dr

{

r

L
ηµν∂µχ

′∂νχ
′ +

r5

L5
(∂rχ

′)2 − 15

4L2

r3

L3
χ′2

}

,(3.11)

and similarly for η′. Here we have neglected the subleading logs in the mass terms

and the prefactor (3.8).
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For χ′, η′ we obtain a negative mass-squared:

m2 = − 15

4L2
> − 4

L2
, (3.12)

where the inequality expresses the fact that the mass-squared satisfies the Breitenlohner-

Freedman bound [17,18]. The explanation of the negative mass-squared is similar to

that given for probe branes in AdS5×S5 geometries [13–15]. We show in the Appendix

that at fixed r̂ the D7 brane wraps a 3-manifold that is topologically equivalent to

S3. The radius of this S3 shrinks to zero as r̂ → 1. It is therefore a topologically

trivial 3-cycle in the conifold. The negative mass-squared corresponds to a “slipping

mode.”

The bulk mass is independent of the scale µ2/3, as it should be, since that is

an IR boundary scale. The µ dependence has also disappeared from the overall

factor in front of the action, which also makes sense from this perspective. The

purely numerical value −15/4 arises from the radial independence of the embedding

θ− ≡ θ+ that occurs in the r̂ → ∞ limit. In fact, −15/4 is interesting because it is

nothing but the conformally coupled scalar in AdS5 [21, 22], and corresponds to the

Laplacian eigenvalue for the lowest mode of scalar harmonics on T 1,1 [9–12]. Since

we are considering only modes that are independent of the T 1,1 coordinates, they do

not “know” that the D7 brane is actually restricted to a submanifold of T 1,1. This

explains the equivalence to the lowest T 1,1 scalar harmonic.

The O(1/ ln r̂) mass terms in (3.9) represent the leading effect of the breaking

of conformal symmetry due to µ 6= 0. In the dual gauge theory this parameter is

related to the Yukawa and mass parameters of massive “flavor probes” that have

been added to the original KW construction. At scales where the mass of these

flavors is noticeable, the conformal symmetry is broken. The threshold for these

flavors corresponds to r̂ = 1, where the D7 brane ends. Far away from this tip,

at r̂ ≫ 1, the dual gauge theory is at energy scales far above the threshold, where

universal behavior dominates and scaling dimensions become apparent.

3.2 Effective boundary action

On physical grounds, there is one boundary condition (BC) at r̂ = 1 that must be

satisfied: since the fields end there, and this should happen continuously, we have

Dirichlet BCs (3.10). It was seen above that this naturally emerges from infinitely

negative mass terms. Solving the equations of motion in the region r̂ ∈ {1, R̂}, we
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can impose one more BC, generally Cauchy, at R̂. Thus, we obtain a discrete set of

permissible Cauchy BCs at R̂, parameterized by the functional condition:

G[χ′(x, R̂), ∂r̂χ
′(x, R̂)] = 0 ∀x, (3.13)

and similarly for η′. This constraint may then be translated into an effective boundary

action involving a Lagrange multiplier ψ:

S ′ =

∫

d4x ψ(x)G[χ′(x, R̂), ∂r̂χ
′(x, R̂)]. (3.14)

ψ is interpreted as a boundary field; we can give it dynamics on the boundary, pro-

vided it still has the effect of setting G = 0 to a good approximation.

From Fig. 4, we see that to a first approximation the r̂ ≈ 1 effects just impose

Dirichlet BCs at r̂ = R̂ = O(1):

G[χ′(x, R̂), ∂r̂χ
′(x, R̂)] ≈ χ′(x, R̂). (3.15)

That is, Fig. 4 shows that R̂ of just “a few” suffices to approach the constant value

of m2 = −15/4; the requirement R̂ ≫ r̂ is stronger than is actually needed, in order

to render the log corrections in (3.9) negligible. Thus, the leading order behavior is

just that of a conformally coupled scalar with Dirichlet BCs at the IR boundary.

3.3 Auxiliary scalar action

Here we briefly touch on an alternative effective description of the small r̂ behavior.

The approach here is modeled after what was done in [23]. One introduces two scalars

hχ′,η′ to imitate the effect of the r̂-dependent part of the masses (3.9). These auxiliary

scalars are static, in the sense that for the modes that couple to χ′, η′, we can neglect

dependence on 4d spacetime coordinates. For this to work, it is necessary to replace

the r̂-dependent parts of the mass terms for χ′, η′ with

−2π2µ8/3τ7

∫

d4x

∫ ∞

R̂

dr̂

{

r̂5
[

(∂r̂hχ′)2 + (∂r̂hη′)
2
]

+ r̂3
[

V (hχ′, hη′) + hχ′χ′2 + hη′η
′2
]

}

. (3.16)

The potential V is engineered such that once the equations of motion for hχ′,η′ are

imposed the profile of the auxiliary scalars is just

hχ′ = hη′ = m2(r̂) +
15

4
. (3.17)
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We will not pursue this effective description further, since the “microscopic” descrip-

tion of §3.2 that is available from the string construction is more fundamental and

elegant. The only point that we wish to make is that the unusual small r̂ behavior

of the scalar action can be mimicked by a coupling to a quasi-static scalar with a

nontrivial profile for its lowest mode—something that a low-energy phenomenologist

might be more likely to consider.

4 Conclusions and outlook

The introduction of probe D7 branes in the Klebanov-Witten background pro-

vides a more fundamental description of 5d phenomenological models in a slice of

AdS5. In this article we have concentrated on the AdS5 regime that exists for a

single D7 brane embedded into the Klebanov-Witten background and derived the ef-

fective 5d action for the scalar fluctuations. Whereas there is a significant departure

from the conventional scalar in AdS5 near the end of the D7 brane, far away from that

region the D7 embedding fluctuations become conformally coupled scalars of AdS5.

Furthermore by supersymmetry there are also (massless) 5d bulk fermions.

In addition we have shown that in the AdS5 regime there are massless gauge fields.

These fields mimic the bulk gauge fields considered in 5d phenomenological models in

a slice of AdS5. Again by supersymmetry we then infer that in the 5d bulk there are

also massless (Dirac) fermions and a massive scalar with m2 = −4/L2. Thus, probe

D7 branes can provide all the necessary 5d bulk fields required for phenomenological

model-building.

The simple setup that we have considered in this article can be generalized to

provide a more realistic 5d phenomenological model that incorporates the Standard

Model, although a number of outstanding questions remain.

In particular one would like a full understanding of the 5d supergravity that occurs

when the super-D7 brane effective action and type IIB supergravity is reduced on the

8d subspace AdS5 × X3, where we recall that X3 is the r̂-dependent D7 embedding

into T 1,1. At r̂ ≫ 1, this would determine the complete multiplet structure for the

bulk 5d supergravity and matter fields. Eventually supersymmetry will also need

to be broken so that a realistic low-energy spectrum is obtained. One possible way

would be to study flux compactifications as in GKP [8].

To construct models with semi-realistic gauge groups in the bulk, multiple D7

branes need to be considered—corresponding to a nonabelian gauge group general-
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ization. Standard model matter can then be obtained by studying intersecting D7

brane models, where strings stretched between multiple D7 branes in the internal

compact coordinates gives rise to matter with the usual Standard Model quantum

numbers.

Normally 5d phenomenological models are compactified on S1/Z2 orbifolds, with

corresponding bulk and boundary masses. Thus, a detailed examination of the ef-

fective boundary action or auxiliary scalar action, as sketched in §3.2-3.3, would

be necessary. This may also require studying the D7-brane fermion action for the

Klebanov-Witten background, following the techniques of [24–26], supplemented by

an analysis of spinor harmonics on X3. However, as noted earlier, information about

the bulk fermion masses already follows from the scalar mass-squared analysis, due

to AdS5 supergravity constraints.

The most important aspect of the 5d phenomenological models is their dual holo-

graphic interpretation as composite 4d theories [2]. The probe D7 branes introduce

fundamental “quarks” in the dual gauge theory. Identifying the corresponding op-

erators in the dual gauge theory, especially with a realistic Standard Model spec-

trum, would elucidate the holographic correspondence of composite states, like the

top quark and Higgs scalar field. This remains one of the most interesting avenues to

study further.

Furthermore various refinements could also be introduced to the simple Klebanov-

Witten construction that has been considered in this work. As mentioned in the

Introduction, one could introduce an IR cutoff for non-probe modes by generalizing

to the Klebanov-Strassler background [7]. Here, the conifold (2.3) is deformed:

z1z2 − z3z4 = ǫ2. (4.1)

The parameter ǫ determines the IR cutoff, and consistency of the supergravity theory

requires a background three-form flux. This is a significant complication for the

spectral computation. The D7 brane probes of this background have been studied,

for instance, in [27, 28]. The embeddings that were choosen are somewhat different

from (2.5). For all these D7 embeddings, the main results will be essentially the

same: there is an AdS5 regime far away from where the D7 brane ends; the end of

the D7 brane can be replaced by an effective boundary action, or an auxiliary scalar;

the small 5d radius regime, near where the D7 brane ends, differs significantly from

AdS5.

In summary, probe D7 branes in the Klebanov-Witten background provide a more

fundamental description of 5d phenomenological models in a slice of AdS that solve
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the hierarchy problem. This framework allows bulk fields to be introduced and leads

to the possibility of explicitly constructing the dual theory.

Acknowledgements

We are grateful to Shamit Kachru for helpful remarks during the initial stages of

this work. We thank Gianguido dall’Agata, Arthur Hebecker, and Angel Uranga for

useful discussions. This work was supported in part by a Department of Energy grant

DE-FG02-94ER40823 at the University of Minnesota. TG is also supported by an

award from the Research Corporation and acknowledges the hospitality of the CERN

Theory Division where this work was completed.

Appendix

A Geometric details of the D7 brane embedding

Here we provide some brief remarks on the geometry of the D7 embedding

relative to the AdS5 × T 1,1 background.

First recall the standard argument that shows that T 1,1 has isometry group SU(2)×
SU(2) × U(1). The conifold equation (2.3) that defines T 1,1 may be expressed alter-

natively in coordinates

z1 = w1 + iw2, z2 = w1 − iw2, z3 = w3 + iw4, z4 = −(w3 − iw4), (A.1)

yielding

∑

i

w2
i = det(w412 + iσawa) = 0. (A.2)

Here we have expressed the constraint in terms of a complex quaternion equation,

which has the SU(2)1 × SU(2)2 × U(1) invariance

w412 + iσawa → eiαU(w412 + iσawa)V, U ∈ SU(2)1, V ∈ SU(2)2. (A.3)

The T 1,1 base is the intersection of this with the S7 ∈ C4 of radius r3/2:

∑

i

|wi|2 = r3 ⇔ Tr (w412 + iσawa)(w412 + iσawa)
† = 2r3. (A.4)
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This also has the invariance (A.3), demonstrating that SU(2) × SU(2) × U(1) is an

isometry of T 1,1.

On the other hand, when the embedding z1 = µ is imposed, we have a 4d real

manifold Y4 embedded in the C3 parameterized by z2, z3, z4:

µz2 = z3z4. (A.5)

This has a U(1) × U(1) invariance with charges (2, 1, 1) and (0, 1,−1) for the three

complex coordinates respectively. There is also a scaling symmetry Γ:

Γ : z2 → λ2z2, z3,4 → λz3,4, λ ∈ R+. (A.6)

We declare the base of Y4 to be X3 = Y4/Γ, since any point in Y4 can be reached from

the application of Γ to a representative in X3. We can parameterize Y4 by the pair

z3, z4, which it is useful to write as

z3 = ρeiα cos
γ

2
, z4 = ρeiβ sin

γ

2
, (A.7)

with γ ∈ [0, π], α, β ∈ [0, 2π), and ρ ∈ [0,∞). This is just C2 = R+ × S3, or a

family of 3-spheres with radii ρ. Note that (A.5) has a solution z2 for every value of

z3, z4, so that the entire R+ × S3 is contained in Y4. Also note that for each value

of z2, there corresponds at least one pair z3, z4. Thus the entire Y4 is parameterized

by the R+ × S3 (A.7). Alternatively, the base X3 is the intersection of Y4 with any

S3 ∈ C2(z3, z4) corresponding to:

|z3|2 + |z4|2 = ρ2. (A.8)

The equation (A.5) just tells us how the R+ × S3 parameterized by ρ, γ, α, β is

embedded into C3(z2, z3, z4).

Next note the homeomorphism determined by the continuous deformation of (A.5):

µz2 = (1 − s)z3z4, s ∈ [0, 1]. (A.9)

At s = 1 the embedding is just z2 = 0 with z3, z4 arbitrary. Thus the topology of Y4

is just R+ × S3, and the topology of X3 is S3. The geometry of Y4 is different, since

it is only the projection into C2(z3, z4) that is geometrically described by R+ × S3,

much as an ellipse in 3d can be projected onto a circle in a 2d plane.

It is of interest to relate Y 4 to the conifold geometry, particularly the coordinate r.

This relation follows from

r3 =

4
∑

i=1

|zi|2 = µ2 + ρ2 +
1

4µ2
ρ4 sin2 γ. (A.10)
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First, note that as r → µ2/3, the X3 ≃ S3 radius ρ shrinks to zero. This is, in detail,

how the D7 brane “ends” in the AdS5 radial dimension. Next note that if we fix r,

the X3 ≃ S3 radius becomes a function of the polar angle γ. The entire domain of γ

has a solution, with ρ(γ) falling in the range

2µ(r3/2 − µ) ≤ ρ(γ) ≤ r3 − µ2. (A.11)

The lower limit is saturated at γ = π/2, whereas the upper limit is saturated at

γ = 0, π. Thus at fixed r the D7 embedding corresponds to a 3d ellipsoid. At

r → ∞ the “squishing” disappears and we just have an S3. This suggests that a

harmonic analysis at r → ∞ in terms of the coordinates γ, α, β should be relatively

straightforward, involving just the S3 harmonics.

The U(1)×U(1) isometry of the 4d manifold Y4 is also an isometry of the 3d base,

as is apparent from (A.8). This isometry group will be reflected in the spectrum of

eigenmodes and angular dependence. A thorough harmonic analysis on this 3d space

X3 at arbitrary AdS5 radius r is however, beyond the scope of the present article.

Finally consider the r̂ → ∞ embedding in terms of the conifold coordinates. In

this limit, the embedding is purely angular and is given by the sum:

X∞
3 ≡ {θi, φi, ψ | θ1 = 0, ψ = φ1 + φ2} + {θi, φi, ψ | θ2 = 0, ψ = φ1 + φ2}. (A.12)

The two subspaces intersect at θ1 = θ2 = 0. Each subspace clearly contains an S2

parameterized by (θi, φi), i = 1 or 2. As a consequence, an expansion on spherical

harmonics Yℓm(θi, φi) is valid, i = 1 or 2 depending on the subspace. This affords

a further justification for our assumption of θ− = (θ1 − θ2)/2 independence in the

r̂ → ∞ limit for the 8d scalars χ, η.
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