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Abstract: We construct non-critical pure spinor superstrings in two, four and six

dimensions. We find explicitly the map between the RNS variables and the pure

spinor ones in the linear dilaton background. The RNS variables map onto a patch

of the pure spinor space and the holomorphic top form on the pure spinor space is an

essential ingredient of the mapping. A basic feature of the map is the requirement of

doubling the superspace, which we analyze in detail. We study the structure of the

non-critical pure spinor space, which is different from the ten-dimensional one, and

its quantum anomalies. We compute the pure spinor lowest lying BRST cohomology

and find an agreement with the RNS spectra. The analysis is generalized to curved

backgrounds and we construct as an example the non-critical pure spinor type IIA

superstring on AdS4 with RR 4-form flux.
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1. Introduction and summary

The critical dimension for the superstrings in flat space-time is d = 10. In dimensions

d < 10, the Liouville mode is dynamical and needs to be quantized as well. These

superstrings are sometimes called non-critical. The Liouville mode can be interpreted

as a dynamically generated dimension. Thus, if we start with superstring theory in

d < 10 space-time dimensions, we have effectively d+ 1 space-time dimensions. The
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total conformal anomaly vanishes for the non-critical superstrings due to the Liouville

background charge. However, while this is a necessary condition for the consistency

of non-critical superstrings, it is not a sufficient one. Much work has been done on

the analysis of non-critical strings in two and less dimensions. Consistent superstring

theories in linear dilaton backgrounds with even dimensions have been constructed

in [1], and studied in the RNS formalism.

There are various motivations to study non-critical strings. First, non-critical

superstrings can provide alternative to superstring compactifications. Second, the

study of non-critical superstrings in the context of the gauge/string correspondence

may provide dual descriptions of new gauge theories, and in particular QCD [2, 3].

A complication in the study of non-critical superstrings in curved spaces is that,

unlike the critical case, there is no consistent approximation where supergravity

provides a valid effective description. The reason being that the d-dimensional su-

pergravity low-energy effective action contains a cosmological constant type term of

the form

S ∼
∫

ddx
√
Ge−2Φ

(

d− 10

l2s

)

,

which vanishes only for d = 10. This implies that the low energy approximation

E ≪ l−1
s is not valid when d 6= 10, and the higher order curvature terms of the

form (l2sR)
n

cannot be discarded. A manifestation of this is that solutions of the

d-dimensional non-critical supergravity equations have typically curvatures of the

order of the string scale l2sR ∼ O(1) when d 6= 10.

The second complication is that interesting target space curved geometries in-

clude RR field fluxes. As in the critical superstrings case, the RNS formulation is

inadequate for the quantization of superstrings in such backgrounds. In [4] a covari-

ant description of non-critical superstrings in even dimensions has been constructed

using the hybrid type variables. The approach taken was to construct a covariant

description of non-critical superstrings on linear dilaton background and use the su-

persymmetric variables to construct the non-critical superstrings σ-model action in

general curved target space backgrounds. The goal of this work is to develop the

pure spinor quantization procedure for non-critical superstrings.

The pure spinor formalism for critical superstrings [5] is based on integer world-

sheet spin variables. They are the target superspace coordinates (xm, θα), where

xm, m = 0, ..., 9 are commuting coordinates and θα, α = 1, ..., 16 are anti-commuting

coordinates, pα the conjugate momenta to θα, the bosonic spinor ghosts λα, which

satisfy the (complex) pure spinor constraint

λαγm
αβλ

β = 0 ,

and their conjugate momenta wα. By construction, the pure spinor formalism is

manifestly space-time supersymmetric and provides a simple coupling to the NS-NS

and RR fields.
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Unlike the GS formalism, there is no κ-symmetry to gauge fix. Instead, an

important ingredient of the pure spinor formalism is the nilpotent BRST operator

Q =

∫

dzλαdα ,

where dα acts as the supersymmetric derivative in ten dimensions. Physical states are

elements in the BRST cohomology modulo the pure spinor constraints. In addition,

the invariance of the action under the BRST symmetry can provide strong constraints

on possible quantum correction. This has been used, for instance, to prove that

AdS5 × S5 is a consistent background for type II superstrings [6].

In this paper we will use a pure spinor formalism to describe non-critical super-

strings. The strategy of constructing the pure spinor description of the non-critical

superstrings is to first map the bosonic and fermionic linear dilaton RNS variables

to pure spinor variables. A generic feature of the map in all dimensions is that it

takes the RNS variables to the pure spinor variables on a patch of the pure spinor

space. The pure spinor space of non-critical superstrings will be different from the

pure spinor space of critical superstrings.

By performing the map of the RNS variables to the pure spinor variables, we

will see that a basic feature is the requirement of doubling the superspace. This can

be done by enlarging the linear dilaton superspace structure to include superspace

coordinates (with their conjugate momenta), which are not BRST invariant on the

RNS side. Similarly we will have a doubling of the superderivates, with only half

of them being physical, though all being conserved. We will see that the current

algebra of the doubled superderivatives is not a supersymmetry algebra and only a

nonanomalous subsector closes on the spacetime supersymmetry. Indeed, working

in a doubled superspace with the pure spinor variables will require an appropriate

projection to this physical subsector. However, the doubled superspace will allow to

study pure spinor superstrings in backgrounds with double the supersymmetries of

the linear dilaton background.

Let us illustrate the above discussion by briefly presenting the pure spinor struc-

ture that we will find for two-dimensional superstrings in linear dilaton background

Rϕ × U(1)x .

The background has two bosonic dimensions, the noncompact Liouville direction ϕ

and the x direction compactified on a circle with radius R = 2/Q, where Q = 2 is the

Liouville background charge. The doubled superspace (in the holomorphic sector)

has two fermionic coordinates (θ+, θ+̇) with their conjugate momenta (p+, p+̇). The

(θ+, p+) pair are BRST invariant physical quantities, while (θ+̇, p+̇) are BRST non-

invariant, but required by the map from the RNS variables to the covariant variables.

Similarly, the corresponding two superderivatives are d+ and d+̇, where the former is
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BRST invariant, and the latter is not. The OPE between the physical and unphysical

d’s does not close a superalgebra, but rather has a double pole

d+(z)d+̇(0) ∼ −Q

z2
+ ...

The space-time zero-dimensional supersymmetry is realized by the physical d+, which

is in fact nilpotent in this case.

The crucial ingredient in this covariant formalism is provided by the pure spinor

variables (λα, wα), which form a curved beta-gamma system on the pure spinor space.

This has important consequences that will be discussed in detail in the paper. First

there is a coupling of the worldsheet curvature r(2) to the holomorphic top form Ω

on the pure spinor space

S ∼
∫

d2zr(2) log Ω(λ) ,

which modifies the stress tensor, as well as the saturation rules for correlators. Sec-

ond, there are global obstructions to the definition of the pure spinor system on the

worldsheet and on target space, associated with the need for holomorphic transi-

tion functions relating (λα, wα) on different patches of the pure spinor space, which

are compatible with their OPE. They are reflected by quantum anomalies in the

worldsheet and pure spinor space holomorphic diffeomorphisms [7]. The critical su-

perstring pure spinor space has a singularity at λα = 0. Blowing up the singularity

results in an anomalous theory. However, simply removing the origin leaves a non-

anomalous theory [8]. The same holds for the pure spinor spaces of non-critical

superstrings. However, in two and four dimensions, removing the origin results in

disconnected pure spinor spaces.

The pure spinor variables in the two dimensional non-critical string are (λ+, λ+̇)

satisfying the equation

λ+λ+̇ = 0 .

This defines a complex dimension one pure spinor space. Note for comparison that

the pure spinor space of critical superstrings in ten dimensions is a complex eleven-

dimensional space. The map from the RNS variables to the pure spinor ones takes

the RNS variables to the patch of the pure spinor space defined by (λ+ 6= 0, λ+̇ = 0).

The superstring on a two dimensional linear dilaton background is defined by

the following stress tensor

T = −1
2
ΠmΠm − dI∂θ

I + Q
2
ǫIJ∂θ

I∂θJ + Q
2
∂2(Πϕ − iΠx)

+wI∂λ
I − 1

2
∂2 log Ω(λ) ,

where I = +, +̇ and m = x, ϕ. This structure is very similar to that of pure spinor

critical superstrings and is convenient for generalization to curved backgrounds. Note

that the terms proportional to Q = 2 are features of the linear dilaton background.
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In the BRST operator of the non-critical superstrings we will include not only

the physical superderivatives but also the unphysical ones. Note in comparison that,

in the critical superstring in flat ten dimensions, all the superderivatives in the BRST

charge are physical. Here, the BRST operator

QB =

∮

λIdI

where I = +, +̇, includes both the physical and non-physical superderivatives. Note

that, due to the double pole in the d’s OPE, the nilpotency of the BRST charge QB

requires, in addition to the pure spinor condition λ+λ+̇ = 0, that

∂λ+λ+̇ − λ+∂λ+̇ = 0 .

However, this derivative condition is a consequence of the algebraic one.

We will compute the cohomology and, since we are interested in the space-time

supersymmetry multiplets, we will consider only the part of the cohomology that

contains the variables that realize the supersymmetry current algebra. The physical

states are the vertex operators at ghost number one and weight zero. We will find two

different kinds of such operators. The first is analogous to the usual ten-dimensional

vertex operator. In general this contains the off-shell d-dimensional supergravity

multiplet (for the closed strings). The second type is peculiar to the linear dilaton

background. It contains a gauge multiplet, in which the tachyon sits. This will

reproduce the RNS computation of the short supermultiplets.

In computing the cohomology of the BRST operator, we restrict to the part of

the vertex operators that contains the physical fermionic coordinate θ+. This indeed

reproduces the RNS computation of the short supermultiplets. The supergravity

multiplet does not exist in the case of two-dimensional superstrings, while the su-

permultiplet in which the tachyon sits has two bosonic and two fermionic degrees of

freedom.

One essential feature of the pure spinor non-critical string is that it can be

generalized to describe other non-critical backgrounds, as we are used to do in the

ten-dimensional critical superstrings. As an example, we will propose a sigma model

for the type IIA non-critical superstring on AdS4 background with RR four–form

flux. This background is described by the supercoset

OSp(2|4)

SO(1, 3) × SO(2)

and has eight real supercharges, which is the content of the enlarged superspace in

the four-dimensional non-critical string. As we will see, the action for this supercoset

will be suitable for quantization and its BRST charge will be the usual pure spinor

BRST charge.
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The paper is organized as follows. In section 2 we first give a brief introduction

to the pure spinor formalism for critical ten-dimensional superstrings. We then

construct a map from the RNS variables to the pure spinor ones for critical ten-

dimensional superstrings. The map makes the βγ-system structure of the pure spinor

variables explicit and we will gain an insight into the global definition of the pure

spinor space and the importance of its holomorphic top form. In section 3 we discuss

the RNS non-critical superstrings in the linear dilaton background and provide all

the necessary ingredients for the rest of the paper. In particular we summarize

the space-time supersymmetry structure and describe the spectrum of space-time

supermultiplets.

In section 4 we pass to the construction of the pure spinor two-dimensional non-

critical superstring, whose main features have been outlined above. We map the

RNS variables to the pure spinor ones, analyze the supersymmetry structure of the

covariant formulation and its pure spinor space. We construct the pure spinor action

and stress tensor, introduce the BRST operator and its cohomology and consider

global issues and anomalies of the pure spinor formalism. In section 5 and 6 we repeat

the same construction and analysis for the pure spinor non-critical superstrings in

four and in six dimensions.

In section 7 we comment on the computation of amplitudes and discuss the

non-critical pure spinor measure. In section 8 we propose the type IIA pure spinor

formulation of non-critical AdS4 background with RR flux. Section 9 is devoted to

a discussion of the open problems and the future directions. In the appendices we

will put the details of various computations. In appendix A we explain the various

notations for the spinors we used through the main text. In appendix B and C we

collect the RNS generators of the N = 2 superconformal algebra and we show some

details of the RNS computation of the short multiplets. In appendix D and E we give

some details of the pure spinor computations. In appendix F we present a curious

deformation of the pure spinor theory we came accross.

2. The pure spinor formalism

In this section we will briefly review the main ingredients of the pure spinor for-

malism for critical superstrings in flat ten-dimensional target space [5, 9]. These

structures will appear with some modifications in the pure spinor non-critical super-

strings. We will consider for simplicity the open superstring. The generalization to

the closed string case is straightforward. Consider the supermanifold (xm, θα), where

xm, m = 0, ..., 9 are commuting coordinates and θα, α = 1, ..., 16 are anti-commuting

coordinates. One introduces pα as the conjugate momenta to θα with the OPE

pα(z)θβ(0) ∼ δβ
α

z
. (2.1)
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Next we add bosonic spinor ghosts λα, which satisfy the (complex) pure spinor

constraint

λαγm
αβλ

β = 0 , (2.2)

and their conjugate momenta wα. The system (wα, λ
α) is a (β, γ) system of weights

(1, 0). γm
αβ are the symmetric 16 × 16 Pauli matrices in ten dimensions. The pure

spinor set of constraints (2.2) is reducible. It defines a complex eleven-dimensional

space M, which is a cone over Q = SO(10)
U(5)

.

The pure spinor constraint implies that wα are defined up to the gauge transfor-

mation

δwα = Λm(γmλ)α . (2.3)

Therefore, wα appears only in gauge invariant combinations. These are the Lorentz

algebra currents Mmn, the ghost number current J(w,λ) which assigns ghost number

1 to λ and ghost number −1 to w

Mmn =
1

2
wγmnλ, J(w,λ) = wαλ

α , (2.4)

and the pure spinor stress-energy tensor T(w,λ), which we will now discuss.

The gauge fixed worldsheet action is S = S0 + S1, where

S0 =

∫

d2z

(

1

2
∂xm∂̄xm + pα∂̄θ

α − wα∂̄λ
α

)

, (2.5)

and

S1 =

∫

d2z

(

1

4
r(2) log Ω(λ)

)

. (2.6)

S1 is a coupling of the worldsheet curvature r(2) to the holomorphic top form Ω of

the pure spinor space M

Ω = Ω(λ)dλ1 ∧ ... ∧ dλ11 . (2.7)

It is not yet clear, however, what is the non gauge-fixed form of the action S. 1

Note that the (wα, λ
α) action is holomorphic and does not depend on their complex

conjugates.

The stress tensor of the (w, λ) system reads

T(w,λ) = wα∂λ
α − 1

2
∂2 log Ω(λ) , (2.8)

and we will discuss the significance of the last term below. The system (wα, λ
α) is

interacting due to the pure spinor constraint. It has the central charge c(w,λ) = 22,

which is twice the complex dimension of the pure spinor space

T(w,λ)(z)T(w,λ)(0) ∼ dimC(M)

z4
+ ... . (2.9)

1There have been various attempts to derive the pure spinor formalism from first principles

[10, 11, 12].
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The ghost number anomaly reads

J(w,λ)(z)T(w,λ)(0) ∼ − 8

z3
+ ... =

c1(Q)

z3
+ ... , (2.10)

where c1(Q) is the first Chern class of the pure spinor cone base Q.

The physical states are defined as the ghost number one cohomology of the

nilpotent BRST operator

Q =

∮

dz λαdα , (2.11)

where

dα = pα − 1

2
γm

αβθ
β∂xm − 1

8
γm

αβγmγδθ
βθγ∂θδ . (2.12)

This BRST operator is an essential ingredient of the formalism but it is not clear

how to derive its form by a gauge fixing procedure.

The dα are the supersymmetric Green-Schwarz constraints. They are holomor-

phic and satisfy the OPE

dα(z)dβ(0) ∼ −
γm

αβΠm(0)

z
, (2.13)

and

dα(z)Πm(0) ∼ γm
αβ∂θ

β(0)

z
, (2.14)

where

Πm = ∂xm +
1

2
θγm∂θ , (2.15)

is the supersymmetric momentum. dα acts on function on superspace F (xm, θα) as

dα(z)F (xm(0), θβ(0)) ∼ DαF (xm(0), θβ(0))

z
, (2.16)

where

Dα =
∂

∂θα
+

1

2
γm

αβθ
β∂m , (2.17)

is the supersymmetric derivative in ten dimensions.

Massless states are described by the ghost number one weight zero vertex oper-

ators

V(1) = λαAα(x, θ) . (2.18)

The conditions QV(1) = 0 and the gauge invariance δV(1) = QΩ(0) imply by explicit

computation that Aα is a super Maxwell spinor superfield in ten dimensions

Aα(x, θ) =
1

2
(γθ)αam(x) +

1

3
(γθ)α(γθ)βψ

γ(x) +O(θ3) , (2.19)

where am(x) is the gauge field and ψγ(x) is the gluino. It is related to the gauge field

Am by

Am = γαβ
m DαAβ , (2.20)
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and Am(x, θ) = am(x) + O(θ). Only in ten dimensions do these conditions give

an on-shell vector multiplet. In lower dimensions they describe an off-shell vector

multiplet.

The integrated ghost number zero vertex operator for the massless states reads

V =

∫

dz

(

∂θαAα + ΠmAm + dαW
α +

1

2
MmnF

mn

)

, (2.21)

where W α and Fmn are the spinorial and bosonic field strength, respectively. The

analysis of the massive states proceeds in a similar way. At the first massive level

the ghost number one weight one vertex operator has the expansion [13]

U (1) = ∂λαAα + λα∂θβBαβ + ... . (2.22)

In curved spaces the superspace field equations are derived by the requirement that

λαdα is holomorphic and nilpotent [14].

The construction of the closed superstrings is straightforward. One introduces

the right moving superspace variables (p̄α̂, θ̄
α̂), the pure spinor system (w̄α̂, λ̄

α̂) and

the nilpotent BRST operator

Q̄ =

∮

dz̄ λ̄α̂d̄α̂ . (2.23)

The analysis of the spectrum proceeds by combining the left and right sectors. For

instance, the integrated ghost number zero vertex operator for the massless states

reads

U =

∫

d2z
(

∂θαAαβ̂ ∂̄θ̄
β̂ + ∂θαAαmΠ̄m + ...

)

. (2.24)

The pure spinor system (λα, wα) defines a non-linear σ-model due to the curved

nature of the pure spinor space (2.2). There are global obstructions to define the

pure spinor system on the worldsheet and on target space [7, 8]. They are associated

with the need for holomorphic transition functions relating (λα, wα) on different

patches of the pure spinor space, which are compatible with their OPE. They are

reflected by quantum anomalies in the worldsheet and target space (pure spinor

space) diffeomorphisms. The conditions for the vanishing of these anomalies are the

vanishing of the integral characteristic classes

1

2
c1(Σ)c1(M) = 0,

1

2
p1(M) = 0 , (2.25)

c1(Σ) is the first Chern class of the worldsheet Riemann surface, c1(M) is the first

Chern class of the pure spinor space M, and p1 is the first Pontryagin class of the

pure spinor space. The vanishing of c1(M) is needed for the definition of superstring

perturbation theory and it implies the existence of the nowhere vanishing holomor-

phic top form Ω(λ) on the pure spinor space M, that appears in the stress tensor

(2.8).
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The pure spinor space (2.2) has a singularity at λα = 0. Blowing up the singu-

larity results in an anomalous theory. However, simply removing the origin leaves

a non-anomalous theory. This means that one should consider the pure spinor vari-

ables as twistor-like variables. Indeed this is a natural intrepretation of the pure

spinor variables considering them from the twistor string point of view.

Finally, although we will not discuss the computation of loop amplitudes, it is

worth mentioning that unlike the RNS superstrings, all the variables that we use in

the pure spinor superstring are of integer worldsheet spin and there is no need to

sum over spin structures.

2.1 The ten-dimensional map

In this section we will construct a map from the RNS variables to the pure spinor

ones. We will make use of a parameterization of the pure spinor components that

would make the βγ-system structure of the pure spinor variables explicit. In this

way we will gain a new insight into the global definition of the pure spinor space

and the importance of its holomorphic top form. The pure spinor stress tensor we

will obtain by the map will contain the contribution of the holomorphic top form

on the pure spinor space. Indeed this term is necessary for a consistent definition

of the pure spinor βγ-system [8, 7]. Note that in [15] a similar map from the RNS

variables to the pure spinor ones has been constructed, but with no consideration of

the βγ-system structure and the holomorphic top form.

In the following we will consider the holomorphic sector. It is to be comple-

mented by the anti-holomorphic sector for obtaining the Type II superstring. The

holomorphic supercharges in the −1
2

picture of the RNS superstring are given by the

spin fields

qs = e−φ/2+
∑5

I=1 sIHI

, (2.26)

where the HIs are the bosons obtained from the bosonization of the RNS worldsheet

matter fermions and the sI ’s take the values ±1
2
. These supercharges decompose into

two Weyl representations.

In order to proceed with the map, one must first solve the pure spinor constraint

λγmλ = 0, going to one patch of this manifold. In each patch a different component

of the pure spinor is non-zero. The field redefinition we will use maps the RNS

description into one patch of the pure spinor manifold. For concreteness we will work

on one of the patches which is most conveniently described by the SU(5) × U(1)

decomposition of the pure spinor λα = (λ+, λa, λab). The component of the pure

spinor assumed to be non-zero is λ+ corresponding to the representation 1 5
2

of this

decomposition. In this patch one can solve for the 5− 3
2

components λa in terms of

λ+ and the components in the 10 1
2

representation λab.
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On this patch the supercharge q+ which is the singlet of SU(5) is raised to the

+1
2

picture:

q+ = bηe3φ/2+i
∑

a Ha/2 + i
∑

a

∂(xa + ixa+5)eφ/2+i
∑

b Hb/2−iHa

, (2.27)

while the supercharges qa, corresponding to the pure spinor components λa we

solved for, remain in the −1
2

picture. Together they form a part of the original

ten-dimensional supersymmetry algebra. One then defines the fermionic momenta

p+ = bηe3φ/2+i
∑

Ha/2 , pa = qa (2.28)

and their conjugate coordinates θ+ and θa. Note that the OPE’s of the fermionic

momenta among themselves are all non-singular.

The heart of the map is the introduction of two new fields φ̃ and κ̃ using

η = eφ̃+κ̃p+ , b = e(φ̃−κ̃)/2p+ , (2.29)

yielding

φ̃ = −3i

4

∑

a

Ha − κ− 9

4
φ+

1

2
χ , (2.30)

κ̃ =
i

4

∑

a

Ha − κ− 3

4
φ− 1

2
χ , (2.31)

whose OPE’s are

φ̃(z)φ̃(0) ∼ − log z , κ̃(z)κ̃(0) ∼ log z . (2.32)

The reason why we choose the particular field redefinition (2.29), explained in [15], is

that the pure spinor formalism is, loosely speaking, equivalent to the RNS formalism

when we take into account all the different pictures at the same time, which is

achieved by working in the large Hilbert space, that is including the zero modes of

the ghost ξ. But the usual cohomology of the RNS BRST charge QRNS in the small

Hilbert space is equivalent to the cohomology ofQRNS+
∮

η in the large Hilbert space.

With the redefinition (2.29), we are then mapping the
∮

η term of this extended

BRST charge directly to the part
∮

λ+d+ of the Berkovits BRST operator (2.11).

By substituting the map into the RNS energy-momentum tensor one obtains

T = Tm + Tgh = −1

2

∑

m

(∂xm)2 − p+∂θ
+ −

∑

a

paθ
a −

− 1

2
(∂φ̃)2 +

1

2
(∂κ̃)2 + ∂2φ̃+ ∂2κ̃ . (2.33)

This can be verified to have still a vanishing central charge

c = (10)x + (−12)pθ + (2)φ̃κ̃ = 0 .
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The pure spinors are reconstructed by the ordinary bosonization of a βγ-system [16]

λ+ = eφ̃+κ̃ , w+ = ∂κe−φ̃−κ̃ , (2.34)

whose OPE is

w+(z)λ+(0) ∼ 1

z
. (2.35)

But the naive stress tensor one would expect for this βγ-system

w+∂λ
+ = −1

2
(∂φ̃)2 +

1

2
(∂κ̃)2 − 1

2
∂2φ̃− 1

2
∂2κ̃ ,

does not coincide with the one we got from the map (2.33). This shows that the pure

spinor stress tensor is not simply w+∂λ
+ but actually

Tλ = w+∂λ
+ − 1

2
∂2 log Ω(λ) , (2.36)

where Ω is the coefficient of a top form defined on the pure spinor space [8]. By

comparison we can read off the top form itself

Ω = e−3(φ̃+κ̃) = (λ+)−3 . (2.37)

At this point, we can map the RNS saturation rule for amplitudes on the sphere

〈c∂c∂2ce−2φ〉 = 1, (2.38)

to the pure spinor variables, obtaining

〈(λ+)3(θa)5〉 = 1, (2.39)

which is the prescription for the saturation of the zero modes in the Berkovits formal-

ism [5]. Note that the third power of the pure spinor is consistent with the expression

of the holomorphic top form (2.37) we just reconstructed.

The next step in performing the map is that we have to covariantize this super-

string by adding the missing coordinates and momenta. So, following [15], we add a

BRST quartet consisting of ten (1, 0) bc-systems (pab, θ
ab) and ten (1, 0) βγ-systems

(wab, λ
ab). They have opposite central charges, so the total central charge remains

unchanged. In this way we recover the full pure spinor stress tensor

T = −1

2
∂xm∂xm − dα∂θ

α + wα∂λ
α − 1

2
∂2 log Ω(λ). (2.40)

The BRST charge has to be modified to assure that these extra degrees of freedom

are not included in physical states. Since we will be concerned with non-critical

supertrings in this paper, we leave for a future work the study of how the BRST

cohomology of the RNS superstring is mapped to the pure spinor cohomology.

– 13 –



Let us mention that the study of the global properties of the pure spinor space M
is crucial in order to obtain the correct cohomology of the superstring. The curved

space M can be covered by sixteen patches, one for each component of the pure

spinor λα that we can take to be nonzero. On a single patch, the pure spinor action

reduces to the sum of eleven free βγ–systems. If we want to recover the spectrum of

the superstring from the cohomology of the free βγ–system, we need to add to the

Berkovits operator (2.11) the Cech operator δCech on the pure spinor space M, such

that the total BRST charge of the pure spinor βγ–system is actually

QBRST =

∮

λαdα − δCech, (2.41)

which computes the Cech cohomology on M with values in the BRST cohomology

of (2.11). This will be discussed in a separate work.

3. RNS non-critical superstrings

In this section we will consider the RNS description of superstrings propagating in

the d+ 2 dimensional background [1, 17]

R
1,d−1 × Rϕ × U(1)x , (3.1)

with flat metric in the string frame and a linear dilaton

Φ =
Q

2
ϕ .

The effective string coupling gs = eΦ varies as we move along the ϕ direction and

when considering scattering processes one needs to properly regularize the region in

which the coupling diverges. We will only consider the weak coupling region ϕ = −∞,

where perturbative string computations are valid and we can safely analyze the string

spectrum.

In the following we will focus on the holomorphic sector of the closed superstring.

The d+ 2 dimensional RNS superstring is described in the superconformal gauge by

2n + 1 superfields Xµ, with µ = 1, . . . , d = 2n, and X and by a Liouville superfield

Φl. In components we have X = (xµ, ψµ), X = (x, ψx) and Φl = (ϕ, ψl), where the

ψ’s are Majorana-Weyl fermions.

The d = 2n coordinates xµ parameterize the even dimensional flat Minkowski

part of the space, while the coordinate x is compactified on a circle of radius R = 2/Q,

whose precise value is dictated by the requirement of space-time supersymmetry, as

we will see below. The coordinate ϕ parameterizes the linear dilaton direction with

a background charge Q. As usual, we need to add the superdiffeomorphisms ghosts

(β, γ) and (b, c). The central charge of the system is

c = (3/2)(2n+ 1){Xµ,X} + (3/2 + 3Q2){Φl} + (11){βγ} − (26){bc}
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and the requirement that it vanishes fixes the slope of the dilaton to Q(n) =
√

4 − n.

For n = 4, the background charge vanishes and we have eight flat coordinates plus

ϕ and x, getting back to the flat ten-dimensional critical superstring. When n 6= 4

we have non-critical superstrings.

3.1 Space-time supersymmetry

In even dimensions d = 2n, at the particular value of the radius R = 2/Q the

worldsheet theory has a global N = 2 superconformal symmetry. Before showing its

generators, let us define Ψ = ψl + iψx and ΨI = ψI + iψI+n (with I = 1, . . . , n) and

bosonize them in the usual way by introducing the bosonic fields H , HI and setting

ΨΨ† = 2i∂H , ΨIΨI † = 2i∂HI , (3.2)

where † denotes Hermitian conjugation in field space and the H ’s have canonical

OPE’s HI(z)HJ(w) ∼ −δIJ log(z − w). In this way we can define the spin fields

Σ± = e±
i
2
H in the (x, ϕ) direction and the spin fields Σa = e±

i
2
H1...± i

2
Hn

, where the

index a runs over the independent spinor representation of SO(2n). We list below

the matter part of the N = 2 superconformal generators, their ghost part is collected

in appendix A.

The matter stress tensor is

Tm = −1

2

2n
∑

µ=1

(∂xµ)2 − 1

2

n
∑

I=1

(∂HI)2 − 1

2
(∂x)2 − 1

2
(∂ϕ)2 +

Q

2
∂2ϕ− 1

2
(∂H)2,

(3.3)

the two supercurrents are

G+ = i
n

∑

I=1

e−iHI

∂(xI + ixI+n) + ie−iH∂(ϕ + ix+ iQH) , (3.4)

G− = i
n

∑

I=1

eiHI

∂(xI − ixI+n) + ieiH∂(ϕ− ix− iQH) , (3.5)

and the U(1) current is

J = −i
n

∑

I=1

∂HI − i∂H + iQ∂x . (3.6)

The worldsheet N = 2 superconformal symmetry gives rise as usual to space-time

supersymmetry. Since it is present only at R = 2/Q, we call it the supersymmetric

radius.2 In other words, the radius changing operator is not an N = 2 primary. For

2The stability of the linear dilaton background away from the supersymmetric radius has been

recently discussed in [18].
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the (2n+2)-dimensional superstrings we can construct 2n+2 candidates for space-time

supercurrents in the −1
2

picture

q ∼ e−
φ
2
+ i

2(±H±H1±...±Hn±Qx) , (3.7)

with the usual bosonization of the superghosts β = ∂ξe−φ and γ = eφη.

Only 2n of them are mutually local and BRST invariant. Combining the left

and right sectors, we can realize a space-time supersymmetry algebra with 2n+1 real

supercharges that close on the SO(d) translation along the flat R
d part of the space-

time (d = 2n). In the case of even n, the supercharges are in different SO(d) spinor

representations, while if n is odd they are in the same spinor representation. The

circle on which x is compactified is related to the R-symmetry: the momentum along

the circle corresponds to the R-charge and is measured by the affine current

JR =
2i

Q(n)
∂x . (3.8)

In the RNS formalism, space-time supersymmetry only closes up to picture

changes. We will need to consider supercharges in the +1
2

picture as well, so we

will make use of the picture raising operator Z+

Z+ = {QB, ξ} = 2∂φbηe2φ + eφ(G+ +G−) + 2b∂ηe2φ + ∂bηe2φ + c∂ξ . (3.9)

We will return later to the supersymmetry algebra in the various dimensions and

show explicitely its current algebra case by case.

3.2 Spectrum

In this section, we will collect some useful results about the spectrum in various

dimensions [19], that we will compare to the pure spinor covariant cohomology com-

putation.

Consider first various general features of the superstring, which are valid in all

non-critical dimensions on the backgrounds (3.1). The RNS computation of the

spectrum follows an indirect path, since an explicit BRST analysis has been done

only in the d = 0 case. It can be done in three steps:

1) Identify the physical space-time supercharges and GSO project the vertex

operators.

2) Impose the on-shell condition ∆ = 1 and the Dirac equation.

3) Impose the level matching conditions on the operators with the same momen-

tum in the noncompact Liouville direction ϕ.

4) Require that the vertex operators are all mutually local with respect to each

other.

The bosonic part of the lowest level spectrum is what, in a familiar ten di-

mensional language, we would have called the graviton, the dilaton and the B-field

– 16 –



plus the appropriate odd dimensional RR field strengths3 and a new character, the

tachyon, which in the non-critical case is non tachyonic and survives the GSO pro-

jection. However, because the theory is compactified on a small circle, the analysis

of the spectrum from the d+2 dimensional point of view is misleading and we should

think of them as on-shell string modes in d+ 1 dimensions with certain winding and

momentum around the circle. In this picture, all the (d+ 1)–dimensional modes are

massive and the lowest lying state is always the tachyon (in d+1 = 5 dimensions the

tachyon is massless). On the other hand, the spectrum must arrange itself into repre-

sentations of the space-time symmetries, namely the super–Poincaré group acting on

the flat R
1,d−1 part of the space-time. We have to fit the (d+ 1)–dimensional modes

into supersymmetry multiplets of d dimensions. There are two crucial features here:

i) From the (d+ 1)–dimensional point of view the string modes are on-shell: the

mass in their dispersion relation is fixed, because we are reducing on the compact

direction x.4 When we further reduce these modes along the Liouville direction

down to d dimensions, however, they arrange themselves into off-shell d dimensional

supermultiplets. Because the momentum in the noncompact Liouville direction ϕ

is continuous, in fact, the mass that appears in the dispersion relation for the d–

dimensional momentum kµ is continuous, above a certain mass gap.

ii) The different winding and momentum modes of the same parent (d + 2)–

dimensional RR field strength fit into different d–dimensional supermultiplets.

There are two kinds of vertex operators in the theory: the normalizable modes

are particles propagating in the bulk of the linear dilaton and they corresponds to

states in the holographic dual theory (in the AdS/CFT sense); the non–normalizable

vertex operators instead have a wavefunction exponentially supported in the weak

coupling region and they correspond to operators in the dual theory. We will be

interested in computing the deformations of the worldsheet lagrangian, corresponding

to variations of the string background, so we will focus just on the non–normalizable

operators. In particular, the ones which are chiral primary fields of the N = 2

worldsheet superalgebra can be added to the action without breaking the N = 2

superconformal symmetry itself. This means that they correspond in the dual theory

to observables that preserve space-time supersymmetry and they necessarily fit into

off-shell short representations of the space-time supersymmetry.

Let us now summarize the symmetries and the spectrum of the non-critical

superstring (to be concrete we will only consider type IIB) on the background

R
d−1,1 ×Rϕ ×U(1)x in the various dimensions. We always find two kinds of off-shell

supermultiplets, a gauge multiplet, to which the tachyon belongs, and a supergravity

multiplet. At the end, we will discuss how the holographic picture of the background

is realized on this spectrum.

3In d + 2 dimension, if there is a F
(d+2/2)
+ form it is also self dual.

4The dispersion relation comes from the condition ∆ = 1 for on-shell vertex operators.
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d=0

This is the so called two-dimensional non-critical superstring. In this case there

is no Lorentz symmetry, but only N = 2 supersymmetry in zero dimensions with a

U(1) R-symmetry. There is no supergravity sector in this case, the graviton in fact

is just a discrete state. We only have the gauge multiplet, containing the RR scalar

potential C, the tachyon T and two real fermions,5 for a total of 2 ⊕ 2 degrees of

freedom.

d=2

We have SO(1, 1) Lorentz symmetry acting on the flat R
1,1 and in the type IIB

case we find N = (4, 0) supersymmetry with a U(1) × Z2 R-symmetry. We still

have two supermultiplets. The gauge supermultiplet, containing the tachyon, has

4 ⊕ 4 off-shell degrees of freedom. Then we have the two-dimensional supergravity

multiplet, containing 8 ⊕ 8 degrees of freedom.

d=4

In this case we have N = 2 super–Poincaré SO(1, 3) symmetry acting on the

flat R
1,3 part of the space-time. In addition we have also a U(1) R-symmetry. The

spectrum contains an N = 2 off-shell gauge multiplet, which contains the tachyon

and has 8 ⊕ 8 degrees of freedom. Then we have the N = 2 supergravity multiplet

with 32 ⊕ 32 states.

We collect the various spectra in the following table:

d = 0 d = 2 d = 4

gauge: 2 ⊕ 2 4 ⊕ 4 8 ⊕ 8

supergravity: − 8 ⊕ 8 32 ⊕ 32

(3.10)

Consider the holographic interpretation in the d = 4 case [20]. The Liouville

direction ϕ is the holographic direction. At the weak coupling end of the space

ϕ = −∞ a four dimensional non-gravitational theory lives, which is non local and is

called Little String Theory. Its low energy limit is a particular N = 2 supersymmetric

gauge theory, the SU(2) Seiberg–Witten theory at the singular point in the moduli

space of vacua where a monopole becomes massless. This system can also be realized

as type IIB string theory on the conifold at vanishing string coupling, in which case

we know that this is the dual gauge theory.

At the monopole point, the gauge theory is abelian and its field content consists

of an N = 2 gauge multiplet and a massless hypermultiplet. The latter contains
5From the two dimensional point of view the tachyon only gives rise to winding modes and

usually it is not included in the propagating spectrum of the two dimensional non-critical string.

But here we are classifying the spectrum according to zero dimensional supersymmetry, so we

include it in the supermultiplet. Moreover, the RR potential is a two dimensional chiral boson and

the two fermions are chiral.
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the massless monopole (which can be realized as a D3-brane wrapping the vanishing

3-cycles of the conifold). In the dual perturbative string spectrum we can only see

the off-shell vector multiplet, which corresponds precisely to the supermultiplet with

8 ⊕ 8 degrees of freedom to which the tachyon belongs.

A similar picture exist in the lower dimensions, corresponding to type IIB su-

perstring on a higher dimensional conifolds at vanishing string coupling. These give

rise to lower dimensional Little String Theories. The vector multiplet in their low

energy spectrum corresponds to the gauge multiplet (in which the “non-tachyonic”

tachyon sits) of the superstring in the linear dilaton background.

4. Two-dimensional superstrings

In this section we will construct the pure spinor superstring in the linear dilaton

background

Rϕ × U(1)x .

This theory has two bosonic dimensions, the dilaton direction ϕ and the x direction.

The latter is compactified at the supersymmetric radius R = 2/Q, where Q = 2 is

the Liouville background charge. Since there are no transverse directions (d = 0),

this two dimensional case is the easiest case for explaining the construction of the

corresponding pure spinor theory.

The strategy for the construction of the pure spinor non-critical superstring is

that we first map the RNS worldsheet variables to a patch of the pure spinor space

and then we reconstruct the covariant formulation. As we will see, an important

of the model is that it is naturally embedded in a larger superspace, that we will

eventually reduce to the physical one. This will be a feature that allows to generalize

the non-critical pure spinor action to other backgrounds with a larger amount of

supersymmetries.

We first recall some facts about the RNS computation of the spectrum and

supersymmetry algebra [21, 22, 23]. Then we will introduce the map to the pure

spinor variables and reconstruct the full covariant theory. We will compute the

cohomology and show that it agrees to the RNS spectrum. Eventually, we will

present some speculations about the possible generalization to other non-critical two

dimensional backgrounds.

4.1 The RNS superstring

The supersymmetry structure of the model is that of a zero-dimensional space-time.

Consider the holomorphic part. The addition of the antiholomorphic sector in order

to get the closed superstring is straightforward.
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The model has one real supercharge, and we can choose the BRST invariant

supercurrent q+(z) in the −1
2

picture

q+ = e−
1
2
φ+ i

2
H−ix . (4.1)

The corresponding supercharge Q is given by

Q+ =

∮

e−
1
2
φ+ i

2
H−ix , (4.2)

and is nilpotent Q2
+ = 0, as we expect from the fact that we have no transverse space

and hence zero dimensional supersymmetry.6 We have another physical supercurrent

q− = e−
1
2
φ− i

2
H+ix which is nonlocal with respect to q+. The choice of the q+, q̄+ gives

type IIB, while the pairing q+, q̄− gives type IIA. We will only consider the former

case.

A basic feature of the map from the RNS to the pure spinor variables is that it

requires doubling the superspace. In [4] it has been noted the existence of another

supercurrent q+̇(z) of the form

q+̇ = e−φ/2+iH/2+ix . (4.3)

The supercurrents q+ and q+̇ are mutually local and the latter is a conserved current

as well, so the correponding charge is conserved. However, while q+ is BRST invari-

ant, q+̇ is not. Indeed, the model has only one physical real supersymmetry. The

supercharges satisfy

{Q+, Q+̇} =

∮

e−φ+iH . (4.4)

However, (4.4) is not a supersymmetry algebra. Recalling that in the RNS

formalism supersymmetry only closes up to picture changing, we can picture raise

the physical supercurrent q+ to the 1
2

picture

q
(+1/2)
+ = bηe3φ/2+iH/2−ix + i∂(ϕ + ix+ iQH)eφ/2−iH/2−ix , (4.5)

and compute the OPE between the physical supercurrent q
(+1/2)
+ and the unphysical

one in the −1
2

picture

q
(+1/2)
+ (z)q

(−1/2)

+̇
(0) ∼ Q

z2
+
i

z
∂(ϕ + ix+ iQH)(0) , (4.6)

which is indeed not a supersymmetry current algebra, due to the presence of the

double pole. This anomalous term is proportional to the Liouville background charge

Q = 2.

As we will see, working in a doubled superspace in the pure spinor variables

will require an appropriate projection to the physical superspace. However, the

doubled superspace will allow to study pure spinor superstrings in two-dimensional

backgrounds with four supercharges, that is twice as many supersymmetries as in

the linear dilaton background.
6This theory is realized as type II superstring on a Calabi–Yau fivefold in the limit of zero string

coupling.
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4.2 Multiplet spectra: RNS analysis

In the following we will construct the multiplet spectra of the RNS superstring on

the Rϕ × U(1)x background. We first consider the holomorphic sector as a building

block for the closed superstring multiplet.

As we anticipated in Section 3, we will consider non–normalizable vertex opera-

tors only and we normalize their Liouville dependent part as

V ∼ eβϕ = e
Q
2

ϕe−Eϕ ≡ gS(ϕ)e−Eϕ , (4.7)

such that the corresponding wavefunction Ψ(E) ∼ e−Eϕ is localized in the weak

coupling region gs(ϕ) → 0. These operators satisfy the Seiberg bound [24]

Reβ ≤ Q

2
, (4.8)

There are also operators with complex β = Q/2 + ikϕ whose imaginary part is

the momentum of the wavefunction of a particle moving in the ϕ direction. They

correspond to propagating particles that can be scattered.

4.2.1 Holomorphic sector

We begin with the NS sector.

NS sector

The tachyon vertex operator in the −1 picture is

T = e−φ+ipx+βϕ . (4.9)

The condition for T to have weight ∆(T ) = 1 is

p2 − β(β −Q) = 1 , (4.10)

where Q = 2. The requirement for mutual locality of T with the supercurrent q+
(GSO projection) reads pQ ∈ 2Z + 1. Note that this condition also implies that T is

mutualy local with q+̇. The lowest lying states have p = ± 1
Q

. The operator

T± = e−φ+ 1
Q

(ϕ±ix), (4.11)

is a worldsheet (anti)chiral primary (annihilated by G±) of ∆matter(T±) = ±p
2

= 1
2
,

with space-time R-charge R = ±1
2
. Both are non-normalizable operators as their

Liouville momentum satisfies β < Q
2
. Note that the OPE of T+ and T− has a branch

cut, so they are not both mutually local.

The NS sector may also contain a vector of the form

V± = e−φ+iǫH+ipx+βϕ , ǫ = ±1 . (4.12)
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The weight requirement is p2 = β(β−Q) and the mutual locality condition with the

supercharge requires pQ ∈ 2Z. In order to be a primary of the worldsheet N = 1 SCA

(i.e., having no double poles with the supercurrent Gm) we need that β = ǫp + Q,

which together with the weight one requirement imply that p = 0 and β = Q. This

violates the Seiberg bound and the operator is normalizable, so it does not fit into

space-time short supermultiplets.

Ramond sector

The Ramond sector operator in the −1
2

picture reads

R± = e−φ/2+iǫH/2+ipx+βx . (4.13)

The weight one condition is p2 − β(β − Q) = 1, and the mutual locality with the

supercharge implies that 2pQ ∈ 4Z + ǫ− 1. The Dirac condition
∮

γ(G+ +G−)R = 0 . (4.14)

is β = ǫp + Q
2
, which satisfies the weight one condition identically.

Consider the lowest space-time R-charge states. At ǫ = +1, the vertex operator

with p = 0 saturates the bound β = Q
2
. When p = −1 we get

R+ = e−φ/2+iH/2−ix , (4.15)

which is the supercharge q+.

At ǫ = −1 and p = 1
2

we find the supersymmetric partner R− of the tachyon T−

R− = e−φ/2−iH/2+(ϕ+ix)/Q . (4.16)

T− and R− are of course mutually local.

4.2.2 Closed superstring

We consider the Type IIB theory with the supercharges Q+ and Q̄+ from the holo-

morphic and anti-holomorphic sectors, respectively. In order to construct the N = 2

d = 0 supersymmetric multiplet we use the results of the holomorphic sector from

above.

The bosons of the closed string multiplet are the NS–NS operator T−T̄− and the

R–R operator R−R̄−. The fermions are the R–NS and NS–R operators R−T̄− and

T−R̄−. They are arranged in the supermultiplet

T−R̄−
րQ+

ցQ̄+

R−R̄− T−T̄−
ցQ̄+

րQ+

R−T̄−

for a total of 2 ⊕ 2 degrees of freedom.
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4.3 Pure spinor variables

The RNS superstring has four bosonic fields: x, ϕ, β and γ, and four fermionic fields:

ψx, ψl, b and c. In the following we will map them to four bosonic and four fermionic

fields, which will be the pure spinor superstring variables.

The fermionic variables are the dimension zero fermionic coordinates of the dou-

bled superspace (θ+, θ+̇) and their dimension one conjugate momenta (p+, p+̇)

p+ = bηe
3
2
φ+ i

2
H−ix , θ+ = cξe−

3
2
φ− i

2
H+ix ,

p+̇ = e−
1
2
φ+ i

2
H+ix , θ+̇ = e

1
2
φ− i

2
H−ix . (4.17)

Note that (θ+, p+) are BRST invariant while (θ+̇, p+̇) are not BRST invariant.

These fermionic variables have the free field OPE’s

p+(z)θ+(0) ∼ 1

z
, p+̇(z)θ+̇(0) ∼ 1

z
, (4.18)

and all the other OPE’s vanish.

Consider next the bosonic variables. We construct a map analogous to the one

we used for the ten dimensional critical superstring in Section 2.1

η = eφ̃+κ̃p+ , b = e(φ̃−κ̃)/2p+ , (4.19)

b and η are the RNS fields and we introduced two new variables φ̃ and κ̃, which we

will relate to the pure spinor variables.

Their OPE’s are

φ̃(z)φ̃(0) ∼ − log z ,

κ̃(z)κ̃(0) ∼ log z , (4.20)

and φ̃(z)κ̃(0) ∼ 0. It can be easily verified that the OPE’s of φ̃ and κ̃ with either

the fermionic momenta or the fermionic coordinates are all non-singular.

We can express φ̃ and κ̃ via the RNS variables as

φ̃ = −9

4
φ− 3

4
iH +

3

2
ix− κ+

1

2
χ , (4.21)

κ̃ =
3

4
φ+

i

4
H − i

2
x+ κ +

1

2
χ . (4.22)

However, the OPE’s of x with the fermionic momenta and fermionic coordinates

as well as with φ̃ and κ̃ are singular. In order to fix this, we shift the x coordinate

and define

x′ = x+ iφ−H , (4.23)

whose OPE is

x′(z)x′(0) ∼ − log z . (4.24)
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Using these new variables the RNS energy-momentum tensor T = Tm + Tgh is

mapped to

T = −1

2
(∂ϕ)2 − 1

2
(∂x′)2 + ∂2(ϕ− ix′) − p+∂θ

+ − p+̇∂θ
+̇ −

− 1

2
(∂φ̃)2 +

1

2
(∂κ̃)2 + ∂2(φ̃+ κ̃) . (4.25)

The pure spinor variable λ+ and its conjugate momentum w+ are recovered in

terms of φ̃ and κ̃ as an ordinary beta gamma system

λ+ = eφ̃+κ̃ , w+ = ∂κ̃e−φ̃−κ̃ . (4.26)

Their OPE reads

w+(z)λ+(0) ∼ 1

z
. (4.27)

The pure spinor variable λ+ parameterizes the patch (λ+ 6= 0, λ+̇ = 0) of the

complex dimension one pure spinor space

λ+λ+̇ = 0 . (4.28)

It will be a generic feature in all dimensions that the map takes the RNS variables

to the pure spinor variables on a patch of the pure spinor space.

The total central charge of the theory still vanishes

c = (1 − 12){x′} + (1 + 12){ϕ} + (−2){p+θ+} + (−2){p+̇θ+̇} + (2){λ+w+} = 0.

The pure spinor variables form a curved beta-gamma system. The pure spinor

energy-momentum tensor, that we get from Tφ̃,κ̃ on the patch is not simply T(λ+,w+) =

w+∂λ
+. Rather, it has an additional term as in the critical superstring case

T(λ+,w+) = w+∂λ
+ − 1

2
∂2 log Ω , (4.29)

where Ω = e−3(φ̃+κ̃) = (λ+)−3. This arises from the top form on pure spinor space,

which reads on the patch (λ+ 6= 0, λ+̇ = 0)

Ω(λ+) =
dλ+

(λ+)3
. (4.30)

Mapping the RNS saturation rule on the sphere to the pure spinor variables one

gets a requirement for an insertion of (λ+)3, which is consistent with the measure

corresponding to the top form we obtained. This ghost number three insertion,

required for a nonvanishing amplitude, will be the same in all different non-critical

dimension and actually coincides with the ten dimensional saturation rule, we derived

in Section 2.1.
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We can write the pure spinor stress tensor in a covariant way by

T = −1

2
(∂ϕ)2 − 1

2
(∂x)2 + ∂2(ϕ− ix) − pI∂θ

I +

+ wI∂λ
I − 1

2
∂2 log Ω(λ) , (4.31)

where I = +, +̇, and we renamed x′ as x for the simplicity of notation.

The matter part of this stress tensor can be derived from the pure spinor action

S =
1

2πα′

∫

d2z

(

1

2
∂x∂̄x+

1

2
∂ϕ∂̄ϕ+ pI ∂̄θ

I

)

− Q

2

∫

d2zr(2)(ϕ− ix) , (4.32)

where the last term is the Fradkin–Tseytlin term that couples the space-time linear

dilaton to the worldsheet curvature. For the consistency of the FT term we have to

compactify the x direction on a circle of radius R = 2/Q, which in fact is the su-

persymmetric radius we already know from RNS analysis. Note that the hermiticity

property of the action and the stress tensor implies that the hermiticity properties

of the variables is not the naive one [25].

4.3.1 Supersymmetry structure

An important ingredient in the construction of the pure spinor non-critical super-

string is the supersymmetry algebra and the superspace structure. Let us construct

the pure spinor superstring. Recall that the map from the RNS variables to the pure

spinor variables imposed on us the introduction of an additional fermionic coordi-

nate and its conjugate momentum (θ+̇, p+̇), which are not physical. The RNS OPE

between the supercharges in (4.6) is mapped on the pure spinor side to

q+(z)q+̇(0) ∼ Q

z2
+
∂(ϕ− ix)(0)

z
, (4.33)

where we denoted x′ by x for simplicity of notation. The corresponding algebra of

the superderivatives has the opposite sign as usual

d+(z)d+̇(0) ∼ −Q

z2
− ∂(ϕ− ix)(0)

z
. (4.34)

We introduce GS-like constraints that reproduce this algebra

d+ = p+ − 1
2
θ+̇∂(ϕ− ix) + 1

2
Q∂θ+̇,

d+̇ = p+̇ − 1
2
θ+∂(ϕ− ix) − 1

2
Q∂θ+, (4.35)

where the crucial difference with respect to the flat background is the last term,

proportional to the background chargeQ. This term is responsible for the double pole

in the algebra, which signals the breaking of the two-dimensional flat supersymmetry
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algebra to the physical zero-dimensional supersymmetry algebra of the linear dilaton

background. We introduce the compact notation

dI = pI −
1

2
τIJθ

J∂(ϕ− ix) +
Q

2
ǫIJ∂θ

J , (4.36)

where I = +, +̇. The two dimensional matrices τIJ = σ1
IJ (the Pauli matrix) and

ǫIJ , the usual antisymmetric tensor normalized as ǫ++̇ = 1, act in the following on

the index I, by which we denote the physical supercoordinates, I = +, and the

unphysical ones, I = +̇.

4.3.2 Cohomology

An essential ingredient of the pure spinor formulation is the BRST operator, that in

the two dimensional background is

QB =

∮

λIdI , (4.37)

where I = +, +̇. In the critical superstring in flat ten dimensions, all the superderiva-

tives in the BRST charge Q =
∮

λαdα are physical. The first issue that needs to be

dealt with in the linear dilaton background (and essentially in any case with reduced

supersymmetry) is whether to include in (4.37) only the physical superderivatives or

also the unphysical ones. The strategy we follow is to include always in the BRST op-

erator all the d’s, in our case both d+ and d+̇, and compute the cohomology thereof.

In a second step, since we are interested in the space-time supersymmetry multiplets,

we will consider only the part of the cohomology that contains the variables that re-

alize the supersymmetry current algebra, in this case θ+. This will reproduce the

RNS computation of the short supermultiplets. Recall that the full current algebra

of the d’s is anomalous, i.e. it has a double pole in the OPE between d+ and d+̇: the

non anomalous subalgebra is in fact the space-time supersymmetry algebra, in our

case the zero dimensional supersymmetry d2
+ = 0.

The two dimensional pure spinor constraint (4.28) is sufficient to prove the nilpo-

tency of the BRST charge QB. Looking at the algebra (4.34) we see that Q2
B = 0,

provided the following conditions are satisfied

λ+λ+̇ = 0, ∂λ+λ+̇ − λ+∂λ+̇ = 0. (4.38)

The first condition is the pure spinor constraint itself. The derivative condition is

a consequence of the first condition. There are various ways to see this [26]. The

simplest is to expand the condition λ+λ+̇ = 0 in modes

λ+
0 λ

+̇
0 = 0, λ+

0 λ
+̇
1 + λ+

1 λ
+̇
0 = 0, . . . (4.39)

Then for a solution of the zero mode λ+
0 6= 0, the second equation implies λ+

0 λ
+̇
1 = 0

and so on. Hence, the derivatives separately vanish, λ+∂λ+̇ = 0. The same argument
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on the other solution λ+̇
0 6= 0 implies that ∂λ+λ+̇ = 0. In particular, we see that the

two derivative terms in (4.38) vanish separately and the BRST charge is nilpotent.7

To simplify the computation of the cohomology it is convenient to introduce the

new notation Z = ϕ+ ix and Z̄ = ϕ− ix with OPE

Z(z)Z̄(0) ∼ −2 log z ,

so that the GS-like contraints read

d+ = p+ − θ+̇∂Z̄ +Q∂θ+̇, d+̇ = p+̇ ,

whose OPE is still (4.34). The physical states are the vertex operators at ghost

number one and weight zero, we find two different kinds of operators. The first is

analogous to the usual ten dimensional vertex operator. In general this contains the

off-shell d dimensional supergravity multiplet, even if in the particular d = 0 there

are no such multiplets. The second type is new and peculiar to the linear dilaton

background. It contains what we called the “gauge multiplet” in the rehearsal of the

spectrum (3.10), including the tachyon, which in fact is the peculiarity of the linear

dilaton background also in the RNS.

Usually in the pure spinor formalism, massless states are given by the zero weight

ghost number one vertex operator. Since the only worldsheet fields with weight zero

are the zero modes of the fields ϕ, x and θI , this vertex operator has to be expressed

by these alone with a single power of λI so that it be of ghost number one. Hence

the vertex operator is of the form

V(1) = λIAI(Z̄, θ
J) , (4.40)

where

AI(Z̄, θ
J) = BI(Z̄) + θJCIJ(Z̄) + θIθJDIJK(Z̄) . (4.41)

Next we have to require that it be BRST closed when the pure spinor constraint

λ+λ+̇ = 0 is imposed but not solved. This leaves us with just

A+ = B+ + θ+̇C++̇ − 2iθ+θ+̇∂ZB+ , (4.42)

A+̇ = B+̇ + θ+C+̇+ . (4.43)

These superfields still have some gauge freedom given by zero weight ghost number

one QB-exact terms. Parameterizing the general weight zero ghost number zero

gauge transformation superfield as

Ω = η + θ+ξ+ + θ+̇ξ+̇ + 2θ+θ+̇Λ++̇ , (4.44)

7Another way to prove that the derivatives vanish separately is to use the Ward identities coming

from the Lorentz current and the ghost current OPE’s [26].
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so that

δV(1) = QBΩ(0) = λ+
(

ξ+ + 2θ+̇Λ++̇ + 2iθ+̇∂Zη − 2iθ+θ+̇∂Zξ+

)

+

+ λ+̇
(

ξ+̇ − 2θ+Λ++̇

)

, (4.45)

the gauge transformations of the components of the vertex operator are given by

B+ → B+ + ξ+ , C++̇ → C++̇ + 2Λ++̇ + 2i∂Zη ,

B+̇ → B+̇ + ξ+̇ , C+̇+ → C+̇+̇ − 2Λ++̇ , (4.46)

so that the entire vertex operator is pure gauge and this sector of the cohomology is

trivial.

The second type of vertex operator is peculiar to the linear dilaton background.

Due to the term ∂2Z̄ appearing in the stress tensor (4.31), we see that the operator

exp (−Z
Q

) has weight −1. We can obtain again a weight zero ghost number one

operator by the following procedure. Consider the weight one ghost number one

operator, which in the ten dimensional background corresponds to the first massive

level [13]

U (1) = ∂λIAI + λI∂θJBIJ + λIdJC
J
I + λIΠZ̄HI + λ+J+

+F
+
++ + λ+̇J +̇

+̇
F +̇

+̇+̇
, (4.47)

where AI , BIJ , CI , H
J
I , FI , for I, J = +, +̇, are generic superfields constructed with

the θI coordinates and J = wIλ
I is the pure spinor U(1) current. However now we

restrict the wavefunctions in these superfields to be e
Z
Q , so the total weight of the

operator (4.47) is zero. The gauge invariance on this vertex operator is

δU (1) = QBΛ(0), (4.48)

where Λ(0) is a weight one, ghost number zero vertex operator constructed out of the

Λ(0) = ∂θIΩI + ∂(ϕ− ix)Γ + pIΛ
I + JΦ , (4.49)

and again ΩI ,Γ,Λ,Φ are generic superfields, whose wavefunctions are chosen to be

e
Z
Q , such that the total weight of Λ(0) vanishes. We postpone the details about the

cohomology computation to the appendix. The result is that the only operator that

survives in the cohomology is

U (1) = (λ+̇∂θ+)B+̇+, D+̇B+̇+ = 0. (4.50)

The chiral superfield B+̇+ = T + θ+R contains 1 ⊕ 1 states, T being a real boson

and R a Majorana-Weyl fermion. Since in the pure spinor formalism we do not have

to worry about GSO projections, the closed string spectrum is just given by the

left–right producet of the open string one

closed = open ⊗ open ,

Therefore we find 2 ⊕ 2 states, reproducing the RNS result for the “gauge” super-

multiplet.
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4.3.3 Curved non-critical backgrounds

In this section we suggest a generalization of the linear dilaton action to a generic

two dimensional non-critical background with at most four real supercharges.

Even if the linear dilaton background has only zero dimensional supersymme-

try, we introduce the momenta that will be useful when generalizing the model to

backgrounds with extra supersymmetry

Πϕ = ∂ϕ +
1

2
τIJθ

I∂θJ , Πx = ∂x− i

2
τIJθ

I∂θJ . (4.51)

We have the following OPE’s

dI(z)Π
ϕ(0) =

τIJ∂θ
J (0)

z
, dI(z)Π

x(0) = −iτIJ∂θ
J (0)

z
. (4.52)

The stress tensor (4.31) can be cast in the following form

T = −1
2
ΠmΠnηmn + Q

2
ǫIJ∂θ

I∂θJ − dI∂θ
I + Q

2
∂2(Πφ − iΠx)

+wI∂λ
I − 1

2
∂2 log Ω(λ), (4.53)

where I = +, +̇ and m = x, ϕ and we note the presence of the extra terms propor-

tional to Q = 2, which is a feature of the linear dilaton background. We would like

to generalize the two dimensional pure spinor action (4.32) to a generic curved two

dimensional non-critical background.8 Consider the matter part of the action (4.32).

By using the following identity

1

2
∂xm∂̄xm + pI ∂̄θ

I =
1

2
ΠmΠ̄m +

Q

2
ǫIJ∂θ

I ∂̄θJ − 1

4
τIJθ

I
(

∂̄Z∂θJ − ∂Z∂̄θJ
)

+ dI ∂̄θ
I ,

(4.54)

which in ten dimensions is usually referred to as Siegel’s trick [27], we can covariantize

the matter part of the type II action in linear dilaton background (4.32) in the

following way

S = 1
2πα′

∫

d2z
(

1
2
GMN(Y )∂Y M ∂̄Y N + EI

M(Y )dI ∂̄Y
M + E Î

M (Y )d̄Î∂Y
M

)

−
∫

d2zr(2)Φ(Y ) , (4.55)

where we introduced the curved supercoordinates Y M = (xm; θI , θ̄Î). Note that m is

a curved two dimensional vector index, while I is a curved two dimensional spinor

index. The EA
M are the zweibein superfields. We are following the notations of [14],

in which the critical pure spinor action was studied in a generic ten dimensional

background. In the linear dilaton case, the background superfields take the following

values, the only surprise being in the metric:

8In the non-critical string it is not clear whether the concept of a background makes sense. Since

the curvature is of the order of the string length, the classical supergravity approximation is not

valid in general.
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i) The zweibeins EA
M are the two dimensional flat ones.

ii) The dilaton superfield is linear Φ = Q
2
(ϕ− ix) and the higher components of

the superfield vanish.9

iii) The metric GMN is constant. However in addition to the usual terms we have

in flat background, in the linear dilaton background we also have a flat spinorial part

GIJ = QǫIJ , (4.56)

which is proportional to the background charge Q = 2 and is responsible for the

contribution ǫIJ∂θ
I∂θJ to the stress tensor (4.53). We regard this as a specific

feature of the linear dilaton superspace structure in the pure spinor formalism. This

explicitly breaks the original SO(2) Lorentz invariance of the action, preserving the

U(1)x R symmetry.

It is suggestive to think of (6.24) as the matter part of the non-critical pure spinor

action in a generic curved two dimensional background. It would be interesting to

develop further this suggestion, in particular to work out the coupling of the pure

spinor action to the curved background, in analogy to the critical case [14].

4.3.4 Anomalies

The pure spinor space

λ+λ+̇ = 0,

is a one-complex dimensional cone M with a conical singularity at λI = 0, I = +, +̇.

The pure spinor λI is a map from the worldsheet Riemann surface Σ to the pure

space M. A way to eliminate the singularity is by deforming the equation to

λ+λ+̇ = µ , (4.57)

where µ is a complex deformation parameter. The resulting (compact) space in the

2-sphere CP 1. However, since c1(CP
1) = 2, we cannot define the pure spinor system

globally on any Riemann surface Σ except on the 2-torus, which is unacceptable if

we wish to have a complete definition of the superstring perturbation series.

Another way to eliminate the singularity is to remove the singular point. We get

a disconnected space, which is the disjoint union of C∗. In this way, the anomalies

are avoided. As we discussed before, a similar phenomenon occurs is the critical

superstring. The difference is that while in the critical superstring case the removal

of the origin still gives a connected space, here the space has two disconnected com-

ponents. Note that the RNS non-critical superstring mapped to one patch of the

space.

9The top form coupling to the worldsheet curvature (2.6) might be considered a component of

the dilaton along the pure spinor space as well.
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5. Four-dimensional superstrings

In this section we will construct the pure spinor superstring in the four-dimensional

linear dilaton background

R
1,1 × Rϕ × U(1)x .

The four-dimensional superstring has d+1 = 3 noncompact directions (x1, x2, ϕ) and

the compact U(1)x direction x with radius R = 2/Q, where Q =
√

3 is the Liouville

background charge. The strategy will be similar to the two dimensional case.

5.1 Multiplet spectra: RNS analysis

In the following we will compute the spectrum of the RNS superstring in the four-

dimensional linear dilaton background. We look for the short multiplets of the space-

time supersymmetry in the R
1,1 directions. We follow closely the analysis of section

4.2, but postpone the details of the computation to appendix C.1. Here we briefly

collect the results regarding the lowest lying operators, in particular the primaries of

the worldsheet N = 2 superconformal algebra at zero momentum in the transverse

direction.

When d = 2n with odd n, the space-time supercharges are in the same SO(1, d−
1) spinor representation. In this case the two physical supercharges are

Q+1 =
∮

e−
1
2
φ+ i

2
(H+H1)− i

2
Qx,

Q+2 =
∮

e−
1
2
φ− i

2
(H−H1)+ i

2
Qx . (5.1)

They have the same SO(1, 1)L Lorentz charge and ∓1 R-charge (3.8). Their OPE is

Q+1(z)Q+2(0) ∼ 1

z
e−φ+iH1(0).

The other set of physical supercharges, which are nonlocal with respect to the ones

above, is

Q−1 =
∮

e−
1
2
φ+ i

2
(H−H1)− i

2
Qx,

Q−2 =
∮

e−
1
2
φ− i

2
(H+H1)+ i

2
Qx . (5.2)

They have opposite SO(1, 1) chirality with respect to (5.2). In the type IIB su-

perstring we GSO project both holomorphic and antiholomorphic sector with the

supercharges (5.1), in the type IIA we project the antiholomorphic sector with (5.2)

instead.

5.1.1 Holomorphic sector

NS sector
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The tachyon is non-tachyonic but is massive. Its lowest lying modes are

T± = e−φ+ 1
Q

(ϕ±ix), (5.3)

and it is a worldsheet (anti)chiral primary ∆matter(T±) = ± q
2

= 1
2

annihilated by

G±, with space-time R-charge R = ±2
3
. T+ and T− are not mutually local. How-

ever, we are interested in the mutual locality only when matching holomorphic and

antiholomorphic sectors, so we will discuss locality only below.

The other NS operators are analogous to the “vectors” in the ten dimensional

superstring. Their lowest lying states with p = β = 0 are

Jµ = e−φ±H1 , (5.4)

where µ is an SO(1, 1) Lorentz vector index. They are worldsheet N = 2 primaries

(they have only single poles with G±) and are not charged under U(1)x.

R sector

The lowest lying components of the R vertex operators at zero momentum kµ = 0

in the transverse R
1,1 directions are

R++ = e−
1
2
φ+ i

2
(H+H1)−i Q

2
x, R−− = e−

1
2
φ− i

2
(H+H1)+ i

2Q
x+ 1

Q
ϕ ,

R+− = e−
1
2
φ+ i

2
(H−H1)− i

2Q
x+ 1

Q
ϕ, R−+ = e−

1
2
φ− i

2
(H−H1)+i Q

2
x .

(5.5)

In the following table we write the R charge and supersymmetry transformations of

these vertex operators
U(1)R δQ+1

δQ+2

R++ −1 0 Jµ

R−+ 1 Jµ 0

R−− +1/3 T− 0

R+− −1/3 0 T+

In this way we can identify which supersymmetry multiplet they fall into. The last

two columns list the transformations of each R vertex operator, obtained by applying

the supercharges in (5.1).

5.1.2 Closed superstring

We match left and right vertex operators in IIB for concreteness, the antiholomor-

phic sector being a copy of the holomorphic one we just described. In type IIB

we have two-dimensional N = (4, 0) spacelike SUSY in the flat noncompact direc-

tions. Because of the requirement of mutual locality of the vertex operators, the

RNS spectrum is not just the left right product of the holomorphic sector.

NS–NS sector
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We have two lowest lying closed string tachyons

T±T̄± = e−φ−φ̄± i
Q

(x+x̄)+ 1
Q

(ϕ+ϕ̄), (5.6)

with R-charges ±4
3
. The other NS–NS operators which are primary fields of the

N = 2 are

Gµν = e−φ−φ̄±iH1±iH̄1 , (5.7)

which are neutral under U(1)x .

R–R sector

We match the left and right R states given in (5.5). By imposing the mutual

locality condition we find that the lightest surviving R−R fields are the six operators

R−+R̄−+, R−+R̄++, R++R̄−+, R++R̄++, R−−R̄−−, R+−R̄+−. (5.8)

They are worldsheet N = 2 primaries as well.

R–NS and NS–R sectors

The fermions need not be primaries, because they are not supersymmetric de-

formations of the dual space-time lagrangian and only some linear combination of

fermions is a definite component of a space-time short multiplet. In the following

table we list the physical fermions that belong to short multiplets

NS-R : T−R̄−−, T+R̄+−, J
µR̄++, J

µR̄−+

R-NS : R−−T̄−, R+−T̄+, R++J̄
µ, R−+J̄

µ

(5.9)

We identify which multiplet each fermion sits in by looking at its supersymmetry

variation, when hit by the supercharges.

Summary: The four NS-NS operators Gµν , the first four R-R in (5.8) and the

eight fermions in the last two columns of (5.9) sit in a N = (4, 0) d = 2 off-shell

supergravity multiplet, with a total of 16 = 8 ⊕ 8 states. We plot this multiplet

according to its supersymmetry transformations as follows

JµR̄++, J
µR̄−+

րQ ցQ̄

R−+R̄−+, R−+R̄++ Gµν

R++R̄−+, R++R̄++

ցQ̄ րQ

R++J̄
µ, R−+J̄

µ
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where Q and Q̄ represent the holomorphic and antiholomorphic supercharges. We

then find a gauge supermultiplet with 4 ⊕ 4 degrees of freedom, obtained as a com-

bination of two chiral multiplets, whose top components are the two tachyons. One

multiplet is

T+R̄+−
րQ ցQ̄

R+−R̄+− T+T̄+

ցQ̄ րQ

R+−T̄+

and analogously for the other one T−T̄−, R−−T̄−, T−R̄−−, R−−R̄−−.

Collecting the results, we find the physical spectrum of 12⊕12 operators in (3.10).

5.2 Pure spinor variables

The RNS superstring in the four dimensional linear dilaton background has two

supercharges both in the right moving and in the left moving sectors. Let us focus

on the holomorphic sector only. The closed superstring in this formalism will just

be the left right product of the two sectors, without the complications of the mutual

locality conditions we found in the RNS. We follow the same strategy discussed in

section 4.3 for the two dimensional linear dilaton, but here we will introduce an

additional ingredient, the flat R
1,1 part of the space-time.

The physical RNS supercharges Q+1, Q+2 are given in (5.1). As noted in [4],

there exist other two additional supercharges

Q+̇1 =
∮

e−
1
2
φ− i

2
(H1−H)+ i

2
Qx,

Q+̇2 =
∮

e−
1
2
φ− i

2
(H1+H)− i

2
Qx (5.10)

which survive GSO projection, are mutually local with respect to the physical ones

(5.1) and are conserved, i.e. they have at most double poles with the stress ten-

sor. However, they are not in the BRST cohomology, as they do not correspond to

any physical space-time symmetry. They play a key role in the construction of the

covariant formalism.

As we will see, the RNS variables will be mapped into a patch of the pure spinor

space. The pure spinor degrees of freedom of the four-dimensional superstring are

an SO(1, 3) Dirac spinor λA, A = 1, . . . , 4 satisfying the conditions

λΓmλ = 0 , (5.11)

where Γm are the 4 × 4 four-dimensional Dirac matrices. To perform the map it is

most convenient to solve the pure spinor constraint by breaking SO(1, 3) to U(2)

and decompose the Dirac spinor as a (λ, λa, λab), namely a singlet, a two component
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vector and a one component antisymmetric irreducible representations, for the details

see the Appendix. The pure spinor conditions become

λλa = 0, λabλ
a = 0 . (5.12)

They can be solved by going to the patch where λa = 0, so we are left with (λ, λab).
10

Let us consider the four RNS supercharges, both physical (5.1) and unphysical

ones (5.10). We take Q+2 in the +1
2

picture and all the others in the −1
2

picture and

we recast them in the a U(2) notation: Q+1 ≡ Q+, (Q+2, Q+̇1) ≡ Qa, Q+̇2 ≡ Qab.

We define

θ+ = cξe−
3
2
φ− i

2
H1− i

2
(H−Qx), p+ = bηe

3
2
φ+ i

2
H1+ i

2
(H−Qx), (5.13)

θa = e
1
2
φ∓ i

2
(H1−H)− i

2
Qx, pa = e−

1
2
φ± i

2
(H1−H)+ i

2
Qx, (5.14)

θab = e
1
2
φ+ i

2
H1+

i
2
(H+Qx), pab = e

−1
2

φ− i
2
H1− i

2
(H+Qx), (5.15)

where the θ’s are the conjugate variables to the p’s. The OPE of the first three

conjugate pairs correspond to free fields

p+(z)θ+(w) ∼ 1

(z − w)
, pa(z)θ

b(w) ∼ δb
a

(z − w)
, (5.16)

where a, b = 1, 2 and all the others vanishing. However, the OPE of pab and θab have

poles with all the others, so we drop these two components. We will recover them

later as a BRST quartet. 11 The way to map the bosonized RNS variables to the

pure spinors is to use the U(2) singlet p+ in the +1
2

picture and set

η = p+e
φ̃+κ̃, b = p+e

1
2
(φ̃−κ̃). (5.17)

The bosons φ̃ and κ̃ satisfy the OPE’s (4.20). We redefine x→ x′ to have the correct

free field OPE’s among our new variables

x′ =
1

2
(x−Q(H1 +H − iφ)) . (5.18)

The total RNS stress tensor is mapped to

Tm + Tgh = −1
2

∑2
µ=1(∂x

µ)2 − 1
2
(∂x̃)2 − 1

2
(∂ϕ)2 + Q

2
∂2(ϕ− ix′)

−p+∂θ
+ − pa∂θ

a − 1
2
(∂φ̃)2 + ∂2φ̃+ 1

2
(∂κ̃)2 + ∂2κ̃, (5.19)

10Another way to write the patch is to parameterize the pure spinor degrees of freedom as the

Weyl and anti-Weyl spinors (λα, λα̇) with the pure spinor constraints λασm
αβ̇

λβ̇ = 0. Since σm is a

complete basis in the space of two-dimensional bispinors, the pure spinor condition becomes simply

λαλα̇ = 0. In fact, we can identify the two parametrizations by noting that λα = λa, λα̇ = (λ, λab),

so the patch λa = 0 reads λα = 0. In the following we will map the RNS theory to this patch.
11Note that while (θ+, p+) and (θ1, p1) are BRST invariant, the remaining (θ2, p2) are used in

order to enlarge the superspace structure but are not physical. We will recover the appropriate

physical superspace when discussing the pure spinor global symmetries.
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The second step is to use the φ̃, κ̃ as the ordinary bosonization of a β, γ system

of weight (1, 0) as in (4.26), representing now the U(2) singlet components of the

pure spinor and its conjugate momentum as in (5.12).

If we take a closer look at the stress tensor for the bosonized pure spinors φ̃, κ̃

we see that the same story as in two dimensions is repeated. There is a mismatch

between the stress tensor we get from the map from the RNS and the naive stress

tensor w+∂λ
+ one would expect for the free beta-gamma system. This is the contri-

bution coming from the coupling of the top form on the pure spinor manifold Ω(λ)

to the worldsheet curvature (2.6). We find again that the pure spinor stress tensor

we get from the map is (4.29) and the top form is (4.30). Due to the coupling (2.6)

of the top form to the action, we need three powers of λ+ in the saturation rule to

get a nonvanishing amplitude.

The total central charge of the system still vanishes

c = (−2)p+θ+ + (−4)paθa + (2)x1,x2
+ (1 + 12)ϕ + (1 − 12)x̃ + (2)wλ = 0 . (5.20)

In four dimensions there is a new feature with respect to the two-dimensional

case. We need to add a topological quartet with central charge c = 0 to reconstruct

the target space structure on the pure spinor side. We add a fermionic bc system of

weight one (pab, θab) and a bosonic βγ system of weight one with the same quantum

numbers (wab, λab).

We suitably modify the currents of the twisted N = 2 by adding a term that

depends on the quartet. In this way we can recast the stress tensor (5.19) in the

following covariant way

T = −1

2
(∂xµ)2 − 1

2
(∂x′)2 − 1

2
(∂ϕ)2 +

Q

2
∂2(ϕ− ix′) − pIi∂θ

Ii

+wIi∂λ
Ii − 1

2
∂2 log Ω(λ) . (5.21)

The index I = +, +̇, where I = + corresponds to the physical superspace coordi-

nates and conjugate momenta and I = +̇ represents the variables of the enlarged

superspace. The index I keeps track of the SO(1, 1) Lorentz spinor chirality, namely

I = + is +1
2

Lorentz charge and I = +̇ is −1
2
; the index i = 1, 2 labels two different

spinors with the same chiralities. Note that we do not have any spinor index in the

game since all the spinors are in the Majorana Weyl representation. Moreover, we

reconstructed the full pure spinor λIi. The matter part of this stress tensor can be

derived from the pure spinor action

S =
1

2πα′

∫

d2z

(

1

2
∂xµ∂̄xνηµν +

1

2
∂x∂̄x+

1

2
∂ϕ∂̄ϕ+ pIi∂̄θ

Ii

)

−Q
2

∫

d2zr(2)(ϕ− ix) , (5.22)
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where the last term is the Fradkin–Tseytlin term that couples the space-time linear

dilaton Φ = −Q
2
(ϕ − ix) to the worldsheet curvature (we denoted x′ by x). For

the consistency of the FT term we have to compactify the x direction on a circle of

radius R = 2/Q, which in fact is the supersymmetric radius we already know from

RNS analysis.

Mapping the RNS saturation rule on the sphere to the pure spinor variables

one gets a requirement for an insertion of λ3
+, which is consistent with the measure

corresponding to the top form we obtained. Finally, the ghost current on the patch12

Jgh = −∂φ̃ + wabλab can be written coviariantly as

Jgh = wIiλ
Ii. (5.23)

5.2.1 Supersymmetry structure

When constructing the map from the RNS to the pure spinors, we doubled the

superspace. Namely, we supplement the physical supercharges Q+1, Q+2 with two

additional supercharges Q+̇1, Q+̇2 that are not BRST invariant, thus not physical,

although they are conserved. We proceed as in the two dimensional case by looking

at the algebra we get from the RNS. Since the RNS supersymmetry algebra closes

up to picture changing, we take the supercharge Q+2 in (5.1) in the +1
2

picture

q+2 = bηe
3
2
φ+ i

2
H1+

i
2
(H−Qx) + ∂(x1 + ix2)e

1
2
φ− i

2
H1+ i

2
H− i

2
Qx +

+∂(ϕ + ix+ iQH)e
1
2
φ+ i

2
H1− i

2
H− i

2
Qx , (5.24)

and the other three in the −1
2

picture. The OPE’s between them are

q+1(z)q+2(0) ∼ 1
z
∂(x1 + ix2)(0),

q+2(z)q+̇1(0) ∼ Q
z2 + 1

z
∂(ϕ + ix+ iQH)(0) (5.25)

and q+2(z)q+̇2 ∼ reg. If we map this algebra to the pure spinor variables we find

that the first equation remains unchanged, while the second reads

q+2(z)q+̇1(0) ∼ Q
z2 + 1

z
∂(ϕ− ix)(0) , (5.26)

where we denoted x′ by x for simplicity of notation. As usual, the algebra is realized

on the superderivatives with opposite signs.

With these variables we construct the following GS-like constraints

dIj = pIj −
1

2
τij

(

δIJθ
Ji∂(x1 + ix2) + τIJθ

Ji∂(ϕ− ix) −QǫIJ∂θ
Ji

)

, (5.27)

where τ is the σ1 Pauli matrix and ǫIJ is the antisymmetric matrix. The GS-like

constraints are similar to the d = 0 case (4.36), except for the new term proportional

12We obtain this current by mapping the RNS ghost current, adding to it the contribution of

the quartet and adding the term − 3
2 (∂φ̃ − ∂κ̃), which does not alter the anomalies nor the ghost

number but might be useful for the Lorentz properties.
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to δIJ , which realizes the d = 2 space-time supersymmetry. The notations are

explained in (5.21). These constraints reproduce the algebra we mapped from the

RNS superderivatives (given by the supercurrent algebra (5.26) but with the opposite

signs)

dIi(z)dJj(0) ∼ −τij
ǫIJQ

z2
− τij

δIJ

z
∂(x1 + ix2)(0) − τij

τIJ

z
∂(ϕ− ix)(0). (5.28)

Let us briefly discuss this algebra. The second term tells us that the physical d+1,

d+2 close on the space-time SO(1, 1) holomorphic translation generator, exactly re-

producing the RNS supersymmetry. The two unphysical superderivatives d+̇1, d+̇2

close on the same translation generator. However, the two physical and unphysical

superderivatives have a double pole in their OPE, proportional to the Liouville back-

ground charge Q. Therefore the non anomalous worldsheet current algebra realizes

N = (2, 0) supersymmetry in two dimensions. In the closed type IIB theory we get

just the left right product of the two sectors, realizing N = (4, 0) two dimensional

supersymmetry, as we expect from the RNS analysis.

Let us recall the space-time symmetries. In each of the two sectors, the ex-

pectation value of the dilaton and the compactification of x on a circle break the

four dimensional Lorentz symmetry with four supercharges to two real supersymme-

tries and a bosonic SO(1, 1) × (U(1) × Z2)R. Under the bosonic SO(1, 1) × U(1)x

symmetry the d’s are charged according to

SO(1, 1) U(1)x

d+1 +1
2

+1

d+2 +1
2

−1

d+̇1 −1
2

+1

d+̇2 −1
2

−1

(5.29)

The physical worldsheet holomorphic current algebra realizes space-time N = (2, 0)

supersymmetry in two dimensions

d+1(z)d+2(0) ∼ −∂(x1 + ix2)(0)

z
. (5.30)

When acting on superfields depending on the field zero modes only, the dIi looks like

a superderivative

dIi(z)Φ(Z̄, x1, x2, θ
Ii)(0) ∼ −1

z
DIiΦ(Z̄, x1, x2, θ

Ii)(0) (5.31)

where

DIi = ∂θIi + τij(δIJ∂x1−ix2
+ τIJ∂Z) , (5.32)

and the notations is the same as in the two dimensional case Z = ϕ+ ix, Z̄ = ϕ− ix.
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5.2.2 Cohomology

The pure spinor BRST charge in the four-dimensional non-critical string is

QB =

∮

λIidIi , (5.33)

where the GS-like constraints dIi in the linear dilaton background are defined in

(5.27). As discussed in section 4.3.2, we included all the physical as well as the

unphysical d’s in the BRST charge. We will compute the cohomology in two steps.

First we compute the cohomology of QB in the enlarged superspace containing all

the θIi, then we restrict to the part of the cohomology that contains the variables

that realize the supersymmetry current algebra, namely the θ+i.

Let us discuss the nilpotency of the BRST charge QB. The four-dimensional

pure spinor constraint (5.11) can be recast according to the notation of the linear

dilaton background in the form13

τijλ
IiλJj = 0 , (5.34)

for I, J = ++̇ and i, j = 1, 2. Due to the OPE (5.28), the nilpotency of the BRST

charge requires the following conditions

τijδIJλ
IiλJj = 0, τijτIJλ

IiλJj = 0 , (5.35)

which are implied by the pure spinor condition (5.34). Due to the double pole in

(5.28), however, we have an additional derivative constraint

ǫIJτij∂λ
IiλJj = 0 . (5.36)

One can show that the pure spinor condition (5.34) implies that both τijλ
+i∂λ+̇j and

τij∂λ
+iλ+̇j vanish separately. The way to prove it is analogous to the d = 0 case we

discussed in (4.39), by looking at the mode expansion of the pure spinor constraint

(5.34) or alternatively by analyzing the OPE’s involving the Lorentz generator and

the ghost current [26, 28].

Let us compute the cohomology now. As discussed in the two-dimensional case,

there are two different kinds of vertex operators at ghost number one and weight

zero. The first one is

V(1) = λIiAIi(Z̄, x
µ, θIi) . (5.37)

Whereas in the previous case (4.40) we found that this operator was exact (there

is no gravity in d = 0), now we will find an off-shell two dimensional supergravity

13 The constraint λAΓM
ABλB = 0 can be written in flat Weyl notation as λαλα

.
= 0 where

λA = (λα, λα
.
). Then we identify the flat Weyl indices with our linear dilaton quantum numbers as

Ii = +1 → α = 1, Ii = +̇1 → α = 2, Ii = +2 → α̇ = 1̇ and Ii = +̇2 → α
.
= 2̇.
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multiplet. Imposing that V is BRST closed on the pure spinor condition (5.34), we

get

D(I1AJ1) = 0, D(I2AJ2) = 0 , (5.38)

where DIi is defined in (5.32). Due to the algebra

{DI1, DJ1} = 0 = {DI2, DJ2} , (5.39)

we can solve these two equations by choosing AI1 = DI1B and AI2 = DI2C, for

two generic superfields B and C. Let us take equivalently a linear combination

B = M +N and C = M −N , so that AI1 = DI1(M +N) and AI2 = DI2(M −N).

Now we require that this vertex operator is not BRST exact, that is we mod out by

the following gauge invariance

δV(1) = QBΩ(0) , (5.40)

where Ω(0)(Z̄, xµ, θIi) is a generic ghost number zero and weight zero superfield. If

we choose Ω = −M , we are left with

AI1 = DI1N, AI2 = −DI2N , (5.41)

for a generic superfield N . It is easy to see that the degrees of freedom encoded in

V are 4 ⊕ 4, which is the result of [29, 26].14 Since we are interested in the SO(1, 1)

supersymmetry multiplet, we have to eliminate the θ+̇i components in the vertex

operator, keeping only the θ+i, the latter entering in the holomorphic space-time

N = (2, 0) current algebra. The physical states in the holomorphic sector consist

finally of 2 ⊕ 2 degrees of freedom of an off-shell SO(1, 1) vector supermultiplet.

We are interested in the closed string spectrum, which is the tensor product of

the holomorphic and antiholomophic sectors. The cohomology computation of the

closed string vertex operator

V(1,1) = λIiλ̄IjAIi,Jj(Z̄, x
µ, θIi, θ̄Kk), (5.42)

where the λ̄ and θ̄ are the antiholomorphic variables, gives a total of 8 ⊕ 8 degrees

of freedom, that fit into an N = (4, 0) d = 2 supergravity multiplet, reproducing the

RNS computation.

The second type of vertex operator is the generalization of the two-dimensional

one that we introduced in (4.47). This accounts for the gauge multiplet, which is

the other character in the cohomology of the linear dilaton superstring. In this case

the computation of the cohomology is more tedious, and we present the details in

14This is done most quickly in the notations in the previous footnote, by which AI1 ≡ Aα and

AI2 ≡ Aα
. . If we introduce the supercurvature FAB = D(AAB), for A, B = (α, α

.
) then (5.41) is

equivalent to the following conditions on the curvature Fαβ = Fα
.
β̇ = Fαβ̇ = 0, which are the usual

superspace constraints defining the N = 1 off-shell vector multiplet in four dimensions.
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appendix D. After taking into account the equations of motion modulo the gauge

symmetries and projecting to the physical supercoordinates θ+i, the vertex operator

for this gauge supermultiplet in the holomorphic sector is

U (1)
T = λIj∂θ+iDIjTi(θ

+i) , (5.43)

where the wavefunctions of the superfields Ti are given by e−Z/Q, by which we get a

weight zero vertex operator. To compare this vertex operator to the RNS, we need to

take into account the structure of the pure spinor space. The four-dimensional pure

spinor space τijλ
IiλJj = 0 is the union of two disconnected patches and our vertex

operator (5.43) is defined globally on the two patches exchanged by λI1 ↔ λI2. The

RNS formalism is mapped onto just one of the two patches, let us choose the λI2 6= 0

patch. In order to compare the RNS cohomology with the pure spinor result, we will

consider one of the two disconnected patches, so the tachyon supermultiplet on the

patch λI2 6= 0 has the form

U (1) = λI2∂θ1DI2T1(θ
1, θ1̇) , (5.44)

containing 2⊕2 degrees of freedom. In the closed string, we have to take the product

of the holomorphic and antiholomorphic vertex operators. Since we are comparing

the pure spinor computation with the RNS cohomology at zero momentum, we need

to mod out by the center of the space-time symmetries SO(1, 1)×U(1)x×Z2, which

is just the Z2, so that we recover the closed superstring 4⊕4 supermultiplet of (3.10).

Let us make a few comments. In the two-dimensional case, the gauge supermulti-

plet (4.50) was the only physical multiplet present in the second type vertex operator

at ghost number one and weight zero. This is in agreement with the known fact that

in the two-dimensional non-critical superstrings in the linear dilaton background the

tower of “massive” string states is absent. In the present four-dimensional case, how-

ever, this second type of vertex operator contains other physical states in addition to

the gauge supermultiplet which we just described. These additional states are some

of the tower of higher states in the cohomology of the superstring, which we expect

to be present.15 The study of the higher states in the superstring cohomology might

be interesting by itself.

5.2.3 Curved non-critical backgrounds

We follow the discussion in section 4.3.3 and suggest a generalization of the non-

critical pure spinors to generic four dimensional curved backgrounds with at most

eight real supercharges.

15We would not call these higher states massive, since, as we explained in section 3, in the linear

dilaton background the space-time supermultiplets are off-shell, in the sense that we do not have

any dispersion relation.
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Even if the linear dilaton has only flat two dimensional supersymmetry, we in-

troduce now the momenta Πm, for m = 1, 2, ϕ, x, that will be useful when casting

the theory in a background with twice as many supersymmetries

Π1 = ∂x1 +
1

2
δIJτijθ

Ii∂θJj , Π2 = ∂x2 +
i

2
δIJτijθ

Ii∂θJj ,

Πϕ = ∂ϕ +
1

2
τIJτijθ

Ii∂θJj , Πx = ∂x− i

2
τIJτijθ

Ii∂θJj . (5.45)

They satisfy the following algebra

Πn(z)Πm(0) = −η
mn

z2
, (5.46)

dIi(z)Π
1(0) =

δIJτij
z

∂θJj(0), dIi(z)Π
2(0) =

iδIJτij
z

∂θJj(0)

dIi(z)Π
ϕ(0) =

τIJτij
z

∂θJj(0), dIi(z)Π
x(0) =

iτIJτij
z

∂θJj(0) (5.47)

The stress tensor (5.21) can be cast in the form

T = −1
2
ΠmΠmηmn − dIi∂θ

Ii + Q
2
ǫIJτij∂θ

Ii∂θJj + Q
2
∂2(Πφ − iΠx)

+wIi∂λ
Ii − 1

2
∂2 log Ω(λ) . (5.48)

Note the presence of the extra terms proportional to Q =
√

3, which is a feature of

the linear dilaton background. Similarly, we can write the action in these variables,

which correspond to the supervielbeins of the general four-dimensional pure spinor

superstring backgrounds

S = 1
2πα′

∫

d2z
(

1
2
GMN(Y )∂Y M ∂̄Y N + EA

M(Y )dA∂̄Y
M + EA

M (Y )d̄A∂Y
M

)

−
∫

d2zr(2)Φ(Y ) , (5.49)

where we introduced the curved supercoordinates Y M = (xm; θA, θ̄Â) and m is a

curved four dimensional vector index, while A = (α, α.) is a curved four dimensional

Dirac spinor index; the relation between A and Ii is explained in the appendix.

The unhatted variables are in the holomorphic sector, the hatted ones are in the

antiholomorphic sector. The E’s are the vierbein superfields. The whole story is a

generalization of the two dimensional case. In the linear dilaton case, the background

superfields take the following values. The vierbeins E’s are the four dimensional flat

ones. The dilaton superfield is linear Φ = Q
2
(ϕ− ix). The metric GMN is constant,

however in addition to the usual terms appropriate for a flat background, we have a

flat spinorial part as well

Gαα
. = iQσ2

αα
. , G

α̂α̂
. = iQσ2

α̂α̂
. , (5.50)
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which is proportional to the background charge Q =
√

3 and is responsible for the

contribution QǫIJτij∂θ
Ii∂θJj to the stress tensor (4.53). We regard this as a specific

feature of the linear dilaton superspace structure in the pure spinor formalism. This

explicitly breaks the parent SO(1, 3) Lorentz invariance of the action down to SO(2),

preserving the U(1)x R symmetry.

It is suggestive to think of (5.49) as the matter part of the non-critical pure

spinor action in a generic curved four dimensional background. We will discuss the

non-critical AdS4 example in section 8.

5.2.4 Anomalies

The pure spinor degrees of freedom in the Weyl notations are (λα, λα̇) with the

conditions

λαλα̇ = 0 .

These complexified equations define a two-complex dimensional space with a conical

singularity at λαλα̇ = 0.

As in the two-dimensional space, deforming this set of four complex equations

results in a space whose first Chern class is nonvanishing, leading to an anomalous

theory. Again, we can eliminate the singularity by removing the singular point. We

get a disconnected space, which is the disjoint union of C∗ × C∗’s. In this way,

the anomalies are avoided and as in the two-dimensional case the resulting space is

disconnected.

6. Six-dimensional superstrings

In this section we discuss the six dimensional non-critical superstring in the linear

dilaton background

R
1,3 × Rϕ × U(1)x .

We will closely follow the analysis in the previous Sections on d = 0 and d = 2, so

we will skip some details. The flat R
1,3 coordinates are xµ, while x is compactified

on a circle of radius 2/Q, the Liouville background charge is Q =
√

2 and we have

d = 2n = 4.

6.1 Multiplet spectra: RNS analysis

The space-time supercharges have different chiralities of the Lorentz group SO(1, 3).

There are sixteen candidates for the supercharges. They form two groups of eight

mutually local physical operators. One such group is given by (in the −1
2

picture)

q+1 = e−
1
2
φ+i(H1−H2−H+Qx)/2 , q+2 = e−

1
2
φ+i(−H1+H2−H+Qx)/2 ,

q+1̇ = e−
1
2
φ+i(H1+H2+H−Qx)/2 , q+2̇ = e−

1
2
φ+i(−H1−H2+H−Qx)/2 ,

(6.1)
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Defining σ1 = 1, σ2 = τ1, σ3 = iτ3 and σ4 = τ2, where the τs are the Pauli matrices,

we can rewrite the above OPE’s in the concise form

q+α(z)q+α̇(0) ∼ 1√
2z
σiαα̇e

−φψi(0) . (6.2)

The other set of supercharges q−α, q−α
., which are physical but nonlocal with respect

to (6.1) is listed in the Appendix. We will choose the q+ set in the holomorphic

sector. The choice of the q̄+ set in the antiholomorphic sector as well defines type

IIB superstring. The other choice of the q̄− set in the antiholomorphic sector defines

the type IIA superstring. In both cases we realize N = 2 space-time supersymmetry

in the flat SO(1, 3) directions. In the following we will stick to the type IIB case.

Let us collect the short space-time supermultiplets of the type IIB superstring.

The details of the computations are listed in the Appendix.

6.1.1 Holomorphic sector

The holomorphic sector is obtained by requiring mutual locality with the super-

charges q+α and q+α̇. This will serve as a building block for the closed superstring

states we will consider in the next section.

The first NS state at zero transverse momentum is the tachyon whose two lowest

lying states are

T± = ϕe−φ+ 1
Q

(ϕ±ix) , (6.3)

which carry R-charges ±1. The factor of ϕ in front of the vertex operator comes

from the requirement of non-normalizability and is specific to d+ 2 = 6.

At the next level there are the NS vectors. The zero momentum states are

Jµ = e−φ±iHI

. (6.4)

We now turn to the Ramond sector. We use Polchinski’s notation (α, F ) [30],

where α is the space-time fermion index and F is the worldsheet spinor index, and

denote the R operators by RF . The zero momentum R states with F = 1 are

R1
+++ = e−φ/2+i(H+H1+H2)/2−ix/Q , R1

−−+ = e−φ/2+i(−H+H1−H2)/2+ix/Q ,

R1
−+− = e−φ/2−i(H+H1−H2)/2−ix/Q , R1

+−− = e−φ/2−i(−H+H1+H2)/2+ix/Q ,

(6.5)

that are the four physical supercharges (6.1).16 According to the supersymmetry

algebra (6.2), they are mapped to the four NS states in (6.4), schematically δsusyR
1 =

16In terms of a full SO(6) spinor representation, these R states have an odd number of +’s and

correspond to a 4 ∈ SU(4) ≃ SO(6).
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J . The F = 0 states with zero momentum and zero R-charge have β = Q
2

so we have

to pick the non-normalizable vertex operators:

R0
−++ = ϕe−φ/2+i(−H+H1+H2)/2+ϕ/Q , R0

+−+ = ϕe−φ/2+i(H+H1−H2)/2+ϕ/Q ,

R0
++− = ϕe−φ/2−i(−H+H1−H2)/2+ϕ/Q , R0

−−− = ϕe−φ/2−i(H+H1+H2)/2+ϕ/Q .

(6.6)

These four operators17 are mapped by the supercharges into the tachyon (6.3),

schematically QαR
0
+ · · = T+ and Qα

.R0
− · · = T−.

6.1.2 Closed superstring

The closed superstring spectrum is obtained as the product of holomorphic and

antiholomorphic vertex operators subject to level matching and mutual locality con-

ditions. We want the Type IIB spectrum here, so the GSO projection in the anti-

holomorphic sector is the same as in the holomorphic one.

The allowed combinations are

T±T̄± , R0T̄± , T±R̄0 , R0R̄0 , Gµν ≡ JµJ̄ν , JµR̄
1 , R1J̄ν , R

1R̄1 .

These degrees of freedom can be arranged in supermultiplets as follows. The

supergravity multiplet can be depicted as

R1J̄µ

ւQ տQ̄

Gµν R1R̄1

տQ̄ ւQ

JµR̄
1

It contains 32 ⊕ 32 states and is off-shell because for the zero-momentum case the

transversality condition does not impose any restriction on the sign of HI .

Then we have the supermultiplet in which the tachyon sits, which is an off-shell

N = 2 SO(1, 3) gauge multiplet. Since we are working at zero momentum in the

SO(1, 3) directions, we have to mod out the vertex operators by the center of the

group, namely we identify R0
++− ∼ R0

+−+ and R0
+++ ∼ R0

+−−. Then we can depict

the multiplet as
R0

+ · ·T̄
+

րQ̄α
ցQα

R0
+ · ·R̄

0
+ · · T+T̄+

ցQα
րQ̄α

T+R̄0
+ · ·

The full supermultiplet consists of other three parts, which are generated by acting

with Qα
. and Q̄α

. on R0
− · ·R̄

0
− · · and R0

±· ·R̄
0
∓· ·. In total we have 8 ⊕ 8 states, which

represent an off-shell N = 2 SO(1, 3) supercurrent.
17In terms of a full SO(6) spinor representation, these R states have an even number of +’s and

correspond to a 4 ∈ SU(4) ≃ SO(6).
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6.2 Pure spinor variables

The RNS bosonic space-time coordinates are x, ϕ, xµ. We proceed as above to map

the RNS to a patch of the pure spinor space. The first step is to realize, following [4]

that there exist another set of four supercharges, which we denote by q+̇α and q+̇α
. ,

which are mutually local with respect to the ones in (6.1), are conserved, but not

BRST invariant. Their explicit form is given in the Appendix.

The six dimensional pure spinor consists of two complex Weyl spinors λA
i , for

i = 1, 2, in the 4 of SU(4) = SO(6). The pure spinor constraint is written in term of

the six dimensional 8×8 Dirac matrices and can be recast into the 4×4 off-diagonal

antisymmetric Pauli matrices as ǫijλA
i σ

m
ABλ

B
j = 0. In terms of U(3) representations,

that we will conveniently use in the map, each pure spinor splits into a singlet and

a vector λA
i = (λ+

i , λ
a
i ), for a = 1, 2, 3, and we can rewrite the pure spinor constraint

as

ǫijλ+
i λ

a
j = 0 , ǫabcǫ

ijλa
i λ

b
j = 0 . (6.7)

We refer to the appendix for the relations between all the different spinor repre-

sentations. Working in the patch λ+
1 6= 0 we can solve the pure spinor constraint

as λa
2 =

λ+
2

λ+
1

λa
1 and see that a pure spinor in six dimensions has five independent

components [29]. We map the RNS variables to this patch of the pure spinor space.

However, since the map is quite similar to the case d = 2 in section 5.2, we present

the details in the Appendix. Here we only quote the results.

The RNS stress tensor, with the appropriate addition of a c = 0 quartet, is

mapped to the following pure spinor stress tensor

T ′ = −1
2
∂xµ∂xνηµν − 1

2
(∂ϕ)2 − 1

2
(∂x′)2 + Q

2
∂2(ϕ− ix′)

−pIα∂θ
Iα − pIα

.∂θIα
.
+ wIα∂λ

Iα + wIα
.∂λIα

.
− 1

2
∂2 log Ω , (6.8)

where I = +, +̇ and I = + stands for the physical supercoordinates, while I = +̇

denotes the unphysical ones. The indices (α, α.) refer to the Weyl and anti-Weyl

spinor indices of SO(1, 3) Lorentz symmetry. Ω is the holomorphic top form on the

pure spinor space, on the patch λ+1̇ 6= 0 it reads

Ω = (λ+1̇)−3 . (6.9)

The six dimensional pure spinor constraint, written according to the space-time

SO(1, 3) Lorentz symmetry, reads

δIJλ
IαλJα

.
= 0,

ǫIJǫαβλ
IαλJβ = 0, (6.10)

ǫIJǫα.β̇λ
Iα
.
λJβ̇ = 0,

Mapping the RNS saturation rule for the amplitudes on the sphere to the pure

spinor variables one gets a requirement for an insertion of (λ+)3, which is consistent

with the measure corresponding to the top form we obtained.
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6.2.1 Supersymmetry algebra

We consider just the holomorphic sector in the following. In the RNS formalism we

have eight conserved supercurrents, out of which only four are physical. We want to

find their algebra. As above we take q+1̇ in the +1
2

picture and all the rest in the

−1
2

picture and compute their OPE’s. If we take these OPE’s and map them to the

pure spinor variables, we find the following algebra

q+α(z)q+α̇(0) ∼ 1
z
σm

αα̇∂xm(0), q+̇α(z)q+̇α̇(0) ∼ 1

z
σm

αα̇∂xm(0),

q+α(z)q+̇β(0) ∼ ǫαβQ

z2 +
ǫαβ

z
∂(ϕ− ix)(0), q+α̇(z)q+̇β̇(0) ∼

ǫα.β̇Q

z2
+
ǫα.β̇
z
∂(ϕ− ix)(0),

(6.11)

and q+αq+̇α̇ = 0 = q+α̇q+̇α. We see that the same story follows as in the d = 0 and

d = 2 cases. There are two sets of supercharges, the physical (+) and the unphysical

(+̇) ones, which separately close on a flat four dimensional supersymmetry algebra.

However, the cross OPE’s between the physical and the unphysical sets have an

anomalous double pole. This means that the non anomalous current algebra realizes

the SO(1, 3) space-time supersymmetry.

We want to construct GS-like constraints that reproduce the algebra (6.11) with

opposite overall signs, as usual. They are the direct generalization of the four di-

mensional ones in (5.27)

dIα = pIα − 1
2
δIJ [∂xm − 1

4
fm(θ)](σmθ

J )α − 1
2
ǫαβ [τIJθ

Jβ∂(ϕ− ix) − ǫIJQ∂θ
Jβ ],

dIα
. = pIα

. − 1
2
δIJ [∂xm − 1

4
fm(θ)](θJσm)α

. − 1
2
ǫα.β̇[τIJθ

Jβ̇∂(ϕ− ix) − ǫIJQ∂θ
Jβ̇ ],

(6.12)

where we introduced the notation fm(θ) = δIJ

(

∂θIσmθJ − θIσm∂θJ
)

, to save space.

We are using the two by two Pauli matrices γm
αα
. of the SO(1, 3) Lorentz group. The

d’s realize the q’s algebra (6.11) we obtained from the RNS map, but with opposite

signs

dIα(z)dJα
.(0) ∼ −ǫIJ

ǫαβQ

z2
− δIJ

σm
αα
.Πm(0)

z
− τIJ

ǫαβ

z
∂(ϕ− ix)(0), (6.13)

and all the others vanish.

Let us discuss the space-time symmetries. To identify the quantum numbers of

the superderivates, we refer to their RNS origin.

SO(1, 3) × U(1)x

d+α (1
2
, 0) +1

d+̇α̇ (0, 1
2
) +1

d+̇α (1
2
, 0) −1

d+α̇ (0, 1
2
) −1

(6.14)
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In the RNS description, even if all the d’s are conserved currents, only half of them are

actually physical. In the pure spinor, due to the double pole in the OPE’s (6.13), the

worldsheet current algebra only realizes N = 1 supersymmetry in four dimensions

in the holomorphic sector. The physical supersymmetry is the one generated by

d+α(z)d+α
.(0) ∼ −σ

m
αα
.Πm(0)

z
, (6.15)

The closed superstring will realize N = 2 four dimensional supersymmetry.

6.2.2 Cohomology

The pure spinor BRST charge in the six dimensional non-critical superstring is

QB =

∮

λIαdIα + λIα
.
dIα
.. (6.16)

where the GS-like constraint in the linear dilaton background are (6.12). The strategy

to compute the cohomology will be the same as in the previous cases. First we

compute the cohomology in the enlarged superspace, containing all the θIα and θIα
.
,

then we will restrict to the physical ones θ+, that enter in the supersymmetry current

algebra, and drop the θ+̇.

Due to the OPE’s (6.13), the nilpotency of the BRST charge requires the follow-

ing conditions on the pure spinors

δIJλ
IαλJα

.
= 0, (6.17)

ǫαβλ
+αλ+̇β + ǫα.β̇λ

+α
.
λ+̇β̇ǫα.β̇ = 0, (6.18)

ǫαβ(∂λ+αλ+̇β − λ+α∂λ+̇β) + ǫα.β̇(∂λ+α
.
λ+̇β̇ − λ+α

.
∂λ+̇β̇) = 0, (6.19)

The first two conditions are directly implied by the pure spinor constraint (6.10). The

last derivative condition is implied by the pure spinor constraint as well. To show

this, we derive the Ward Identities as in [13, 26] and we prove that the derivative

constraints (6.19) are implied by the other constraints.

It will be convenient to use an SU(4) notation for the six dimensional spinors,

see the appendix for the details. We start by noting that the product of two pure

spinors λA
i , that belong to (4, 2) representation of SU(4)×SO(2), can be decomposed

into representations (10, 3)⊕ (10, 1)⊕ (6, 3)⊕ (6, 1). Moreover, since the pure spinors

are commuting variables only the representations (10, 3)⊕ (6, 1) survive. The vector

representation of SO(6) is present only in (6, 1) and it gives the correct pure spinor

constraint. The latter can be written as follows

λ
[A
i λ

B]
j = 0 , i, j = 1, 2 , (6.20)
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since for (6, 3) is automatically satisfied.18 It implies that λ
[A
i ∂λ

B]
j ǫ

ij = 0, and we

will use the Ward Identities to prove also λ
[A
(i ∂λ

B]
j) = 0.

The pure spinor constraints (6.10) imply the gauge invariance on the conjugated

variables δwAi = ΛABǫijλ
Bj (where Λ[AB] ∈ (6, 0) is the gauge parameter) and it can

be shown that the only gauge invariant combinations are J(ij) = 1
2
(wAiλ

A
j + wAjλ

A
i )

and J B
A = wAiλ

Bi (notice that they are in the representations (0, 3), (15, 0)⊕ (1, 0),

where the trace of the second operator is the ghost charge). Following [13, 26], using

the free OPE’s for the pure spinor and their conjugated, one finds

: J(ik)λ
A
j λ

kB : −1

2
: J B

C λA
j λ

C
i := (6.21)

=
α′

2

(

λA
j ∂λ

B
i − ǫijλ

A
k ∂λ

kB − λA
i ∂λ

B
j + λB

j ∂λ
A
i

)

.

Antisymmetrizing over the indices A and B and using (6.20) (which implies also that

: J
[B
C λ

A]
j . . . := 0 under the normal ordering sign) one can conclude that λ

[A
i ∂λ

B]
j = 0

for any i, j. In particular we get λ
[A
(i ∂λ

B]
j) = 0 which is a stronger version of the

derivative constraints (6.19).

Let us now look at the cohomology. Following the strategy of the previous d = 0

and d = 2 cases, there will be two kinds of vertex operators contributing to the

lowest lying cohomology at ghost number one. The first kind is the usual weight

zero operator

U (1) = λIαAIα(Z̄, xµ, θ) + λIα
.
AIα
.(Z̄, xµ, θ). (6.22)

We are not presenting the details of the computation, which are not very illuminat-

ing,19 but just state the results. Imposing that

QBU (1) = 0, δU (1) = QBΩ(0), (6.23)

gives 8⊕8 states, whose superfields depend both on the physical θ+ and the unphysi-

cal θ+̇. By considering only the operators that belong to the physical supersymmetry

current algebra (6.15), namely the ones containing only θ+, we get 4⊕ 4 states. The

closed string spectrum is given by the product of the holomorphic and antiholomor-

phic vertex operators and at the end of the day we get 32⊕ 32 states which arrange

in the N = 2 off-shell four–dimensional supergravity multiplet, which reproduces the

RNS computation.

The second kind of vertex operator is the one in which the massless tachyon

sits. This is the six-dimensional generalization of the massive vertex operator that

18In the four dimensional case (d = 2 in our notations), we have the pure spinor constraints

λΓmλ = 0 where m = 1, . . . , 4, but, due to the commuting nature of λ’s, also the constraint

λΓmΓ5λ = 0 is trivially satisfied. From the first constraint, it follows that λΓm∂λ = 0. In addition

from the Ward Identities one can prove that λγmγ5∂λ = 0 [26].
19The cohomology computation for the vertex operators (6.22) is totally analogous to the flat six

dimensional case considered in [26, 28].
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we used for two-dimensional and four-dimensional superstrings. We leave the details

of this computations for a future analysis.

6.2.3 Curved non-critical backgrounds

We follow the discussion in section 4.3.3 and suggest a generalization of the non-

critical pure spinors to generic six dimensional curved backgrounds with at most

sixteen real supercharges. The computations are very similar, so we just present the

covariantized linear dilaton action for the matter part

S = 1
2πα′

∫

d2z
(

1
2
GMN(Y )∂Y M ∂̄Y N + EiA

M (Y )diA∂̄Y
M + EiÂ

M (Y )d̄iÂ∂Y
M

)

−
∫

d2zr(2)Φ(Y ) , (6.24)

where we introduced the curved six dimensional supercoordinates Y M = (xm; θiA, θ̄iÂ).

Note that m is a curved six dimensional vector index, while A is a curved six di-

mensional Weyl index and i = 1, 2 enumerates different Weyl spinors. The E’s are

the vielbein superfields. In the linear dilaton case, the background superfields take

the following values: the supervielbeins are the six dimensional flat ones, the dilaton

superfield is linear Φ = Q
2
(ϕ − ix), the metric GMN is constant, but in addition to

the usual flat components we have a new flat spinorial part, whose nonvanishing

components in four dimensional Weyl notations are

GIα,Jβ = −QǫIJǫαβ , GIα
.
,Jβ̇ = −QǫIJǫα.β̇,

GIα̂,Jβ̂ = −QǫIJǫα̂β̂ , G
I α̂
.
,J

ˆ̇
β

= −QǫIJǫα̂. ˆ̇β, (6.25)

which is proportional to the background charge Q =
√

2. We regard this as a specific

feature of the linear dilaton superspace structure in the pure spinor formalism. This

explicitly breaks the original SO(6) Lorentz invariance of the action to SO(4), while

preserving the U(1)x R symmetry.

It is suggestive to think of (6.24) as the matter part of the non-critical pure

spinor action in a generic curved six dimensional background.

6.2.4 Anomalies

The pure spinor degrees of freedom are two Weyl spinors and anti Weyl spinors

(λIα, λIα̇), for I = +, +̇ with the condition

δIJλ
IαλJα

.
= 0,

ǫIJǫαβλ
IαλJβ = 0, (6.26)

ǫIJǫα.β̇λ
Iα
.
λJβ̇ = 0,

These six equations define a five dimensional space with a conical singularity at

λIα = λIα̇ = 0 ∀I, α, α.. Again, we expect that the correct way to cure the singularity
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is by just removing it. We leave for the future the proof that this procedure yields

a pure spinor space with vanishing first Chern class and first Pontryagin class. This

pure spinor space is different from the two and four-dimensional cases we discussed

above, in that the manifold we obtain after the removal of the singularity at the

origin is still connected. This resembles the critical ten-dimensional pure spinor

space structure.

7. The pure spinor measure

In the RNS formalism, the zero mode prescription for the ghosts in a tree level

amplitude is dictated by

〈c∂c∂2ce−2φeQϕ〉 = 1 .

We would like to obtain the analogous prescription in the pure spinor variables for

non-critical superstrings. The simplest way to do that is to use the maps from

the RNS variables to the pure spinor variables in various dimensions. Doing that

we obtain a generic saturation rule 〈λ3θd/2eQ(ϕ−ix)〉, where d is the number of flat

directions in which the supersymmetry is realized, that we can list explicitely

〈λ3θe2(ϕ−ix)〉d=0, 〈λ3θ2e
√

3(ϕ−ix)〉d=2, 〈λ3θ3e
√

2(ϕ−ix)〉d=4 , (7.1)

where x denotes x′ for simplicity of notation. The eQ(ϕ−ix) term is required to soak

up the background charge Q. Also we see that we need three ghost number one

vertex operators for a nonvanishing tree level amplitude.

Consider next a definition analgous to the pure spinor measure for the critical

superstrings [31]. Let us recall first the critical case. The ghost number anomaly

reads

Jgh(z)T (0) ∼ Qgh

z3
+ . . . ,

with Q = −8. The generic pure spinor measure is d11λ as the pure spinor space is

eleven-dimensional. One writes this measure as

d11λ = [Dλ]λ3 ,

where [Dλ] is a Lorentz invariant measure with ghost charge −Qgh = 8, and we are

left with three additional factors of λ.

Consider now the measure for the superspace variables θα. In ten dimensions we

have 16 supercharges, therefore the integration measure is d16θ. We need to insert as

many picture changing operators Y = Cαθ
αδ(Cαλ

α) as the number of independent

components of the pure spinor λα, where Cα are irrelevant constant spinors [31].

There are eleven picture changing insertions, one for each of the eleven components

of the pure spinor, and since every PCO Y carries a factor of θ, we are left with

d16θY 11 ∼ d16θθ11δ11(λ) ∼ d5θδ11(λ) .
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In this way we get that the tree level pure spinor measure is defined by 〈λ3θ5〉 = 1 :

d11λd16θY 11 ∼ [Dλ]−Qgh
λ3d5θ ⇒ 〈λ3θ5〉 = 1.

Consider next the non-critical superstrings. The number of pure spinor degrees

of freedom and the ghost number anomaly in the various non-critical dimensions

d+ 2 is
d = 0 d = 2 d = 4

dimR(M) 1 2 5

Qgh 2 1 −2

Following the critical superstrings case, we propose that we can write the pure

spinor integration measure as

d = 0 d = 2 d = 4

measure dλ = [Dλ]−2λ
3 d2λ = [Dλ]−1λ

3 dλ = [Dλ]2λ
3

Consider now the integration over the superspace coordinates θ. As we noted

before, in the pure spinor superstring (as well as in the hybrid formalism [4]), the

number of fermionic coordinates is doubled with respect to the RNS formalism. Thus,

we get the following integration over the superspace

d = 0 d = 2 d = 4

superspace d2θ d4θ d8θ

Now we have to insert in the amplitude as many picture changing operators Y =

Cθδ(Cλ) as the number of independent components of the pure spinor, and since

each PCO carries a factor of θ we get

d = 0 : d2θY = d2θθδ(λ) = dθδ(λ),

d = 2 : d4θY 2 = d4θθ2δ2(λ) = d2θδ2(λ), (7.2)

d = 4 : d8θY 5 = d8θθ5δ5(λ) = d3θδ5(λ),

We see that in this way we reobtain the same prescription for the pure spinors and

θ’s in tree level amplitudes as the one obtained by the direct map (7.1) from the

RNS measure.

8. Curved backgrounds

As we noted in the introduction, due to the presence of a cosmological constant type

term which vanishes only for d = 10, the low energy approximation E ≪ l−1
s is not

valid for non-critical superstrings. Indeed, the higher order curvature terms (l2sR)
n

cannot be discarded.
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One may write an action for the lightest fields (which are always massive), whose

bosonic part takes the form

S =
1

2k2
d

∫

ddx
√
G

(

e−2Φ

(

R + 4(∂Φ)2 +
10 − d

α′ − 1

2 · 3!
H2

)

− 1

2 · n!
F 2

n

)

, (8.1)

where we have not included the “non-tachyonic” tachyon field. Of course, solutions

to the field equations will have string scale curvature.

An interesting class of backgrounds of type IIA non-critical superstrings are AdSd

spaces with a constant dilaton e2Φ = 1
N2

c
and a d-form RR field Fd

l2sF
2
d = 2(10 − d)d!N2

c . (8.2)

The background has a string scale scalar curvature l2sR = d − 10. While this back-

grounds cannot be studied via supergravity, it can be studied in our pure spinor

formalism. Let us sketch some of the details.

As we have seen in the previous sections, a basic feature of the pure spinor

formalism is a doubling of the superspace. This we did by enlarging the linear

dilaton superspace structure to include BRST non-invariant superspace coordinates

and their conjugate momenta. In the linear dilaton background, working in a doubled

superspace in the pure spinor variables required an appropriate projection to the

physical superspace. However, the doubled superspace allows us to study pure spinor

superstrings in backgrounds with twice as many supersymmetries as in the linear

dilaton background.

For instance, the non-critical superstring on AdS4 with Nc units of RR four form

flux F4 is obtained from the supercoset

OSp(2|4)

SO(1, 3)× SO(2)
, (8.3)

and has eight real supercharges, which is precisely the content of the doubled su-

perspace in the non-critical superstring on the four-dimensional linear dilaton back-

ground R
1,1 × Rϕ × U(1)x. The supercharges are Majorana spinors Qα

I , I = 1, 2,

α = 1, ..., 4. We can decompose the Majorana index α into two Weyl indices a, ȧ and

we identify the supercharges Qa
1, Q

ȧ
1 with the left moving sector charges and Qa

2, Q
ȧ
2

with those of the right-moving sector. The symmetry SO(2) acts as the R-symmetry

on the space.

The OSp(2|4) left invariant 1-form is expanded in the basis of generators of the

supergroup (following Metsaev and Tseytlin [32]) as LµP
µ+LµνJ

µν +LIJΛIJ +LI
αQ

α
I .

The pure spinors action then consists of three terms

Sps = SGS + Sκ + Sgh,

where the first term is the κ–symmetric GS action [3]

SGS =

∫

Σ

d2zηµνL
µL̄ν +

∫

M3

d3yǫIJLµLα
J (γ5γµ)αβL

β
J , (8.4)
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where Σ = ∂M3 and we work in the conformal gauge on the worldsheet. The second

term is

Sκ =

∫

Σ

d2z (δij + iǫij)dαiL̄
α
j + (δij − iǫij)d̄αiL

α
j + qRRd̄aiγ

5αβdβjδ
ij. (8.5)

It contains the kinetic term for the fermions (recall that the first line does not give

a good kinetic term for the θ’s because of the κ-symmetry) and the coupling with

the RR field. The RR 4-form of the AdS4 background produces a bispinor of the

form δijγ
µνρσ
αβ Fµνρσ which can be written as δijγ

5
αβqRR, where qRR = ǫµνρσFµνρσ is the

constant flux.

The third term in the action

Sgh =
∫

Σ
d2z (δij + iǫij)wαi∂̄λ

α
j + (δij − iǫij)w̄αi∂λ

α
j

+NµνL̄
µν +NijL̄

ij + N̄µνΛ
µν + N̄ijL

ij

+NµνN̄ρσ(−4ηµ[ρησ]ν) +NijN̄klη
i[kηl]j, (8.6)

contains the free action for the pure spinor ghost fields and the interaction with the

Lorentz generators of SO(1, 3) and of SO(2) and in the last line the coupling with

the Riemann tensor is also described. The value of the Riemann tensor is easily given

by the fact that the background is coset manifold.

The BRST operator reads

Q =

∫

dσ
(

λα
I d

I
α

)

, (8.7)

where the eight pure spinor variables λα
I satisfy the pure spinor conditions (5.34) we

used in the description of the four-dimensional linear dilaton background, both in

the left and in the right moving sectors. The d’s are the ones computed from the

action (8.4).

One needs to show that the BRST operator is conserved and nilpotent on the

four-dimensional pure spinor constraints and that this sigma model on AdS4 is a

consistent string theory background at all orders in the worldsheet perturbation

theory, along the lines of [6]. A complete analysis of non-critical superstrings on

AdS4 will appear in a future publication.

9. Discussion and open problems

In the paper we presented a pure spinor formalism to describe non-critical super-

strings. We explicitly constructed the pure spinor description of the non-critical

superstrings in a linear dilaton background, which can be further used to study more

general backgrounds. We have shown that, by mapping the bosonic and fermionic

linear dilaton RNS variables to pure spinor variables, we get a description of a patch
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of the pure spinor space. A basic requirement of the map is a doubling of the su-

perspace. We achieved this by enlarging the linear dilaton superspace structure to

include superspace coordinates and their conjugate momenta, which are not BRST

invariant on the RNS side, although they are conserved. Working in a doubled super-

space in the pure spinor variables required an appropriate projection to the physical

superspace.

We consider the doubled superspace as a feature, since it allows us to study

pure spinor superstrings in backgrounds with twice as many supersymmetries as the

linear dilaton ones. As a concrete example we presented the action for the type IIA

non-critical superstring on AdS4 with RR four form flux, described by the supercoset

OSp(2|4)/(SO(1, 3)× SO(2)) ,

that has eight real supercharges, which is double the supersymmetry of the non-

critical superstring on the linear dilaton background R
1,1 × Rϕ × U(1)x. We leave

for a future work the proof of the consistency of this background, along the lines

of [6], and the study of its spectrum and its holographic interpretation. We just

point out that this formulation of the non-critical superstring raises the possibility

of addressing a new class of non-critical holographic backgrounds, such as the ones

proposed by Polyakov [3], which up to now have not been accessible to worldsheet

tools.

It would also be interesting to consider also the non-critical pure spinor super-

string on the eight-dimensional linear dilaton background

R
1,5 × Rϕ × U(1)x.

The construction of the worldsheet pure spinor formulation can be repeated along

the lines of the lower dimensional cases and we expect it to be straightforward.

The realization of the pure spinor variables (λα, wα) as a beta-gamma system

living on a curved pure spinor space has important consequences. This has been

discussed in [7, 8]. By using a field redefinition from RNS to pure spinor variables,

we confirmed this ten-dimensional analysis, by computing the modifications of the

stress tensor due to the holomorphic top form on the pure spinor space, as well as

saturation rules for tree level correlators. We then extended this map to the non-

critical pure spinor spaces and analyzed the global obstructions to define the pure

spinor system on the worldsheet and on space-time, reflected by quantum anomalies

in the worldsheet and pure spinor space holomorphic diffeomorphisms. The non-

critical pure spinor spaces have a singularity at λα = 0. Removing the origin left

a non-anomalous theory. However, for non-critical superstrings in two and four

dimensions, this resulted in a disconnected pure spinor space.

There are various other open issues that deserve further study. We have not

performed a complete analysis of the BRST cohomology in the pure spinor formalism.
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In the ten-dimensional case, the argument for the equivalence between the RNS and

pure spinor cohomologies used in an essential way a similarity transformation [15].

It would be of importance to find such similarity transformations in the various non-

critical dimensions as well. A direct map of the RNS unintegrated vertex operators

V reveals the interesting structure

V ∼ λPθ(θ, ∂θ, ...)Pp(p, ∂p, ...) ,

with the P ’s being some polynomials and RNS GSO projection being implemented

automatically. However, for most vertex operators the direct map does not give the

pure spinor vertex operators in the simple form expected. Here we expect to see

again the importance of the similarity transformation.

In the two-dimensional superstrings, there is a special set of operators in the

BRST cohomology at spin zero and ghost number zero, known as the ground ring

[33, 23]. In the pure spinor formulation of two-dimensional type II non-critical string,

as discussed in section 4, the cohomology at ghost number zero and weight zero is

not empty: it contains several operators constructed as explained in (4.49). It would

be interesting to explore this further.

Another issue is the removal of the pure spinor constraints [34]. It has been

shown in in [35] that removing the pure spinor constraint might lead to an infinite

tower of ghost-for-ghosts, and it seems that, except a finite number of them, the

rest of the ghost-for-ghosts are the same in all dimensions (see [36]). It would be

interesting to see if the removal of the pure spinor constraint in lower dimensions

leads to the same ghost-for-ghosts and what are the differences.

A crucial issue that requires further study is the projection from the doubled

superspace to the physical linear dilaton superspace. We expect this to be of much

importance also for the study of pure spinor critical superstrings on backgrounds with

less than maximal supersymmetry. Indeed, a similar lack of understanding exists for

instance when trying to study pure spinor superstrings compactified on Calabi-Yau

manifolds.20 A possible way to gain insight into this problem would be to consider

the ten-dimensional pure spinor superstring on R
1,5 × R

4/Z2 and understand how

the twisted states arise in the cohomology computation.
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A. Notations

In this appendix we summarize for the convenience of the reader the notations that

we use in the construction of the non-critical pure spinor superstrings on R
1,d−1 ×

Rϕ × U(1)x.

There are three relevant groups : The Lorentz SO(1, d− 1) group of symmetries

of R
1,d−1, the SO(d+ 2) group of symmetries of R

1,d+1 and U(d+2
2

).

The target space coordinates are denoted by

xm, m = 0, . . . , d− 1, x, ϕ, (d+ 2) − dimensional vector

xµ, µ = 0, . . . , d− 1, flat d− dimensional vector
(A.1)

We denote by Γm, m = 1, . . . , d+ 2, the (d+ 2)-dimensional Dirac matrices.

In order to describe the doubling of superspace we introduce an index I = +, +̇

that keeps track of the physical and unphysical fermionic coordinates

I =

{

+ physical superspace,

+̇ unphysical superspace.

}

(A.2)

Consider next the different cases.

Rϕ × U(1)x

The two-dimensional superstring has no spacetime Lorentz symmetry, that is

d = 0. The only index is I.

R
1,1 × Rϕ × U(1)x

The four-dimensional superstring has an SO(1, 1) Lorentz symmetry, that is

d = 2. The fermionic coordinates we that we use in the pure spinor formulation

are four Majorana-Weyl spinors θIi. The two physical fermionic coordinates, I = +,

i = 1, 2, have the same chirality. The two unphysical supercoordinates, I = +̇,

i = 1, 2, have the same chirality, but opposite to that of the physical ones. Therefore,

in this case the index I = +, +̇ takes care of the spinor chirality as well.

In the text we passed from this SO(1, 1) notation to the SO(4) notation. In the

SO(4) notation we reshuffle the fermionic coordinates into a Dirac spinor θA, A =

1, . . . , 4, that splits into a Weyl and an anti-Weyl spinors: θα in the (2, 0) ∈ SO(4)

and θα
.

in the (0, 2) ∈ SO(4).21 The mapping of the indices goes as follows

(I, i) = (+, 1) → α = 1, (I, i) = (+, 2) → α̇ = 1̇ ,

(I, i) = (+̇, 1) → α = 2, (I, i) = (+̇, 2) → α. = 2̇ .
(A.3)

Finally, in the map from the RNS we used the U(2) notations, where an SO(4) Dirac

spinor (λα, λα
.
) decomposes into (λ+, λa, λab) of U(2), where a = 1, 2 and λab is the

21Since a Weyl spinor is complex, to recover the correct degrees of freedom this has to be under-

stood in the closed string picture.
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antisymmetric representation with only one component. The relation between this

and the Weyl notation is

λα = λa, λα
.
= (λ+, λab) . (A.4)

The four-dimensional pure spinor constraint can be cast in the following different

ways

SO(4) : λAΓm
ABλ

B ⇒ λαλα
.
= 0,

U(2) : λλa = 0, λabλ
a = 0 ,

SO(1, 1) : τijλ
IiλJj = 0.

(A.5)

R
1,3 × Rϕ × U(1)x

The six-dimensional superstring has an SO(1, 3) Lorentz symmetry, that is d = 4.

The fermionic coordinates that we use in the pure spinor formulation are two copies

of Dirac spinors (λIα, λIα
.
), for I = +, +̇. The two physical fermionic coordinates,

I = +, are a Weyl λ+α and an anti-Weyl λ+α
.

spinor. The same applies for the two

unphysical supercoordinates, λ+̇α and λ+̇α
.
.

In the text we pass from this SO(1, 3) notation to the space SO(6) = SU(4)

notation. In the SU(4) notation we reshuffle the fermionic coordinates into two Weyl

spinors λA
i in the 4 ∈ SU(4), for A = 1, . . . , 4 and i = 1, 2. Here the index i simply

enumerates different SU(4) Weyl spinors with the same chirality. The mapping of

the indices goes as follows

λA
1 = (λ+α, λ+̇α

.
) , λA

2 = (λ+̇α, λ+α
.
). (A.6)

The reason for this is the match of their R-charge, as shown in (6.14).

Finally, in the map from the RNS we use the U(3) notations. First, in the

pure spinor formulation we use two Weyl spinors λA
i of SU(4) that decompose into

U(3) representations according to λA
i = (λ+

i , λ
a
i ), for i = 1, 2, where λ+ is a U(3)

singlet and λa is a U(3) vector. We can fit the SO(1, 3) spinors into these U(3)

representations as follows

(λ+
1 , λ

a
1) ∈ U(3) : λ+

1 λ1
1 λ2

1 λ3
1

(λ+α
.
, λ+̇α) ∈ SO(1, 3) : λ+1̇ λ+̇1 λ+̇2 λ+2̇ (A.7)

(λ+
2 , λ

a
2) ∈ U(3) : λ+

2 λ1
2 λ2

2 λ3
2

(λ+α, λ+̇α
.
) ∈ SO(1, 3) : λ+̇1̇ −λ+1 −λ+2 λ+̇2̇ (A.8)

There is a little abuse of notation here: the + denotes the singlet representations of

U(3), while on the SO(1, 3) it denotes the I = + physical superspace.

– 58 –



The six-dimensional pure spinor constraint can be cast in the following ways

SU(4) : λΓmλ = 0 ,

U(3) : ǫijλ+
i λ

a
j = 0 , ǫabcǫ

ijλa
i λ

b
j = 0 ,

SO(1, 3) : δIJλ
IαλJα

.
= 0,

ǫIJǫαβλ
IαλJβ = 0,

ǫIJǫα.β̇λ
Iα
.
λJβ̇ = 0 .

(A.9)

B. Non-critical RNS superstrings

In this appendix we collect the RNS notations in d = 2n flat dimensions.

B.1 The matter system

The matter stress energy tensor of the system reads

Tm =
∑2n

µ=1

(

− 1
2
(∂xµ)2 − 1

2
ψµ∂ψµ

)

− 1
2
(∂x)2 − 1

2
ψx∂ψx +

−1
2
(∂ϕ)2 + Q(n)

2
∂2ϕ− 1

2
ψl∂ψl , (B.1)

The OPE’s conventions that we will be using are

xi(z)xj(0) ∼ −ηij log z , ϕ(z)ϕ(0) ∼ − log z , (B.2)

ψµ(z)ψµ(0) ∼ ηij

z
, ψl(z)ψl(z) ∼

1

z
. (B.3)

T (z)erx(0) ∼
(−r2/2

z2
+
∂

z

)

erx(0) , T (z)esϕ(0) ∼
(−s(s−Q(n))/2

z2
+
∂

z

)

esϕ(0) .

(B.4)

We define Ψ = ψl + iψ and ΨI = ψI + iψI+n (with I = 1, . . . , n). These are

bosonized in the usual way by introducing the bosonic fields H , HI :

Ψ =
√

2eiH , ΨI =
√

2eiHI

,

ΨΨ† = 2i∂H , ΨΨI† = 2i∂HI , (B.5)

where † denotes Hermitian conjugation in field space without interchanging left- and

right-movers: Ψ† = ψ − iψl, Ψ†I = ψI − iψI+n. We have

HI(z)HJ(0) ∼ −δIJ log z , H(z)H(0) ∼ − log z . (B.6)

We define the spin fields Σ± = e±
i
2
H and Σa = e±

i
2
H1...± i

2
Hn

, where the index a runs

over the independent spinor representation of SO(2n).
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B.2 The ghost system

We have a fermionic (b, c) ghost system of weights (2,−1) and a bosonic (β, γ) ghost

system of weights (3
2
,−1

2
). The OPE’s and stress-energy tensor are

c(z)b(0) ∼ 1

z
, γ(z)β(0) ∼ 1

z
, (B.7)

Tghost = −2b∂c − ∂bc − 3

2
β∂γ − 1

2
∂βγ , (B.8)

Let us bosonize the ghost systems. We define

c = eχ , b = e−χ , (B.9)

with

Tb,c = Tχ =
1

2
(∂χ)2 +

3

2
∂2χ , (B.10)

χ(z)χ(0) ∼ log z , (B.11)

Tχ(z)eaχ(0) ∼
(a(a− 3)/2

z2
+
∂

z

)

eaχ(0) . (B.12)

For the superghosts, we have

γ = eφη, β = ∂ξe−φ (B.13)

Tβ,γ = Tφ + Tη,ξ = −1

2
(∂φ)2 − ∂2φ− η∂ξ , (B.14)

φ(z)φ(0) ∼ − log z , η(z)ξ(0) ∼ 1

z
, (B.15)

Tφ(z)e
bφ(0) ∼

(−b(b + 2)/2

z2
+
∂

z

)

ebφ(0) . (B.16)

We further bosonize the fermions into

η = eκ , ξ = e−κ , (B.17)

and

Tη,ξ = Tκ =
1

2
(∂κ)2 − 1

2
∂2κ , (B.18)

κ(z)κ(0) ∼ log z , (B.19)

Tκ(z)e
cκ(0) ∼

(c(c+ 1)/2

z2
+
∂

z

)

ecκ(0) . (B.20)
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B.3 Supersymmetry

B.3.1 The N = 2 superconformal algebra

In addition to (B.1) the N = 2 superconformal algebra includes the supercurrents

G+ =
i√
2

n
∑

I=1

ΨI†∂(xI + ixI+n) +
i√
2
Ψ†∂(ϕ + ix) − iQ√

2
∂Ψ† , (B.21)

G− =
i√
2

n
∑

I=1

ΨI∂(xI − ixI+n) +
i√
2
Ψ∂(ϕ− ix) − iQ√

2
∂Ψ , (B.22)

and the U(1) current

J =
1

2

n
∑

I=1

ΨI†ΨI +
1

2
Ψ†Ψ + iQ∂x . (B.23)

In terms of the fermion bosonization these currents take the form

G+ = i
n

∑

I=1

e−iHI

∂(xI + ixI+n) + ie−iH∂(ϕ + ix+ iQH) , (B.24)

G− = i
n

∑

I=1

eiHI

∂(xI − ixI+n) + ieiH∂(ϕ− ix− iQH) , (B.25)

J = −i
n

∑

I=1

∂HI − i∂H + iQ∂x . (B.26)

B.3.2 The twisted N = 2 algebra

Out of the matter and ghost superconformal generators we can construct a twisted

ĉ = 2 N = 2 superconformal algebra whose generators are

G′+ = γGm + c
(

Tm − 3

2
β∂γ − 1

2
γ∂β − b∂c

)

− γ2b+ ∂2c+ ∂(cξη) ,

G′− = b , J ′ = cb+ ηξ , T ′ = Tmatter + Tghost , (B.27)

where Gm = G+ +G− is the sum of the two matter supercurrents The dimension one

current G′+ is the BRST current of the RNS superstring and J ′ is the ghost current.

C. The RNS spectra

In this appendix we show the details of the computation of the spectrum in the RNS

formalism on linear dilaton backgrounds. We are interested just in operators that

do not break space-time supersymmetry. These are the primary operators of the

worldsheet N = 2 superconformal algebra.
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C.1 d=2

Let us discuss the spectrum on R
1,1×Rϕ×U(1)x. First we consider the holomorphic

sector and then we match holomorphic and antiholomorphic sectors to get the closed

superstring, for the type IIB case.

C.1.1 Holomorphic sector

.

NS sector

The tachyon vertex operator in the −1 picture is

T = e−φ+ikµxµ+ipx+βϕ, (C.1)

and the GSO projection requires Qp ∈ 2Z + 1. The condition ∆(T ) = 1 reads

k2
µ − (β − Q

2
)2 + p2 +

Q2

4
− 1 = 0 , (C.2)

and the lowest lying state has p = ± 1
Q

. The operator

T± = e−φ+ 1
Q

(ϕ±ix), (C.3)

is a worldsheet (anti)chiral primary ∆matter(T±) = ± q
2

= 1
2

annihilated by G±, with

space-time R-charge R = ±2
3
. It turns out that T+ and T− are not mutually local.

However, we are interested in the mutual locality only when matching holomorphic

and antiholomorphic sectors, so we will discuss locality only below.

The other NS operators are analogous to the “vectors” in the ten dimensional

superstring

J± = e−φ±H+ikµxµ+ipx+βϕ,

Jµ = e−φ±H1+ikµxµ+ipx+βϕ, (C.4)

where µ is an SO(1, 1) Lorentz vector index. The GSO projection requires Qp ∈ 2Z,

and ∆ = 1 gives k2
µ + p2 − (β − Q/2)2 + Q2/4 = 0. The lowest lying states with

p = β = 0 are Jµ = e−φ±H1 , in particular they are worldsheet N = 2 primaries (they

have only single poles with G±) and are not charged under U(1)x.

R sector

The operators in the Ramond sector are

R = e−
φ
2
+ i

2
ǫH+ i

2
ǫ1H1+ikµxµ+ipx+βϕ, (C.5)

where ǫ, ǫ1 = ±1. The GSO projection requires Qp ∈ 2Z + 1
2

for ǫ = ǫ1 = ±1 and

Qp ∈ 2Z− 1
2

for ǫ = −ǫ1 = ±1. The ∆(R) = 1 condition fixes k2
µ+p2−(β−Q/2)2 = 0.
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Then we need to impose the Dirac equation (4.14), which fixes separately for each

direction the sign of the momentum according to the sign of the corresponding spin

component. In the (x1, x2)–plane we find ik1 = ǫ1k2, while in the (x, ϕ)–plane we

have β = Q/2 + ǫp. The last condition, together with the Seiberg bound β ≤ Q/2,

imposes a restriction on the allowed momenta in the x direction. Introducing the

notation Rǫ,ǫ1 we find

R++ = e−
1
2
φ+ i

2
(H+H1)+ikµxµ−ipx+(Q

2
−p)ϕ, p = 1

Q
(2n+ 3

2
) ≥ 0,

R−− = e−
1
2
φ− i

2
(H+H1)+ikµxµ+ipx+(Q

2
−p)ϕ, p = 1

Q
(2n+ 1

2
) ≥ 0,

R+− = e−
1
2
φ+ i

2
(H−H1)+ikµxµ−ipx+(Q

2
−p)ϕ, p = 1

Q
(2n+ 1

2
) ≥ 0,

R−+ = e−
1
2
φ− i

2
(H−H1)+ikµxµ+ipx+(Q

2
−p)ϕ, p = 1

Q
(2n+ 3

2
) ≥ 0, (C.6)

and we note that the R−− operator is non local with respect to (C.1). We are inter-

ested in the lowest lying components of the R vertex operators at zero momentum

kµ = 0 in the transverse R
1,1 directions, which are listed in the main text in (5.5).

C.1.2 Closed superstring

We match left and right vertex operators in IIB for concreteness, the antiholomorphic

sector being a copy of the holomorphic one we just described. In type IIB we have two

dimensional N = (4, 0) spacelike SUSY in the flat noncompact directions. Because

of the requirement of mutual locality of the vertex operators, the spectrum is not

just the left right product of the sectors. Let us denote each vertex operators in the

left sector by (α, F ), where α is the space-time fermion index, 0 in the NS and 1 in

the R and F is the worldsheet spinor index, given by the sum of the picture plus the

eigenvalues of the Lorentz Cartan generators.22 In addition we have the momentum

n and winding w in the compact x direction. A closed string vertex operator is

denoted by (α, F, ᾱ, F̄ ) and (n, w). Following [30, 18], the mutual locality condition

reads

F2α1 − F1α2 − F̄1ᾱ2 + F̄2ᾱ1 +
1

2
(α1α2 − ᾱ1ᾱ2) + 2(n1w2 + n2w1) ∈ 2Z. (C.7)

The total U(1) R charge of a closed string vertex operator is the sum of the left

and right charges. We are again interested in the short space-time N = (4, 0)

supermultiplets.

NS–NS sector

The tachyon, denoted by (α, F, ᾱ, F̄ ) = (0,−1, 0,−1), have momenta pL,R =
1
Q

(n± 3w
2

) ∈ 1
Q

(2Z + 1) and the ∆ = 1 condition gives

k2
µ − (β − Q

2
)2 + (

n

Q
)2 + (

Qw

2
)2 +

Q2

4
− 1 = 0 . (C.8)

22E.g. the vertex e−
1

2
φ+ i

2
H−

i

2
H1 has F = −1/2+1/2− 1/2 = −1/2. F is defined only modulo 2.
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The lowest lying tachyons are (5.6).

The other NS–NS operators with (0, 0, 0, 0) are the left right product of the states

in (C.4)

G±± = e−φ−φ̄±iH±iH̄+ikµxµ+ipLx+ipRx̄+βϕ,

Gµ± = e−φ−φ̄±iH1±iH̄+ikµxµ+ipLx+ipRx̄+βϕ,

G±µ = e−φ−φ̄±iH±iH̄1+ikµxµ+ipLx+ipRx̄+βϕ,

Gµν = e−φ−φ̄±iH1±iH̄1+ikµxµ+ipLx+ipRx̄+βϕ, (C.9)

where µ, ν = 1, 2 are SO(1, 1)L Lorentz vector indices, the momenta are pL,R ∈ 1
Q

2Z

and we introduced the notation JJ̄ ≡ G. The mass shell condition is k2
µ + ( n

Q
)2 +

(Qw
2

)2 − (β − Q/2)2 + Q2/4 = 0. The mutual locality condition between the NSNS

states is given by n1w2 + n2w1 ∈ Z. We are interested in the lowest lying states

among (C.4) that belong to a short space-time multiplet. At zero momentum in the

transverse directions we find (5.7).

The windings and momenta can be non integer. Indeed, they may not have an

interpretation in terms of actual windings and momenta in the x direction, but are

just a useful notation for simplifying the mutual locality computation.

R–R, R–NS and NS–R sectors

The matching of the lowest lying operators in this sectors has been shown in the

main text.

C.2 d = 4

Here we discuss some details of the SO(1, 3) spectrum of the six dimensional super-

string. First let us collect the second set of physical supercharges, which are nonlocal

with respect to the ones in (6.1)

q−1 = e−
1
2
φ+i(H1−H2+H−Qx)/2 , q−2 = e−

1
2
φ+i(−H1+H2+H−Qx)/2 ,

q−1̇ = e−
1
2
φ+i(H1+H2−H+Qx)/2 , q−2̇ = e−

1
2
φ+i(−H1−H2−H+Qx)/2 .

(C.10)

The choice of q+ in the holomorphic sector and q− in the antiholomorphic defines

the type IIA superstring. However, we will stick to the type IIB case.

C.2.1 Holomorphic sector

The first NS state is the tachyon whose vertex operator is

Tp = e−φ+ikµxµ+ipx+βϕ . (C.11)

From requiring it to be of weight ∆(T ) = 1 we obtain the condition

kµk
µ + p2 − β(β −Q) = 1 , (C.12)
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and mutual locality with the chosen set of supercharges requires pQ ∈ 2Z + 1. It is

a primary field and for it to be a chiral primary of the N = 2 SCA it must satisfy

k1 = −ik3 , k2 = −ik4 , p = β , (C.13)

while the same relations with opposite signs will give an anti-chiral primary.

Restricting to kµ = 0 states with the lowest R-charge we have β = 1
Q

and

p = ± 1
Q

. β saturates the Seiberg bound β ≤ Q
2

[24], the vertex operator (C.11) is

normalizable and does not represent a microscopic state and we have to replace it

with the non-normalizable state23

Tp = ϕe−φ+ikµxµ+ipx+βϕ . (C.14)

Note that the lowest lying mode of this vertex operator has β = p, so that the

condition ∆(T ) = 1 gives k2
µ = 0. This is different from the d = 2 case: there, with

respect to the flat SO(1, 1) momenta, the tachyon was off-shell with a continuous

mass above a gap. Here, the tachyon is again off-shell, but now the lowest value for

the mass is zero. The tachyon being massless is a specific feature of the d = 4 case.

The two lowest lying such tachyons are given in (6.3).

At the next level there are the NS vectors with one NS oscillator excitation given

by

Jµ = e−φ+iǫHI+ikµxµ+ipx+βϕ (C.15)

with the ∆(J) = 1 condition

kµk
µ + p2 − β(β −Q) = 0 . (C.16)

Mutual locality with the supercharges requires that pQ ∈ 2Z. In order for the vertex

operator to represent a physical state the momentum must satisfy kI = −iǫkI+2

which is nothing more than the transversality condition. The zero momentum states

are given in (6.4). The vector polarized in the ϕx-plane is

J± = e−φ+iǫH+ikµxµ+ipx+βϕ (C.17)

with the same conditions for having weight one and being mutually local with the

supercharges and β = ǫp + Q. From these requirements and the bound β ≤ Q
2

it

follows that such states always have momentum in R
1,3 so they do not appear in the

zero momentum cohomology.

We now turn to the Ramond sector. The R ground state is of the form

R = e−φ/2+i(ǫ1H1+ǫ2H2+ǫH)/2+ipx+βϕ , (C.18)

23We can understand the appearance of the factor ϕ in (C.14) by the fact that this is the non-

normalizable solution of the Laplace equation in six dimensions.
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where kµk
µ + p2 =

(

β − Q
2

)2
. The F = 1 states are mutually local with the super-

charges for pQ ∈ 2Z + 1 while for the F = 0 states the x momentum is pQ ∈ 2Z.

From the Dirac equation one obtains

k1 = −iǫ1k3 , k2 = −iǫ2k4 , β = ǫp +
Q

2
. (C.19)

The zero momentum R states with F = 1 are given in (6.5) and the ones with F = 0

are in (6.6).

C.2.2 Closed superstring

The closed superstring operators are obtained as the product of holomorphic and

antiholomorphic vertex operators subject to level matching and mutual locality con-

ditions. Using the same convention (α, F, α̃, F̃ ) as in the previous sections [18], the

mutual locality condition reads now

F1α2 − F2α1 − F̄1ᾱ2 + F̄2ᾱ1 + α1α2 − ᾱ1ᾱ2 + 2(n1w2 + n2w1) ∈ 2Z. (C.20)

The level matching L0 = L̃0 requires

N − Ñ =
p̃2 − p2

2
, (C.21)

and since we only consider the lowest R-charge states the range of x-momenta is

p = 0,± 1
Q

. The zero momentum supermultiplets are quoted in the main text.

D. Pure spinor cohomology

D.1 d = 0 gauge supermultiplet

In this appendix we show how the supermultiplet which the tachyon sits in is obtained

from the pure spinor cohomology as in (4.50). In order to simplify the notations we

define the complex coordinates Z = ϕ + ix and Z̄ = ϕ − ix such that Z(z)Z̄(0) ∼
−2 log z. We will also use a parametrization of the dI in which

d+ = p+ − θ+̇∂Z̄ +Q∂θ+̇ , d+̇ = p+̇ . (D.1)

In order to prevent confusion with the background charge, we will denote the BRST

operator by QB =
∮

λIdI .

The tachyon appears from what would naively be the first level of massive states,

i.e. the weight one ghost number one vertex operator

U (1) = ∂λIAI + λI∂θJBIJ + λIdJC
J
I + λIΠZ̄HI + λ+J+

+F
+
++ + λ+̇J +̇

+̇
F +̇

+̇+̇
, (D.2)

where JJ
I = wIλ

J , but where the wavefunctions in the various superfields are all

equal to e−Z/Q. The above vertex operator then has weight zero. We note that due
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to the gauge invariance δw+ = Λ++̇λ
+̇ + Λ′

++̇
∂λ+̇, δw+̇ = Λ+̇+λ

+ + Λ′
+̇+
∂λ+ and the

pure spinor constraint the last two terms are the only allowed such terms. The gauge

transformation of this operator are given by δU (1) = QBΛ(0), where Λ(0) is the ghost

number zero operator

Λ(0) = ∂θIΩI + dIΛ
I + ΠZ̄ΓZ̄ + J+

+Φ+
+ + J +̇

+̇
Φ+̇

+̇
. (D.3)

The equations of motion obtained by requiring U (1) to be QB-closed when the

pure spinor constraint and the Ward identities are taken into account are

D+A+ +B++ −QC+̇
+ + 2∂ZC

+̇
+ = 0 , (D.4)

D+̇A+̇ +B+̇+̇ +QC+
+̇

= 0 , (D.5)

D+B+I = D+̇B+̇I = 0 , (D.6)

D+H+ − C+̇
+ = 0 , D+̇H+̇ − C+

+̇
= 0 , (D.7)

D+C
+
+ − F+

++ = 0 , D+̇C
+̇
+̇
− F +̇

+̇+̇
= 0 , D+C

+̇
+ = D+̇C

+
+̇

= 0 , (D.8)

D+F
+
++ = D+̇F

+̇
+̇+̇

= 0 . (D.9)

These equations of motion are left invariant under the gauge transformations

δAI = ΩI − ǫIJQΛJ + 2δ+
I ∂ZΛ+̇ , (D.10)

δBIJ = −DIΩJ , (D.11)

δCJ
I = −DIΛ

J − δ+
I δ

J
+Φ+

+ − δ+̇
I δ

J
+̇Φ+̇

+̇
, (D.12)

δHI = −σ1
IJΛJ +DIΓZ̄ , (D.13)

δF+
++ = D+Φ+

+ , δF +̇
+̇+̇

= D+̇Φ+̇
+̇
. (D.14)

The gauge transformations can be used to choose a gauge in which AI = 0,

C+
+ = C+̇

+̇
= 0 and HI = 0. In such a gauge the equations of motion yield that

B++ = B+̇+̇ = 0 , C+̇
+ = C+

+̇
= 0 , F+

++ = F +̇
+̇+̇

= 0 . (D.15)

and the only remaining fields are B++̇ and B+̇+ satisfying

D+B++̇ = 0 = D+̇B+̇+ , (D.16)

each with two degrees of freedom. Then we need to project onto the physical super-

coordinates θ+, so we keep only B+̇+ in the cohomology.

The closed string spectrum is a product of the above superfields on the left and

right: λ+̇λ̄+̇∂θ+∂̄θ̄+B+̇+B̄+̇+ leading to two bosonic and two fermionic degrees of

freedom, thus matching the count obtained in the RNS cohomolgy.
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D.2 d = 2 gauge supermultiplet

In this appendix we show how the four-dimensional tachyon and its supermultiplet

are obtained. In order to simplify the computation we use SO(4) spinor notations

and the complex coordinates Z = ϕ+ ix, W = x1 + ix2 and their complex conjugates

Z̄ and W̄ . The details about how to pass from the SO(4) to the SO(1, 1) notations

are in appendix A. The superderivatives in these conventions are cast in the form

dα = pα − 1

2
δαα̇θ

α̇∂W − 1

2
σ1

αα̇θ
α̇∂Z̄ +

Q

2
ǫαα̇∂θ

α̇ , (D.17)

dα̇ = pα̇ − 1

2
δαα̇θ

α∂W − 1

2
σ1

αα̇θ
α∂Z̄ − Q

2
ǫαα̇∂θ

α (D.18)

and their non-singular OPE’s read

dα(z)dα̇(0) ∼ −Qǫαα̇

z2
− 1

z
δαα̇∂W (0) − 1

z
σ1

αα̇∂Z̄(0) . (D.19)

The BRST operator is QB =
∮

(λαdα + λα̇dα̇).

The ghost number one and weight zero vertex operator is obtained with the

procedure explained in the previous section. We take the operator one would write

for the first massive level in the critical case [26]

U (1) = ∂λAAA + λA∂θBBAB + λAdBC
B
A + λAΠWHW A +

+ λAΠW̄HW̄ A + λAΠZ̄KZ̄A + λαJγ
βF

β
αγ + λα̇J γ̇

β̇
F β̇

α̇γ̇ , (D.20)

where A = (α, α.) and B = (β, β̇) are SO(4) Dirac indices and Jβ
α =: wαλ

β : and

J β̇
α̇ =: wα̇λ

β̇ : are the worldsheet currents invariant under the gauge transformations

in wα and wα̇. Then, the wavefunctions of the various superfields appearing in

the vertex operator all contain the weight −1 vertex operator e−Z/Q, in order to

have the weight zero vertex operator needed for the massless tachyon. The gauge

transformation of this vertex operators is δU (1) = QBΛ(0), where Λ is the ghost

number zero operator

Λ(0) = ∂θAΩA + dAΛA + ΠW ΓW + ΠW̄ΓW̄ + ΠZ̄ΓZ̄ + Jβ
αΦα

β + J β̇
α̇Φα̇

β̇
.

(D.21)

Using the pure spinor constraint and the Ward identities, QBU (1) = 0 implies

the equations of motion

DβAα +Bβα − ǫαβ̇QC
β̇
β + δαβ̇∂W̄C

β̇
β + σ1

αβ̇
∂ZC

β̇
β + δαα̇θ

α̇HWβ = 0 , (D.22)

Dβ̇Aα̇ +Bβ̇α̇ + ǫβα̇QC
β

β̇
+ δβα̇∂W̄C

β

β̇
+ σ1

βα̇∂ZC
β

β̇
+ δαα̇θ

αHW̄ β̇ = 0 , (D.23)

D(βC
γ
α) + F γ

(αβ) = 0 , D(βC
β̇
α) = 0 , D(β̇C

β
α̇) = 0 , D(β̇C

γ̇
α̇) + F γ̇

(α̇β̇)
= 0 ,(D.24)

D(αBβ)γ = 0 , D(αBβ)α̇ −HW̄ (αδβ)α̇ = 0 , (D.25)
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D(α̇Bβ̇)γ̇ = 0 , D(α̇Bβ̇)α − δα(α̇HW̄ β̇) = 0 , (D.26)

D(αHWβ) − C β̇
(αδβ)β̇ = 0 , D(α̇HWβ̇) − δβ(β̇C

β
α̇) = 0 , (D.27)

D(αHW̄β) = 0 , D(α̇HW̄ β̇) = 0 , (D.28)

D(αKβ) − C β̇
(ασ

1
β)β̇

= 0 , D(α̇Kβ̇) − σ1
β(β̇
Cβ

α̇) = 0 , (D.29)

D(αF
δ
βγ) = 0 , D(α̇F

δ̇
β̇γ̇)

= 0 , (D.30)

which posses the gauge symmetry

δAα = Ωα − ǫαα̇QΛα̇ + δαα̇∂W̄ Λα̇ + σ1
αα̇∂ZΛα̇ + δαα̇θ

α̇ΓW̄ , (D.31)

δAα̇ = Ωα̇ + ǫαα̇QΛα + δαα̇∂W̄ Λα + σ1
αα̇∂ZΛα + δαα̇θ

αΓW̄ , (D.32)

δBαβ = −DαΩβ , δBαβ̇ = −DαΩβ̇ + δαβ̇ΓW̄ , (D.33)

δBα̇β = −Dα̇Ωβ + δβα̇ΓW̄ , δBα̇β̇ = −Dα̇Ωβ̇ , (D.34)

δCβ
α = −DαΛβ − Φβ

α , δC β̇
α = −DαΛβ̇ , (D.35)

δCβ
α̇ = −DαΛβ , δCδβ

α̇ = −Dα̇Λβ̇ − Φβ̇
α̇ , (D.36)

δHWα = −δαα̇Λα̇ +DαΓW , δHWα̇ = −δαα̇Λα +Dα̇ΓZ , (D.37)

δHW̄α = DαΓW̄ , δHW̄ α̇ = Dα̇ΓW̄ , (D.38)

δKα = −σ1
αα̇Λα̇ +DαΓZ̄ , δKα̇ = −σ1

αα̇Λα +Dα̇ΓZ̄ , (D.39)

δF β
αγ = DαΦβ

γ , δF β̇
α̇γ̇ = Dα̇Φβ̇

γ̇ . (D.40)

By using the gauge parameters Ωα, Ωα̇, ΓW̄ , Φβ
α, Φβ̇

α̇ Λα and Λα̇ we can set

Aα = Aα̇ = Cβ
α = C β̇

α̇ = HWα = HWα̇ = HW̄α = HW̄ α
. = 0, (D.41)

where HW̄ are set to zero after using (D.28). From the equations of motion in this

gauge we get that

F γ
(αβ) = F γ̇

(α̇β̇)
= 0 , C 1̇

1 = C 2̇
2 = C 2̇

1 + C 1̇
2 = C1

1̇
= C2

2̇
= C2

1̇
+ C1

2̇
= 0 . (D.42)

Using the equations of motion now we can solve for

Bαβ̇ = DαTβ̇ , Bα
.
β = Dα

.Tβ . (D.43)

After taking into account all the gauge invariances and the equations of motion,

of the whole (D.20) we are left with the following field content. Out of the four

KZ̄ A, we keep three. We expect that these fields correspond to the higher states

in the superstring cohomology. The fields sitting in the B’s, that we identify with

the supermultiplet the tachyon sits in, boiled down to Tα, Tα
. . If we focus on these

last fields, the part of the vertex operator which contains the tachyon reads U (1)
T =

λα∂θα
.
DαTα

. + λα
.
∂θαDα

.Tα. We have to project the vertex operator to the physical
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supercoordinates, that in our SO(4) notation are (θ1, θ1̇). Then the vertex operator

reduces to

U (1)
T = λα∂θ1̇DαT1̇(θ

1, θ1̇) + λα
.
∂θ1Dα

.T1(θ
1, θ1̇) , (D.44)

where the two physical superfields T1 and T1̇ contain 2 ⊕ 2 degrees of freedom each.

At this point, the structure of the pure spinor space crucially comes into play. As

we discussed, the four dimensional pure spinor space λαλα
.

= 0 is the union of two

disconnected patches and our would-be vertex operator (D.44) is symmetric under

the exchange of the two patches λα ↔ λα
.
. The RNS formalism is mapped onto just

one of the two patches, let us choose the λα
.
6= 0 patch. If we want to compare the

RNS cohomology with the pure spinor result, we are forced to do that on one of the

two disconnected patches, so the tachyon supermultiplet on the patch λα
.
6= 0 has

the form

U (1) = λα
.
∂θ1Dα

.T1(θ
1, θ1̇) , (D.45)

containing 2 ⊕ 2 degrees of freedom. In the closed string, the vertex operator is

just the product of the holomorphic and antiholomorphic vertex operators, which

contains the tachyon supermultiplet.

E. The six-dimensional map

In this appendix we present some details about the map from the RNS to the pure

spinor variables in the six dimensional case of section 6.2 in the main text. In the

following discussion it will be convenient to break the SO(6) group into U(3) and

classify the different supercharges and pure spinor components using their represen-

tation in SU(3)U(1), in terms of which q+1̇ is in the representation 1 3
2
, while q+1, q+2

and q+2̇ form a 3− 1
2

representation.

We will work in the patch in which the 1 3
2

component of the pure spinor is

non-zero and raise the 1 3
2

supercharge q+1̇ to picture 1
2

and obtain

q+1̇ = bηe3φ/2+i(H1+H2+H−Qx)/2 + . . . , (E.1)

where . . . are terms with lower exponentials of the field φ. The 3− 1
2

is left in the −1
2

picture. We further define the fermionic momenta

p+1̇ = bηe3φ/2+i(H1+H2+H−Qx)/2 , p+1 = e−φ/2+i(H1−H2−H+Qx)/2 ,

p+2 = e−φ/2+i(−H1+H2−H+Qx)/2 , p+̇2̇ = e−φ/2+i(−H1−H2+H+Qx)/2 .

The last momentum is not a physical supercharge. It is taken instead of q+2̇, which is

singular with q+1 and q+2 because of the supersymmetry algebra. The non-physical

p+̇2̇ is non-singular with all the others. We also define the coordinates conjugate to

these momenta

θ+1̇ = cξe−3φ/2−i(H1+H2+H−Qx)/2 , θ+1 = eφ/2−i(H1−H2−H+Qx)/2 ,

θ+2 = eφ/2−i(−H1+H2−H+Qx)/2 , θ+̇2̇ = eφ/2−i(−H1−H2+H+Qx)/2 .
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We now map

η = eφ̃+κ̃p+1̇ , b = e(φ̃−κ̃)/2p+1̇ , (E.2)

from which we obtain

φ̃ = − i

4
(3H + 3H1 + 3H2 − 3Qx− 4iκ− 9iφ+ 2iχ) , (E.3)

κ̃ =
i

4
(H +H1 +H2 −Qx− 4iκ− 3iφ− 2iχ) , (E.4)

which are non-singular with the fermionic momenta and satisfy the OPE’s

φ̃(z)φ̃(0) ∼ − log z , κ̃(z)κ̃(0) ∼ log z (E.5)

and all the other OPE’s are non-singular.

The coordinate x is singular with the new variables. This is solved by performing

the shift

x′ =
1√
2
(iφ−H1 −H2 −H) . (E.6)

(A definition with the opposite signs is also possible.) It is curious that the new x′

is independent of the original x.

Hence, the RNS bosonic fields x, β and γ are mapped into the pure spinor bosons

x′, φ̃ and κ̃, while the bosonic coordinates ϕ and xµ (µ = 1, . . . , 4 ) are mapped into

themselves. The eight fermionic RNS variables ψl, ψ, ψµ, b and c (µ = 1, . . . , 4) are

mapped to the eight fermionic coordinates and momenta. One can turn the RNS

energy-momentum tensor into pure spinor fields on this patch and obtain

T ′ = −1

2
∂xµ∂xνηµν −

1

2
(∂ϕ)2 − 1

2
(∂x′)2 +

Q

2
∂2(ϕ− ix′) −

− p+1̇∂θ
+1̇ − p+1∂θ

+1 − p+2∂θ
+2 − p+̇2̇∂θ

+̇2̇ −

− 1

2
(∂φ̃)2 +

1

2
(∂κ̃)2 + ∂2φ̃+ ∂2κ̃ . (E.7)

whose total central charge still vanishes. Next, one uses the standard bosonization

of a βγ-system in order to relate φ̃ and κ̃ to the pure spinor variables

λ+1̇ = eφ̃+κ̃ , w+1̇ = ∂κ̃e−φ̃−κ̃ (E.8)

and write the (φ̃, κ̃) part of the energy-momentum tensor as

Tλ = w+1̇∂λ
+1̇ − 1

2
∂2 log Ω , (E.9)

where Ω is the top dimensional form on the pure spinor space [8, 7]. By comparison

with (E.7) the top form is

Ω = e−3(φ̃+κ̃) = (λ+1̇)−3 . (E.10)
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The above expressions are not covariant. They can be covariantized by adding

the missing 3− 1
2

and 1 3
2

components of the weight (1, 0) bc-systems (p2a, θ
a
2) and

(p2+, θ
+
2 ) and the weight (1, 0) pure spinor βγ-systems (w1a, λ

a
1) and (w2+, λ

+
2 ) (we

switched back to the notation introduced in the beginning of this section) allowing us

to write covariantly the energy-momentum tensor (6.8). The addition of the quartet

does not modify the central charge due to the cancellation between the bc-systems

and the βγ-systems. The BRST operator should be modified so that these additional

fields do not modify the cohomology.

F. A projection

Consider the four dimensional non-critical superstring we constructed in section 5.2.

In this appendix we propose a way to project out half of the doubled superspace.

However, we do not know what target space this string theory describes.

Consider the pure spinor BRST operator we considered in the main text

QB =

∮

λIidIi , (F.1)

and add the following contribution

Q′ = ǫI1QI1 , (F.2)

where QI1 =
∮

qI1 are two of the doubled supercharges. These are defined to anti-

commute with the d’s in (5.27), and are given by

qIj = pIj +
1

2
τij

(

δIJθ
Ji∂(x1 + ix2) + τIJθ

Ji∂(ϕ− ix) −QǫIJ∂θ
Ji

)

, (F.3)

such that the OPE’s of the qIi among themselves is the same as (5.28) but with

opposite signs.

Since the supercharges and the superderivatives anticommute, the new BRST

charge Q = QB + Q′ is nilpotent on the pure spinor constraint (5.11). Now let

us look at the cohomology of this theory. Instead of computing the cohomology of

(F.1) and then removing the unphysical θ+̇i from the spectrum, as we did in the

main text, we now take Q as the full BRST operator of the theory, without the

need of a further projection. The cohomology computation for the ghost number

one and weight zero vertex operators (5.37) can be computed in two steps. First,

we compute the cohomology of the old QB, by which we obtain the “off-shell” four

dimensional vector supermultiplet (5.41) with 4 ⊕ 4 states, that we can pack in a

real four dimensional superfield V . Secondly, the action of the new term Q′ is just

to remove from the spectrum the dependence on half of the supercoordinates θI1.

However, this is a different projection with respect to the one that realizes the linear

dilaton background!
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Requiring that the four dimensional vector superfield V belongs to the cohomol-

ogy of Q = QB +Q′ restricts it to

V |θI1=0 = φ+ θI2ψI2 + θ2F, (F.4)

giving a total of 2 ⊕ 2 degrees of freedom as before, but with different space-time

charges.

The interesting observation is that the BRST charge Q = QB +Q′ can be derived

by a GS-like action through the usual Oda–Tonin trick [37].

Consider now the four dimensional pure spinor action in the linear dilaton back-

ground (5.22). It is invariant with respect to the pure spinor operator (F.1) but not

with respect to the total BRST operator Q = QB +Q′. In fact, the variation of the

action with respect to Q′ in (F.2) is [Q′, S] = ǫI1
∫

d2z∂̄dI1. By applying a simple

descent method, we find that to restore the invariance of the action under the total

BRST symmetry we need to add the term

Snew = ǫI1

∫

d2z∂̄wI1, (F.5)

whose variation is [QB, Snew] = −[Q′, S]. The total action S + Snew is now invariant

with respect to the total BRST operator. This analysis seems to produce a consistent

projection. What is the resulting string theory is not clear.

One may go the other way to get the pure spinor BRST invariant action from

the GS action, where we start with a GS–like action SGS and consider the BRST

fermion Ψ =
∫

d2z wI1∂̄θ
I1, following the procedure of [37, 10]. Then the total pure

spinor action is given by

Sps = SGS + {Q,Ψ} .
In our case Q = QB +Q′.
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