
DIRAC Infrastructure for
Distributed Analysis

Public Note
Issue: 1
Revision: 0

Reference: LHCb-2006-015
Created: April 21, 2006
Last modified: April 21, 2006

Prepared by: S. Paterson, A. Tsaregorodtsev

DIRAC Infrastructure for Distributed Analysis Ref: LHCb-2006-015
Public Note Issue: 1

Date: April 21, 2006

Abstract

DIRAC is the LHCb Workload and Data Management system for Monte Carlo simulation, data pro-
cessing and distributed user analysis. Using DIRAC, a variety of resources may be integrated, includ-
ing individual PC’s, local batch systems and the LCG grid. We report here on the progress made in
extending DIRAC for distributed user analysis on LCG. In this paper we describe the advances in the
workload management paradigm for analysis with computing resource reservation by means of Pilot
Agents. This approach allows DIRAC to mask any inefficiencies of the underlying Grid from the user
thus increasing the effective performance of the distributed computing system. The modular design
of DIRAC at every level lends the system intrinsic flexibility. The possible strategy for the evolution
of the system will be discussed.

The DIRAC API consolidates new and existing services and provides a transparent and secure way
for users to submit jobs to the Grid. Jobs find their input data by interrogating the LCG File Catalogue
which the LCG Resource Broker also uses to determine suitable destination sites. While it may be
exploited directly by users, it also serves as the interface for the GANGA Grid front-end to perform
distributed user analysis for LHCb.

DIRAC has been successfully used to demonstrate distributed data analysis on LCG for LHCb. The
system performance results are presented and the experience gained is discussed.

Document Status Sheet

1. Document Title: DIRAC Infrastructure for Distributed Analysis

2. Document Reference Number: LHCb-2006-015

3. Issue 4. Revision 5. Date 6. Reason for change

Final 1 April 21, 2006 Content as submitted to CHEP06.

page 1

DIRAC Infrastructure for Distributed Analysis Ref: LHCb-2006-015
Public Note Issue: 1

Date: April 21, 2006

Contents

1 Introduction . 3

2 Background & Philosophy . 3

3 DIRAC Infrastructure . 4

3.1 DIRAC API . 4

3.2 Workload Management System . 4

3.3 Pilot Agent Strategy . 5

3.4 Implementation Details . 6

4 Performance & Experience . 6

5 Conclusion . 8

6 Acknowledgements . 8

7 References . 9

page 2

DIRAC Infrastructure for Distributed Analysis Ref: LHCb-2006-015
Public Note Issue: 1
2 Background & Philosophy Date: April 21, 2006

1 Introduction

LHCb[1] will generate an unprecedented amount of data when it comes online in 2007. The amount
of data is so vast that no single institute can cope. LHCb needs to use all available facilities across
the entire collaboration in a distributed computing model through the Grid[2]. The model adopted by
LHCb involves the strong computing facility at CERN which forms the Tier 0 centre, being supported
by other facilities distributed across the world. Tier 1 centres service a large region or country and
Tier 2 centres do the same on a smaller scale. As well as the resources available for LHCb on the LHC
Computing Grid (LCG)[3], DIRAC[4] can integrate individual PCs or batch systems. Pooling together
these resources will revolutionise the way in which data is stored and manipulated.

2 Background & Philosophy

DIRAC was originally created with the following main aims: data production on all resources avail-
able to LHCb; providing a means to distribute LHCb data in real time according to the Computing
Model and also steering, monitoring and accounting of all LHCb activities on the Grid and other
distributed resources.

The DIRAC software architecture is based on a set of distributed, collaborating services. Designed to
have a light implementation, DIRAC is easy to deploy, configure and maintain on a variety of plat-
forms. Following the paradigm of a Services Oriented Architecture (SOA), DIRAC is lightweight, ro-
bust and scalable. This was inspired by the OGSA/OGSI “grid services” concept and the LCG/ARDA
RTAG architecture blueprint[5].

DIRAC
Central WMS

LCG Resource
Broker

Job

Pilot
Agent

Worker Node

Pilot
Agent

Job

Figure 1 Illustration of the DIRAC Pilot Agent paradigm.

The DIRAC Workload Management System (WMS) realises the PULL scheduling paradigm. Pilot
Agents submitted to LCG or DIRAC sites request jobs whenever the corresponding resource is free,
this is outlined in Figure 1.

In the context of LHCb, distributed analysis is a batch analysis but with minimised response time. This
is not an interactive, parallel analysis system such as PROOF[6] but prioritization and optimization
of available resources for LHCb. The aim is to provide a stable platform for analysis on inherently
unstable resources and therefore mask the inefficiencies of LCG from the user. Due to the success of

page 3

DIRAC Infrastructure for Distributed Analysis Ref: LHCb-2006-015
Public Note Issue: 1
3 DIRAC Infrastructure Date: April 21, 2006

the Pilot Agent approach for production jobs it was decided to extend DIRAC to cope with distributed
user analysis, the progress made is described here.

3 DIRAC Infrastructure

To outline the DIRAC Infrastructure for distributed analysis let us consider a typical user job with
input data. Firstly, the job will be submitted to DIRAC directly or via Ganga[7] using the DIRAC API.

3.1 DIRAC API

The DIRAC API consolidates new and existing functionality to provide users with a transparent way
to submit jobs to the Grid. Jobs in DIRAC are composed of Steps and Modules as outlined in Figure 2.

Job

Contains
Steps

Step 1

Contains
Modules

Module 1

Software
Installation

Module 2

Execute
Application

Figure 2 Jobs in DIRAC are composed of Steps which in turn are composed of modules. In principle,
any workflow (DAG) can be created using this architecture.

Using these as building-blocks, any topology of Steps can be created but this is transparent from the
perspective of the user. Jobs may contain many Steps, each of which may depend on each other in a
complicated manner. In this way DIRAC Jobs can be thought of as a Directed Acyclic Graph (DAG).
The DIRAC API is principally a scripting language but may also be used from the Python prompt. It
provides functionality to securely submit, monitor, retrieve and delete Jobs. Input data is specified by
LFN and in principle this is all the user need know when submitting jobs.

3.2 Workload Management System

Once a Job has been submitted to the DIRAC WMS via the DISET[8] Security infrastructure, the Job
Receiver service assigns a Job ID and saves the Job in the Job Database along with the proxy of the
user. During the submission process the Sandbox services ensure the upload of any input files to steer
the application. Figure 3 shows an outline of the Central WMS services and interactions with LCG
components.

The Job Receiver then notifies the Data Optimizer which queries the LCG File Catalog (LFC) for input
data files to find a suitable Grid Storage Element (SE). The Data Optimizer then inserts the Job into
a Task Queue. At this point the Agent Director sends a Pilot Agent to LCG using the requirements of
the Job. The Agent Monitor checks the Pilot Agent and triggers resubmission as required. Once a Pilot
Agent successfully reaches a Worker Node (WN) it installs DIRAC and runs an Agent which requests

page 4

DIRAC Infrastructure for Distributed Analysis Ref: LHCb-2006-015
Public Note Issue: 1
3 DIRAC Infrastructure Date: April 21, 2006

DIRAC API

Job
Receiver

Job DB
Data

Optimizer

Sandbox
Services

Task
Queue

MatcherAgent
Director

Agent
Monitor

LCG
Resource

Broker

Worker Node

Job
Monitoring

Service

Agent

LCG
File

Catalog

Figure 3 Outline of the DIRAC Workload Management System.

a particular job from a particular user. The Matcher service matches the requirements of jobs (e.g. pos-
sible SEs) to the properties of the computing resource presented by the Agent. Since the Agent can in
turn put specific requirements on jobs, this is called a ‘double match’ procedure. Figure 4 outlines the
interactions between a DIRAC Agent running on a Worker Node, the WMS Central services and LCG
components. Once a job has been delivered to the WN, any software which is not already available
locally is installed. Links to any pre-installed software are created local to the job during installation
of DIRAC.

The Agent dynamically creates a Job Wrapper using information local to the WN, which is then exe-
cuted. The Job Wrapper downloads the Input Sandbox of the job and provides access to the input data.
The LFNs are resolved into ‘best replica’ PFNs for the execution site and a POOL[9] XML Slice is au-
tomatically generated for the available protocols. Currently any protocols supported by POOL can be
used, although in the absence of these data is brought local to the job before execution.

The Job application is then invoked in a child process and a Watchdog process is started in parallel to
the application which provides ‘heart-beats’ for the Job Monitoring Service. This also collects accounting
information such as CPU and memory consumption. If the application ceases consuming CPU, the job
can be marked as stalled. The Job Wrapper notifies the Job Monitoring Service of the changes in the job
state. After the Job has finished, the Job Wrapper handles the upload of the Output Sandbox using the
Sandbox services and storing the output in the Job Database. Any Output Data will be uploaded to a
predefined SE at this point. Once a DIRAC Agent has finished, the Pilot Agent terminates gracefully
thus freeing the LCG resource. At all stages, the Job Monitoring Service is used as an interface to update
the Job information.

3.3 Pilot Agent Strategy

There are several ways to use the DIRAC infrastructure but the end goal is to minimise the start time
of user analysis jobs. Firstly, the Agent Director and Agent Monitor services may be used to define a
policy on how Pilot Agents are submitted. Secondly, the choice of DIRAC Agent can be made which
affects how jobs are picked up from the WN. Therefore, it is possible to define modes of submission
‘tuned’ for the needs of specific jobs:

page 5

DIRAC Infrastructure for Distributed Analysis Ref: LHCb-2006-015
Public Note Issue: 1
4 Performance & Experience Date: April 21, 2006

Worker Node

Watchdog
Process

LCG File
Catalog

Sandbox
Services

Job
Monitoring

Service
Matcher

Job

Job Wrapper

DIRAC
Central WMS

DIRAC Agent

Grid
Storage
Element

Figure 4 DIRAC Workload Management on the Worker Node.

• ‘Resubmission’ Mode: LCG submission with monitoring of the LCG failures, multiple Pilot
Agents may be sent if necessary

• ‘Filling’ Mode: Multiple Pilot Agents may be sent which request several jobs from the same
user, only requesting a new job once the current one has finished

• ‘Multi-Threaded Filling’ Mode: Same as Filling Mode above except two jobs can be run in
parallel on the WN

It is important to note that this is a DIRAC optimization and is not possible with standard LCG tools.
Consider a typical LHCb Monte Carlo (MC) Production job which will execute for approximately one
day. The start time for this job is not a priority although getting it started is still an issue, thus the
‘Resubmission’ mode would be sufficient. For user analysis jobs, however, the ‘Filling’ and ‘Multi-
Threaded’ modes become useful in minimizing the start times on LCG whilst maximising the use of
resources. This can be effective since analysis jobs are heavily I/O bound and hence less CPU intensive
than e.g. MC Production jobs.

3.4 Implementation Details

DIRAC is implemented in Python, using XML-RPC protocol for client-service access and Jabber for
reliable service-service communication. A MySQL database is used for maintaining all information for
services and jobs. The client-service communications are secured using the DISET framework which
is conformant with the standard GSI infrastructure. Using standard components and third party de-
velopments as much as possible has enabled DIRAC to remain highly adaptable. The modular design
at each level makes adding new functionality relatively simple.

4 Performance & Experience

A study of the various DIRAC modes of submission was performed using short analysis jobs. Since
DIRAC has been proven to cope with long Production jobs, this serves to test the other extreme. Mea-
suring performance on the Grid is not an exact science, therefore to tackle the general Grid ’weather’
the following precautions were taken. Firstly, jobs were submitted at the pace of the Resource Bro-
ker and job start times were measured relative to the submission time to DIRAC. Secondly, to ensure
similar conditions, thirty users were submitting jobs in turn with each user submitting a different

page 6

DIRAC Infrastructure for Distributed Analysis Ref: LHCb-2006-015
Public Note Issue: 1
4 Performance & Experience Date: April 21, 2006

Figure 5 Start times by mode for a total of 3000 jobs submitted to DIRAC by 30 users.

mode. The results presented here are ten distinct experiments of three users submitting one hundred
jobs for each mode with three thousand jobs submitted in total. Figure 5 shows the distribution of job
start times for each mode of submission. This shows a considerable improvement for the Filling and
Multi-Threaded modes when compared to the peak for Resubmission which is the LCG benchmark
result. The first LCG job to start occurs at the nine minute region whereas many jobs for the other
two modes have already started. This highlights the power of maximising the responsiveness of the
system through the Filling and Multi-Threaded modes. The tails in the Filling and Multi-Threaded
distributions are due to the initial jobs at the start of the experiment that need first to reserve an LCG
resource. These tails normally diminish at the steady mode of operation. It is important to note that
all three thousand jobs completed successfully so the real goal is to minimise the start times.

Figure 6 shows the mean start times by experiment for the three thousand jobs. This shows a clear im-
provement for the Filling and Multi-Threaded modes and demonstrates reproducability of the results.
These results show that even when LCG is performing well, there is a significant improvement on the

Figure 6 Mean start times for 10 experiments submitting a total of 3000 jobs to DIRAC from 30 users.

results. Another important point is that fewer Pilot Agents need to be sent for the Filling and Multi-
Threaded modes and so the load on LCG can be reduced. Comparing the number of Pilot Agents sent
versus the number of jobs executed we see a factor three for the Filling and a factor of five for the
Multi-Threaded mode in our experiments. These factors depend on the amount of the available re-

page 7

DIRAC Infrastructure for Distributed Analysis Ref: LHCb-2006-015
Public Note Issue: 1
6 Acknowledgements Date: April 21, 2006

sources and on the Job characteristics. It is important to note that no special queues are required to be
defined on LCG as are usually required to cope with high priority tasks. The described experiments
were performed using thirty distinct users. Optimizing the workload can only currently be performed
at the level of the user to satisfy the LCG security rules, therefore the results presented in Figures 5
and 6 reflect the optimization on a one hundred job basis. We can conclude that optimization on this
scale is effective but not as powerful as optimization on the level of the Virtual Organisation (VO)
could be.

Figure 7 outlines the effect of optimizing the workload on the level of the VO versus multiple users.
In this experiment two thousand jobs were submitted simultaneously, to ensure the same conditions,

Figure 7 Comparison of the effect of number of users on the start time of jobs.

in Multi-Threaded mode. Half of the jobs were from a single user and the remainder were from ten
distinct users. A clear improvement of the efficiency is observed in the first case.

5 Conclusion

The use of the Pilot Agent Paradigm for LHCb jobs has resulted in a very high overall efficiency for
LCG jobs. Recent tests[10] measure this at 95% with the remaining 5% due to inconsistencies in the
LFC. Extending the production system to cope with user analysis jobs has been demonstrated to be
effective and this open the door to further optimizations not possible with LCG tools. By testing the
performance of the system with short analysis jobs it is evident that a significant improvement on
the job start times could be obtained by facilitating optimization of the workload on the level of the
VO rather than the individual users. The DIRAC infrastructure for supporting distributed analysis
activitites in LHCb is in place. Real users are starting to use and more importantly benefit from the
system.

6 Acknowledgements

The authors would like to recognise the Marie Curie Foundation for the fellowship which made this
research possible, as well as PPARC and IN2P3. We would also like to thank the members of the
DIRAC team.

page 8

DIRAC Infrastructure for Distributed Analysis Ref: LHCb-2006-015
Public Note Issue: 1
7 References Date: April 21, 2006

7 References

[1] S. Amato et al., LHCb Technical proposal, CERN/LHCC98-4.

[2] LHCb Computing TDR, CERN/LHCC 2005-019.

[3] LHC Computing Grid (LCG), http://lcg.web.cern.ch/LCG/.

[4] A. Tsaregorodtsev et al., DIRAC, the LHCb Data Production and Distributed Analysis system,
CHEP 2006, Mumbai, India.

[5] T. Wenaus et al., Architecture Blueprint RTAG report, CERN-LCGAPP-2002-09.

[6] G. Ganis et al., PROOF - The Parallel ROOT Facility, CHEP 2006, Mumbai, India.

[7] U. Egede et al., GANGA - A GRID User Interface, CHEP 2006, Mumbai, India.

[8] Casajus Ramo, A., Graciani Diaz R., DIRAC Security Infrastructure, CHEP 2006, Mumbai, India.

[9] POOL Project, http://lcgapp.cern.ch/project/persist/.

[10] U. Egede et al., Experience with distributed analysis in LHCb, CHEP 2006, Mumbai, India.

page 9

