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Abstract

Soft photons inside hadronic jets converted in front of the DELPHI main
tracker (TPC) in events of qq disintegrations of the Z0 were studied in the
kinematic range 0.2 < Eγ < 1 GeV and transverse momentum with re-
spect to the closest jet direction pT < 80 MeV/c. A clear excess of pho-
tons in the experimental data as compared to the Monte Carlo predictions
is observed. This excess (uncorrected for the photon detection efficiency) is
(1.17 ± 0.06 ± 0.27) × 10−3γ/jet in the specified kinematic region, while the
expected level of the inner hadronic bremsstrahlung (which is not included in
the Monte Carlo) is (0.340 ± 0.001 ± 0.038) × 10−3γ/jet. The ratio of the ex-
cess to the predicted bremsstrahlung rate is then (3.4 ± 0.2 ± 0.8), which is
similar in strength to the anomalous soft photon signal observed in fixed target
experiments with hadronic beams.
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and Depto. de F́ısica, Pont. Univ. Católica, C.P. 38071 BR-22453 Rio de Janeiro, Brazil
and Inst. de F́ısica, Univ. Estadual do Rio de Janeiro, rua São Francisco Xavier 524, Rio de Janeiro, Brazil
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39Dipartimento di Fisica, Università di Roma III and INFN, Via della Vasca Navale 84, IT-00146 Rome, Italy
40DAPNIA/Service de Physique des Particules, CEA-Saclay, FR-91191 Gif-sur-Yvette Cedex, France
41Instituto de Fisica de Cantabria (CSIC-UC), Avda. los Castros s/n, ES-39006 Santander, Spain
42Inst. for High Energy Physics, Serpukov P.O. Box 35, Protvino, (Moscow Region), Russian Federation
43J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia and Laboratory for Astroparticle Physics,

Nova Gorica Polytechnic, Kostanjeviska 16a, SI-5000 Nova Gorica, Slovenia,
and Department of Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia

44Fysikum, Stockholm University, Box 6730, SE-113 85 Stockholm, Sweden
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1 Introduction

Electromagnetic radiation in the soft photon region arising from interacting hadrons is
assumed to be well understood theoretically. In classical papers by Landau and Pomer-
anchuk [1] and Low [2] it has been shown that the main source of soft photons in hadron
reactions is the internal hadronic bremsstrahlung, i.e. the bremsstrahlung radiation from
the initial and final hadronic states. Later, Gribov [3] defined quantitatively the mean-
ing of the term soft photon as applied to high energy hadron reactions: the transverse
momentum, pT , of such a photon has to be small as compared to typical values of this
variable for secondary particles produced in these reactions, which are 300-400 MeV/c.

The experimental investigation of soft photon production in hadron interactions at
high energy started with the bubble chamber experiment [4] at SLAC in which photons
from the reaction π−p → γ +X at an incident momentum of 10.5 GeV/c were studied. A
signal consistent at the 30% probability level with the expectations for the inner hadronic
bremsstrahlung was found. The result was considered as a confirmation of theoretical
predictions for soft photon production.

However in the next experiment, carried out by the WA27 Collaboration at CERN
using the BEBC bubble chamber, a clear soft photon signal in excess of the inner
bremsstrahlung prediction was reported for a K+p exposure at 70 GeV/c [5]. After
subtraction of photons coming from all known hadronic decays the residual signal was
found to be similar in shape to bremsstrahlung but larger in size by a factor of about
four in the pT region below 60 MeV/c. Then results from the CERN experiment NA22
with K+ and π+ beams on protons at 250 GeV/c also demonstrated an excess of soft
photons in a similar kinematic region by a factor of 5 to 7 as compared to bremsstrahlung
predictions [6]. Similar effects were found later in the experiment WA83 where a fine-
grained forward electromagnetic calorimeter was used to detect photons produced in π−p
interactions at 280 GeV/c [7], and again in the experiment WA91 which also used π−p
interactions at 280 GeV/c, but implemented a different technique for the detection of
photons by reconstruction of e+e− pairs from photon conversion in a thin lead sheet
placed in front of the OMEGA spectrometer tracker [8].

The situation is less clear with a proton projectile. Experiment E855 at BNL with
protons at 18 GeV/c on Be and W targets did not find any signal of direct soft photons
at central and slightly backward rapidities, imposing an upper limit for such photons
at 2.7 times the hadronic bremsstrahlung [9]. In a similar photon kinematic region, the
experiment HELIOS at CERN with proton projectiles at 450 GeV/c on a Be target found
a direct soft photon signal compatible with the expected hadronic bremsstrahlung, and
derived an upper limit on the presence of additional sources of direct soft photons of
about a factor of two relative to the bremsstrahlung [10]. Recently, the signal of direct
soft photons at the level of four times the bremsstrahlung predictions was observed at
forward rapidities in pp interactions at 450 GeV/c in the CERN experiment WA102
[11]. Note, in the latter paper a summary of experimental results on direct soft photon
observations, including kinematic ranges of particular experiments, is also given1

Generalizing the results of the experiments which observed an excess of soft photons,
it can be concluded that the photon distributions, studied in the very forward region,
were reported to be roughly similar in shape to that expected for the inner hadronic
bremsstrahlung calculated from QED, but the observed photon rates were several times
larger than expected. Owing to this enhancement factor the observed excess photons
were dubbed anomalous.

1In addition, an excess of soft photons with Eγ < mπc2/2 has been also observed in p̄p interactions at 32 GeV/c [12],
however it was not compared with bremsstrahlung predictions.
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Meanwhile various theoretical models [13-33] were suggested, aimed at explaining
the effect of anomalous photons by introducing new phenomena into the soft physics
of hadronic interactions. Some of them were able to describe some particular features of
the experimental data, by interpreting anomalous soft photons as a radiation from a cold
quark-gluon plasma [13,17,22], a transient new coherent condition of matter [14,24–26],
or as a synchrotron radiation from quarks [27–29] in the stochastic QCD vacuum [34].
However, no model was able to describe the experimental data satisfactorily as a whole,
especially in a kinematic range where the effect was most prominent (for a review of the
theoretical approaches see [16,22]).

In this situation extending the class of reactions in which the phenomenon of anoma-
lous soft photons is investigated has become of interest. This motivated us to study the
reaction

e+e− → Z0 → hadrons (1)

at LEP1 searching for extra photons in hadronic decays of Z0 bosons.
Several studies of photon production in hadronic Z0 decays have been carried out by

all the LEP experiments [35–44] including searches for anomalous photon radiation from
non-Standard Model sources [35,39,41]. The latter aimed at finding photons emitted by a
non-standard source or by quarks before or at the beginning of the fragmentation process.
Therefore a signal of rather hard photons well separated from other tracks was searched
for. In contrast, the current analysis deals with soft photons deep inside jets, with the
aim to separate a signal of soft photons coming from the inner hadronic bremsstrahlung
(mainly from the final hadronic states) or from unknown photon sources responsible for
the anomalous soft photon radiation seen in hadronic experiments. The photon softness
can be characterized in this case by a value of the transverse momentum of a photon
with respect to the closest jet. We shall use the term pT for this variable throughout this
article. The pT range chosen to be studied in this work extends from 0 to 80 MeV/c,
while searches for anomalous photons carried out so far in LEP experiments required
them to be hard and isolated (Eγ > 5 GeV, in general, and at angles to the closest jet
> 20◦), thus at pT > 1.7 GeV/c, i.e. well outside our kinematic region.

This paper is organised as follows. Section 2 provides a description of the apparatus,
software, and the experimental method applied. This section also includes a description
of selection cuts and data samples. Systematic uncertainties arising from various elements
of the analysis method, and their estimates are presented in section 3. Section 4 deals
with the calculation of the inner hadronic bremsstrahlung and its systematic errors. In
section 5 the main results of the analysis are given, both uncorrected and corrected for
the detection efficiency. The results show an excess of soft photons in the real data as
compared to the Monte Carlo predictions. Section 6 is devoted to the study of possible
systematic biases capable of imitating this excess. Finally, section 7 provides a summary
and conclusions.

2 Experimental technique and data selection

2.1 The DELPHI detector

The DELPHI detector is described in detail elsewhere [45,46]. The following is a brief
description of the subdetector units relevant for this analysis. In the DELPHI reference
frame the Z axis is taken along the direction of the e− beam. The angle Θ is the polar
angle defined with respect to the Z-axis, Φ is the azimuthal angle about this axis and R
is the distance from this axis.
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The DELPHI barrel tracking system relied on the Vertex Detector (VD), the Inner
Detector (ID), the Time Projection Chamber (TPC) and the Outer Detector (OD). The
barrel electromagnetic calorimeter, the High density Projection Chamber (HPC) lay im-
mediately outside the tracking detectors. It was used in this analysis for cross-checks
only. All these detectors were embedded in a superconducting solenoidal coil providing
a uniform magnetic field of 1.23 T, aligned parallel to the beam axis.

The TPC, the principal device used in this analysis, was the main tracker of the
DELPHI detector; it covered the angular range from 20◦ to 160◦ in Θ and extended from
30 cm to 122 cm in R. It provided up to 16 space points for pattern recognition and
ionization information extracted from 192 wires.

The HPC covered the angles Θ from 43◦ to 137◦. It had eighteen radiation lengths for
perpendicular incidence, and its energy resolution was ∆E/E = 0.31/E0.44⊕0.027 where
E is in units of GeV [47]. It had a high granularity and provided a sampling of shower
energies from nine layers in depth. The angular precisions for high energy photons were
±1.0 mrad in Θ and ±1.7 mrad in Φ.

2.2 Software

The principal Monte Carlo (MC) data sets used in this analysis were produced with
the JETSET 7.3 PS generator [48] with parameters adjusted according to previous QCD
studies [49,50]. For the test of possible systematic biases, two other standard generators:
ARIADNE 4.6 [51] and HERWIG 5.8C [52] with parameters adjusted by the DELPHI
tuning [50] were also used.

No generation of bremsstrahlung photons from final state hadrons was implemented
in the MC generators. On the other hand, the initial state radiation (ISR) and photon
radiation from quarks of Z0 disintegrations were produced using the DYMU3 generator
[53] and photon implementation in JETSET [54]. However, as will be shown in section 4,
the soft photon rates from these sources are very small as compared to the bremsstrahlung
from final state hadrons and therefore need not be considered further.

The generated events were fed into the DELPHI detector simulation program DELSIM
[46] in order to produce data which are as close as possible to the real raw data. These
data were then treated by the reconstruction and analysis programs in exactly the same
way as the real data.

To reconstruct jets, the LUCLUS code [55] with a fixed resolution parameter djoin = 3
GeV/c was used. To check the stability of the obtained results, the jet-finding algorithms
DURHAM [56] and JADE [57] were also used, both with the resolution parameter ycut =
0.01. The minimal number of jets in the event was required to be two.

2.3 Identification of soft photons

As has already been said, the anomalous soft photon production was observed in
hadronic reactions at small pT and small polar angles relative to an incident hadronic
beam. In qq disintegrations of the Z0 the corresponding “beam” direction is represented
by the direction of the initial q and/or q and thus the photon angle θγ defined with respect
to the parent jet axis is taken as the angular variable in our study, with pT being the
photon momentum projected onto the plane perpendicular to that axis. The requirement
for the kinematic range to correspond to that of hadronic reactions (small pT , small θγ

angles) prevents the use of the DELPHI electromagnetic calorimeters for the detection of
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soft photons due to the strong pile-up of hard photons hitting the calorimeters near the
jet axis.

Fortunately for the aim of this analysis, the DELPHI setup contains a significant
amount of material in front of the sensitive volume of the DELPHI main tracker, the
TPC. About 7% of all photons in the barrel region are converted in front of the tracker.
These photons produce in general two reconstructible e+e− tracks in the TPC, giving rise
to a clean and well defined photon sample which is used in this analysis.

The energy threshold for the reconstruction of these photons is 0.2 GeV. This, together
with the upper cutoff of 1 GeV usually applied in soft photon studies, defined the energy
range to be investigated, 0.2 < Eγ < 1 GeV. Since the study of such photons is not
typical in the LEP experiments, we present the characteristics of their detection in detail,
starting with a description of the algorithm for the reconstruction of converted photons
from tracks detected in the TPC.

A search was made along each TPC track for points where the tangent of its trajectory
points directly to the beam spot in the RΦ projection. Under the assumption that the
opening angle of the electron-positron pair is zero, this point represented a possible photon
conversion point at radius R. All tracks which have had a solution R that was more than
one standard deviation away from the main vertex, as defined by the beam spot, were
considered to be conversion candidates. If two oppositely charged conversion candidates
were found with compatible conversion point parameters they were linked together to
form the converted photon. The following selection criteria were imposed:

• the Φ difference between the two conversion points was at most 30 mrad;
• the difference between the polar angles Θ of the two tracks was at most 15 mrad;
• at least one of the tracks should have no associated point in front of the reconstructed

mean conversion radius.

For the pairs fulfilling these criteria a χ2 was calculated from ∆Θ, ∆Φ and the differ-
ence of the reconstructed conversion radii ∆R in order to find the best combinations in
cases where there were ambiguous associations. A constrained fit was then applied to
the electron-positron pair candidate which forced a common conversion point with zero
opening angle and collinearity between the momentum sum and the line from the beam
spot to the conversion point.

2.4 Photon detection efficiency. Resolutions.

The photon detection efficiency, i.e. conversion probability combined with the re-
construction efficiency, was determined with the MC events and tabulated against three
variables: Eγ , Θγ, (the photon polar angle to the beam) and θγ (the photon polar angle
to the parent jet axis). The efficiency varies with the energy from zero at 0.2 GeV up
to 4 - 6% at 1 GeV, depending on the two other variables. Typical dependences of the
efficiency on Eγ and θγ are shown in figs. 1a,b.

The accuracy of the converted photon energy measurement was found to be about
±1.2% in the given kinematic range. The angular precision of the photon direction re-
construction is presented by figs. 1c,d, in which the distributions of the difference between
the generated and reconstructed photon angles Θγ and Φγ are shown. These distributions
have a Breit-Wigner shape, as expected for the superposition of many Gaussian distribu-
tions of varying width [58]. The full widths (Γ’s) of the ∆Θγ and ∆Φγ distributions are
4 and 5 mrad, respectively.

The importance of good angular resolution in studying anomalous soft photons was
shown in the hadronic beam experiment studies where most of the anomalous soft photons
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were observed inside a cone of 10−20 mrad around the beam direction [8,11]. In those
experiments the angular accuracy was determined by the precision of the measurement
of the photon polar angle θγ , which varied between 1 to 6 mrad (while the accuracy of
the beam direction measurement was about 0.1 mrad).

In hadronic decays of Z0 bosons the accuracy of the measurement of the angle between
the initial quark direction and the emitted photon is determined mainly by the angular
accuracy of the reconstruction of the former, represented by the jet axis. Typical values
of this accuracy in two-jet e+e− annihilation events were reported to be between 50 and
60 mrad [59], depending slightly on the jet-finding algorithm (with best results coming
from the LUCLUS code). These results were tested with DELPHI MC events and a
similar accuracy was found for the initial quark direction reconstruction. Namely, the
mean deviation of the reconstructed jet axis from the primary quark direction for jets
of momenta > 40 GeV/c was found to be about 40 mrad, as can be deduced from the
distribution illustrated by fig. 1e, and increases up to 50 mrad for smaller jet momenta.
This is much worse than the corresponding accuracy of hadronic beam experiments. The
accuracy does not improve by selecting “good events” with small missing energy and/or
small missing longitudinal and transverse momenta. A rather moderate improvement of
the accuracy (to 25 - 30 mrad) can be achieved by selecting two-jet events with the jet
acollinearity smaller than 20 mrad, at the price of a loss of 80% of the two-jet event
statistics. No such selections were implemented in this analysis.

Thus the available accuracy of the determination of the initial quark direction in this
analysis is expected to spread the angular, pT , and (most prominently) p2

T distributions of
the possible anomalous soft photon signal as compared to the experiments with hadronic
beams.

2.5 Selection cuts and data samples

Events involving the hadronic decays of the Z0 from the DELPHI data of the 1992 to
1995 running periods were used in this analysis.

Selection of the hadronic events was based on large charged multiplicity (Nch ≥ 5) and
high visible energy (Evis ≥ 0.2Ecm). In addition, the condition 30◦ ≤ Θthrust ≤ 150◦ was
imposed, where Θthrust is the angle between the thrust axis and the beam direction. These
criteria correspond to an efficiency of (85.2± 0.2)% with a Z0 → τ+τ− contamination of
(0.4 ± 0.1)%.

A total of 3,498,655 events of real data (RD) was selected under these cuts and con-
fronted with 8×106 MC events selected under the same criteria and properly distributed
over all the running periods.

Jets were reconstructed using the detected charged and neutral particles of the event,
the charged particles being selected under the following criteria:

• p > 400 MeV/c;
• ∆p/p < 100%;
• 20◦ ≤ Θ ≤ 160◦;
• track length > 30 cm;
• impact parameters below 4 and 10 cm in the RΦ and Z projections, respectively.

The neutral particles were taken within the geometrical acceptances of the subdetectors in
which they were reconstructed, within the selection criteria of the appropriate subdetector
pattern recognition codes [45,46], without additional cuts.

The selection of jets (whatever jet reconstruction algorithm, LUCLUS, DURHAM, or
JADE having been used) was made with the following cuts:
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• 30◦ ≤ Θjet ≤ 150◦;
• Pjet ≥ 5 GeV/c;
• no identified electrons (positrons) were allowed in the jets (electron identification

with a standard DELPHI tag);
• if the jet charged multiplicity Nch = 1, the charged particle must be identified to

be not an electron/positron (which is a stronger cut than the rejection of a particle
identified as an electron/positron).

The selection of converted photons was made with the following cuts:

• only converted photons with both e+, e− arms reconstructed were considered;
• 20◦ ≤ Θγ ≤ 160◦;
• 5 cm ≤ Rconv ≤ 50 cm, where Rconv is the conversion radius;
• 200 MeV ≤ Eγ ≤ 1 GeV.

A total of 682,364 converted photons was selected under these cuts in the RD and
1,521,030 converted photons in the MC.

3 Systematic biases and their uncertainties

In view of the worsening of the signal detectability mentioned in section 2.4, the quality
of the MC data becomes important and a highly accurate simulation of the experimental
conditions in the MC stream, i.e. minimization of systematic effects biasing the MC
distributions with respect to the RD ones, is paramount. Systematic effects due to this
bias in the MC data are classified into two types: “software” and “hardware” systematics.

The software systematics are related to an improper reproduction of experimental
spectra of photons and charged particles by the MC event generator. The former affects
directly the MC produced photon distributions, while the latter does this indirectly by
biasing the reconstructed jet direction. Similar bias can be induced by a jet-finding
algorithm. Estimates for systematic uncertainties of this type are given in section 3.2.

The hardware systematics are related to biases in the simulation of experimental condi-
tions in the MC stream, i.e. those which appear when transporting MC photons through
the DELPHI setup and reconstructing them (after conversion in the DELPHI setup ma-
terial) from hits simulated in the TPC. These features have been extensively studied
throughout all the LEP1 period, with necessary corrections being introduced to the MC
code. Some details of this study can be found in papers [47,60]. However, in this analy-
sis an additional procedure was implemented to improve the simulation of experimental
conditions in the MC data, called “recalibration”.

3.1 Reduction of hardware systematic bias

The idea was to use wide angle photons (θγ > 200 mrad), for which no signal of
anomalous soft photons is expected, to re-normalize the material distribution along the
photon path in the simulation, and to account for possible differences in reconstruction
of converted photons from the TPC hits along e+e− tracks in the MC and RD. Two
types of recalibration were applied. In the first one the wide angle soft photons from the
MC and RD samples were collected into two-dimensional distributions, conversion radius
Rconv versus the photon polar angle relative to the beam axis, Θγ . For the second type
of recalibration the photons were binned according to Eγ . Bin widths of the calibration
distributions were varied by factors up to 4 in order to check the stability of the procedure
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relative to the binning. The distributions, normalized to an equal number of jets passing
the selection criteria, were used to obtain correction coefficients in appropriate bins of
the above variables. The corrections were then applied to the MC data.

Both recalibration procedures were tried and have been found to give similar results for
the photon rates integrated over the variables used, agreeing within the systematic errors
discussed in the next paragraph (see also section 6.4). The results were stable relative to
the change of the jet-finding algorithm (LUCLUS, DURHAM or JADE codes). On the
other hand, the calibration coefficients varied over LEP1 running periods due to changes
in the DELPHI detector, i.e. changes of material distribution in front of the TPC, e.g.
due to upgrade of the VD, etc., which required them to be found and used individually
for each of the running periods.

To illustrate the quality of the data after recalibration, the distribution of the wide
angle, 0.2 < Eγ < 1 GeV photons against the photon polar angle with respect to the beam
direction, Θγ, is displayed in fig. 2. The part of the MC data statistically independent
from those involved in the calculation of the recalibration coefficients is used for this,
being properly distributed over the data-taking periods considered. The averaged integral
difference between the MC and RD in this plot is below 0.9% (with an excess in MC).
Expressed in the rate of photons having pT < 80 MeV/c (the pT range under study)
which is 18.4× 10−3γ/jet, the difference is below 0.16× 10−3γ/jet. This value is used as
an estimate of the systematic errors of hardware origin in the MC data. It is quoted in
table 1 together with other systematic error estimates considered below.

3.2 Estimation of software systematic errors

The largest contribution to the software systematic error was found to come from the
uncertainty for deviations of the MC spectra produced with the event generator JETSET
7.3 PS, implemented to obtain the principal MC data sets used in this analysis, from
the correct distributions of photons in the selected kinematic range, 0.2 < Eγ < 1 GeV,
pT < 80 MeV/c. These deviations could happen either due to an improper description
of the QCD processes in this kinematic range by the model used in the generator (string
fragmentation model, [48]), or due to an inadequate representation of the full set of
unstable hadrons decaying radiatively at the final stage of the hadronization mechanism.

The systematic errors due to the JETSET generator model and its tuning were esti-
mated in two steps. First, the MC data were used with three different tunings described
in [49,50]. In particular, the invariant mass cutoff of parton showers Q0, below which
partons are not assumed to radiate gluons, and which is important in the soft kinematic
region, was varied between 1.73 and 2.25 GeV/c2 (other parameters correlated with this
also being varied in order to keep the overall description of the data as good as possible)2.
Comparing the photon spectra in our kinematic region for all the three tunings, it was
found that the integral photon rates vary within ±0.4% which can be used as an estimate
of the systematic error due to generator tuning. Expressed in photon rates, the difference
is at the level of 0.08 × 10−3γ/jet.

Then the MC data produced with other commonly used MC generators, ARIADNE
and HERWIG were studied. The description of a parton shower by ARIADNE is based on
color dipoles [51,61], and that of HERWIG on the coherent parton branching mechanism
[52]. Unlike the results for high energy isolated photons reported in [37,39,44], no big
difference between the JETSET and ARIADNE generators was found in the kinematic
range studied in this work. As will be shown below (section 6.2), a systematic uncertainty

2At generator level, the stability of the soft photon rate was tested in a wider range of the Q0, from 0.3 to 2.25 GeV/c2.
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due to the generator model for the rate of soft photons of pT < 80 MeV/c can be
estimated to be at the level of 0.18×10−3γ/jet. Combining this value with the uncertainty
due to the tuning, the systematic error due to the event generator was estimated to be
0.20 × 10−3γ/jet. This value is quoted in table 1.

A sensitive cross-check of the generator model systematics, making use of charged
particle spectra (see section 6.5), has shown that the possible systematic bias of this
type is likely to be much less than the quoted errors. Another cross-check, based on the
comparison of the π0 production in the MC and RD (see section 6.6) involving both the
generator and hardware systematics, also demonstrated results in a good agreement with
the estimations above. The cross-checks indicate some overestimation of the systematic
errors due to the generator model quoted above, nevertheless they are retained.

The next systematic effect to be considered may originate from the possible inadequate
representation of unstable hadrons decaying radiatively (other than π0’s) in the MC code,
biasing the MC hadron outcome as compared to the RD. Its study is described in detail
in section 6.7. It follows from this study that the value of a systematic error due to effects
of this type is at the level of 0.05 × 10−3γ/jet.

In order to determine the scale of a possible variation of results due to an implementa-
tion of a jet-finding algorithm other than LUCLUS, the DURHAM and JADE algorithms
were also used in the analysis (see section 5.1). From the variations obtained the system-
atic error due to the jet finder was derived to be at the level of 0.07 × 10−3γ/jet.

Since the results of this work are presented both uncorrected and corrected for the
detection efficiency, in the latter case the systematic errors resulting from the correction
have to be taken into account. The integral systematic error due to the efficiency correc-
tion in the photon pT range below 80 MeV/c was found to be 6% of the corrected photon
rates (both, for the RD and for the MC, as well as for their difference). This error has
two components. The first one is an inaccuracy of the efficiency determination within the
method implemented for this procedure (see section 2.4), and is equal to 4%. It was cal-
culated from the MC data by comparing the photon pT distribution taken at the output
of the event generator to the analogous distribution of reconstructed photons corrected
for efficiency, the former being taken with the same cuts as the latter. The second com-
ponent of the error above is related to the choice of the variables used to construct the
efficiency tables. For example, the photon opening angle to the closest track can be used
instead of the photon polar angle to the parent jet, θγ . Another choice of an efficiency
table variable could be the momentum of the closest track, or the jet charged multiplicity
Nch (note, all these variables make the efficiency sensitive to the track density near the
jet axis). These possibilities were tried and indicate the uncertainty of this type in the
efficiency finding to be about 5%.

In a similar way the appropriate systematic errors due to corrections for efficiency in
individual bins of the photon pT distribution were found.

4 Calculation of the inner bremsstrahlung

The principal sources of direct soft photons from the reaction (1) are expected to be
bremsstrahlung from colliding e+e− (initial state radiation) and inner bremsstrahlung
from final hadronic states. For soft photons both source rates can be calculated at once
using either of two universal formulae:
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i) the formula, derivable from the Low paper [2] (see also [16,62]), explicitly displayed
for the first time in [4] and then used by others [5–8,11]:

dNγ

d3~k
=

α

(2π)2

1

Eγ

∫
d3~p1...d

3~pN

∑
i,j

ηiηj

−(PiPj)

(PiK)(PjK)

dNhadrons

d3~p1...d3~pN

(2)

where K and ~k denote photon four- and three-momenta, P are four-momenta of
beam e+, e− and of the N charged outgoing hadrons, and ~p are three-momenta of
the latter; η = 1 for the beam electron and for positive outgoing hadrons, η = −1 for
the beam positron and negative outgoing hadrons, and the sum is extended over all
the N +2 charged particles involved; the last factor in the integrand is a differential
hadron production rate;

ii) the Haissinski formula [63,64], which was tested to be more stable with respect to
lost (undetected) particles and was used in [7,8,11]. It has the same form as (2)
with the scalar products of four-vectors −(PiPj) being replaced by (~pi⊥ · ~pj⊥), where
~pi⊥ = ~pi − (~n · ~pi) · ~n and ~n is the photon unit vector.

It is known (see [8,11]), that the two formulae give results in complete agreement when
used with MC generated particles unaffected by detector response, i.e. when all charged
particles of an event enter into the formulae, with their precise momenta. We have tested
the validity of this feature for our case in the following way. For every reconstructed
jet the parameters of the generated charged particles lying in the forward hemisphere of
the jet (including the corresponding beam particle) were collected and bremsstrahlung
distributions for them were calculated, with the polar angle of the bremsstrahlung photon
to the reconstructed jet direction being an angular variable. Note that this method,
i.e. usage of generated particle momenta while projecting the produced photon onto
the reconstructed jet direction, is both a) precise and b) automatically accounts for the
angular resolution of the jet direction. Both formulae gave the same predictions, and these
results were used in our estimates for the expected bremsstrahlung rates. Integrated over
our kinematic range, the total bremsstrahlung rate was obtained to be 17.1× 10−3γ/jet;
after convolution with the detection efficiency, it drops to the value of 0.340× 10−3γ/jet.
Note that the contribution of the ISR to these rates is small, being at the level of about
1.5% of them. The smallness is easy to explain: although the ISR from electron/positron
beams is much more intense than the ISR from hadron beams in experiments [5–8,11],
where it contributed a significant amount to the detected photon rate, all the extra
photons in this experiment are emitted at very small polar angles with respect to the
beam direction, with the angular distribution peaking at Θγ =

√
3/Γ, where Γ is a beam

Lorentz factor (Γ = 0.89 × 105 at the Z0 peak), thus yielding few photons in the barrel
region.

The yield of the final state radiation from quarks of Z0 disintegrations is similarly
small. For its estimate the photon implementation in JETSET [54] was used. The Q0

scale introduced for the QED part of the shower was varied3 down to its natural lower
limit, the constituent quark mass, which is 300 MeV/c2. The production rate of photons
off quarks in our kinematic range was found to be at the level of 3% of the hadronic
bremsstrahlung rate4. In what follows, neither this nor the ISR yields will be discussed
further; they are reduced in the RD−MC difference and will be ignored.

It follows from [3] that the applicability of the formulae above to the soft
bremsstrahlung calculation is restricted in our case (e+e− annihilation into hadronic jets

3Together with these variations the QCD Q0 scale was varied within the range of 0.3 to 2.25 GeV/c2, showing a weak
influence of this cutoff on the production rate of soft photons off quarks.

4The situation changes little when decreasing the QED Q0 cutoff down to the extreme limit for it, which is about 4
MeV/c2, due to a weak (logarithmic) dependence of the quark bremsstrahlung rate on the Q0.
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at
√

s = MZ) to the photon kinematic domain pT << mπc, which is a stronger condition
than the one mentioned in the introduction for hadronic reactions. However, it has been
verified (see next paragraph) that the applicability holds even at that weaker condition,
with an accuracy of about 10%. Nevertheless, the stronger condition is also typically
satisfied in our case since the pT distribution of calculated inner hadronic bremsstrahlung
with photons projected onto the plane perpendicular to the initial quark direction (i.e.
before the spread induced by the angular resolutions) was found to peak at 30 MeV/c.

To test the applicability of the formula above the predictions for the initial state
radiation calculated with this formula were compared with those of the DYMU3 generator
[53]. For 0.2 < Eγ < 1 GeV bremsstrahlung photons produced within 100 mrad angles to
the beam direction (PT to the beam below 100 MeV/c) the results coincided within 4%.
For the photons produced within 100 mrad angles to a jet direction (the average PT to the
beam is 400 MeV/c) the difference reached 11%. Since the range of the photon pT under
study in this work is restricted to be within 80 MeV/c, the estimate for the systematic
error in the bremsstrahlung calculations due to formula (2) appears to be below 4% of
the calculated bremsstrahlung rate. This error, together with further contributions to
the bremsstrahlung calculation uncertainty described below, is given in table 2.

The stability of these calculations was tested using different event generators (JET-
SET, ARIADNE and HERWIG) and different jet finders (LUCLUS, DURHAM, JADE)
obtaining bremsstrahlung rates agreeing within 5% when changing the generator (with
LUCLUS as jet finder) and 3% when changing the jet finder (with JETSET as an event
generator), see table 2.

Finally, when dealing with the results uncorrected for the detection efficiency, the
generated bremsstrahlung distributions have to be convoluted with the efficiency. This
induces an additional systematic error of 9% to the bremsstrahlung predictions due to the
uncertainty in the efficiency determination. This error has two components, similar to
those discussed at the end of section 3.2. The first one is an inaccuracy of the efficiencies
within a given determination procedure (section 2.4), and is equal to 7%. It was calculated
from the MC data by comparing the photon pT distribution, taken at the output of the
event generator and convoluted with the detection efficiency, on the one hand, to the
analogous distribution of reconstructed photons (i.e. at the output of the MC stream),
on the other hand. The other component of the error above is related to the choice of
efficiency table variables and is equal to 5% of the calculated bremsstrahlung rate.

5 Experimental results

5.1 Photon distributions. Signal extraction

The results obtained in this study are presented both uncorrected and corrected for the
photon detection efficiency. However, the principal set of results is given uncorrected for
the efficiency. This is motivated by the fact that applying efficiency corrections increases
both the statistical and systematic errors of the results. The latter occurs due to an
uncertainty in the efficiency determination. The former happens because the entries with
the smallest efficiency, i.e. with the largest weights, dominate the distributions. For ex-
ample, with the efficiency corrections applied, the softest photons enter the distributions
with weight factors up to one order of magnitude higher than those for the photons of
moderate energy. Since this article is aimed mainly at the demonstration of the existence
of excess photons, its principal results have to be presented with the highest possible
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statistical and systematic accuracy. Therefore, efficiency-corrected results will be given
only when the absolute photon rates are discussed, namely in section 5.2.

Thus we start with the θγ , pT and p2
T photon distributions uncorrected for efficiency.

The RD and MC distributions are presented in fig. 3 divided by and subtracted from
each other. The RD−MC distributions (the right column of panels in fig. 3) are given
in units of 10−3γ/jet, and are accompanied by calculated bremsstrahlung rates. All the
distributions shown demonstrate an excess of soft photons in the RD as compared to the
MC, and this excess is apparently higher than the expected bremsstrahlung level5.

To quantify the excess the difference between the RD and MC was integrated in the
pT interval from 0 to 80 MeV/c (p2

T < 0.64×10−2 (GeV/c)2), and the value obtained was
defined as a signal. The excess of the RD over the MC as a function of p2

T was fitted by
an exponential. The results obtained are:

• signal rate
RRD−MC = (1.17 ± 0.06 ± 0.27) × 10−3γ/jet (3)

while the expected level of the hadronic photon background in this range taken from
the MC is

RMC = (18.40 ± 0.04 ± 0.26) × 10−3γ/jet. (4)

The calculated level of the inner hadronic bremsstrahlung in the same range is,
according to section 4,

Rbrems = (0.340 ± 0.001 ± 0.038) × 10−3γ/jet. (5)

Evaluated in terms of the inner bremsstrahlung rate, the signal is 3.4±0.2±0.8. The
rates (3) and (5) together with the other ones, obtained under various conditions
described below, are given in table 3.

• the slope of the excess p2
T distribution (assuming dNγ/dp2

T ∼ exp(−Bp2
T ) for the

excess photons) is fitted to the value of B = (251 ± 21) (GeV/c)−2, which is also
a good estimation for the slope of the inner hadronic bremsstrahlung, but is an
order of magnitude steeper than the typical slopes of p2

T distributions of photons in
hadronic Z0 decays.

As can be seen from (3) and (5), the relative strength of the signal observed (i.e. signal
strength expressed in terms of the bremsstrahlung rate) is comparable to the amplitudes
of the anomalous soft photon effects seen in the hadronic beam experiments [5–8,11].

In order to check the independence of the signal amplitude on the jet-finding algorithm
the DURHAM and JADE algorithms were applied to form jets instead of LUCLUS. The
results were found to agree within the statistical errors, i.e. they are stable against the
change of the jet-finding algorithm, see table 3. The LUCLUS to the DURHAM general
selection signal ratio was found to be 1.10 ± 0.07 and the LUCLUS to the JADE ratio
was 1.09 ± 0.07.

5.2 Data corrected for efficiency

The θγ , pT and p2
T photon distributions for the data corrected for the efficiency are

given in the same form as those for the uncorrected ones and are displayed in fig. 4.
5There is a systematic excess of the bremsstrahlung predictions over the data at the angles θγ > 200 mrad. It comes

from our recalibration procedure which assumed that no physical excess of photons exists at these angles. This assumption,
invalid in principle since there exists a certain hadronic bremsstrahlung radiation at wide angles, induces a small systematic
bias to the whole angular range due to an overcorrection and consequently lowers the observed photon excess rate. However,
for the sake of clarity of the presentation we neglect this bias. Left neglected, it decreases the signal by an insignificant
amount, while its accurate treatment would require including the bremsstrahlung calculation at wide angles into the
procedure of the recalibration which we preferred to avoid here.
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The integral signal rate (the RD to MC rate difference integrated over the pT range
from 0 to 80 MeV/c) is (69.1 ± 4.5 ± 15.7) × 10−3γ/jet and is given in the last line of
table 3. It is about 7% of the total jet rate, i.e. the absolute strength of the signal
(the probability to have an excess photon per jet) is also similar to that found in the
hadronic beam experiments6. The corresponding inner hadronic bremsstrahlung rate is
(17.10 ± 0.01 ± 1.21) × 10−3γ/jet.

The differential signal rates (dNγ/dpT per 1000 jets) corrected for efficiency are pre-
sented in 10 pT bins in table 4, together with the corresponding predictions for the inner
hadronic bremsstrahlung.

5.3 Zero signal experiment

In order to verify the analysis procedure it was applied to the photon kinematic domain
where the anomalous soft photon excess was highly improbable (the zero experiment).
Such a domain was defined as follows.

Instead of defining the photon kinematic variables with respect to the parent jet di-
rection, the direction opposite to that of the most distant jet was chosen, while the
acollinearity between this and the parent jet was required to be greater than 200 mrad.
Thus, the procedure separates photons within the jets having an acollinear opposite
jet and projects them onto the plane perpendicular to the direction of the latter. All
other elements of the analysis were kept untouched, including the calculation of the
bremsstrahlung predictions.

The photon distributions obtained with this procedure are shown in fig. 5 for the
RD, for the MC, and for their difference. The latter distributions agree well with the
bremsstrahlung predictions, though due to the relatively high statistical errors they are
also compatible with zero in the range of pT < 80 MeV/c. The corresponding photon
rates are given in table 3.

The results of the zero experiment have two different applications. First, they show
that no anomalous photons are produced at the very beginning of the fragmentation
process, before the first hard gluon emission. Had the photon radiation been produced at
this stage (when two initial quarks are still highly collinear) the signal would be observed
when relating the photon with the “antipode” of its parent jet, because the antipode jet
would memorize the initial direction of the parent quark (which emits the photon in this
scenario), unless a hard gluon emission deviates the antipode quark also.

The other use of the zero experiment is a confirmation of a good suppression of def-
inite systematic effects, relevant also to our kinematic region and capable of producing
a spurious excess. These effects are mainly of hardware systematics: an underestima-
tion of material amount in front of the TPC in the MC code; a global difference in the
reconstruction of the converted photons in the RD and MC; an improper treatment of
background hits (noise, cosmics, etc.) in the RD by the pattern recognition program.

A quantitative estimation of possible biases induced by these effects has been given in
section 3.1. Additional tests for these and other systematic effects are described in the
following section.

6Here a correspondence of the photon production in a jet (this study) to its production in a minimum bias interaction
event of the hadronic beam experiments is assumed.
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6 Study of systematic biases capable of imitating the

observed excess

6.1 Test for external bremsstrahlung

The most straightforward background capable of imitating the anomalous photon sig-
nal is the so called external bremsstrahlung, which is the bremsstrahlung from electrons
(positrons) produced either in (semi)leptonic decays of hadrons or by internal or external
conversion of photons from hadronic decays, when these electrons pass through the exper-
imental setup. It also tends to peak at small p2

T , and if it is underestimated by the MC,
this could lead to an apparent excess of soft photons in the RD events. The rejection of
jets containing at least one electron applied throughout this analysis (see section 2.5) was
implemented in order to suppress this effect. However, electrons within the jets which
escaped identification could be, in principle, responsible for the excess observed.

To check this hypothesis, the level of electron admixture in jets was varied from its
natural ratio (dropping the rejection of jets containing identified electrons) to a 5 times
smaller one, by applying a loose tag for the electron identification7. Thus, if an essential
part of the signal comes from the electron bremsstrahlung, the signal rate should increase
by several times when passing from the maximal rejection case (with loose electron tag)
to the case with no rejection at all.

In fact, no enhancement of the signal rate was found when dropping the rejection of
jets containing identified electrons (see table 3, lines 5,6), while the RD and MC rates
both changed, by factors of 1.0944 ±0.0055 and 1.0940 ±0.0038, respectively (the quoted
numbers and their statistical errors are obtained with photons in the pT < 80 MeV/c
range). Furthermore, the maximal electron rejection (with the loose tag, table 3, lines
7,8) does not decrease the signal, which should occur in the case of a contribution to
the latter due to the external e+e− bremsstrahlung (the RD and MC rates decreased by
factors of 0.9386 ±0.0049 and 0.9400 ±0.0034, respectively).

Thus the hypothesis of an extra amount of the external bremsstrahlung from electrons
inside the jets in the real data as a source of the excess appears to be excluded.

6.2 Changing MC generator

In order to check that the observed excess is not an artefact originating from a partic-
ular feature of the implemented MC generator (JETSET), the photon spectra produced
with it were compared to those from ARIADNE. They are plotted in fig. 6. As can
be seen from this figure, there is a rather weak prevalence of JETSET over ARIADNE
at pT below 80 MeV/c. This means that with ARIADNE as an event generator the
excess of photons would be slightly increased. In amplitude, the observed difference is
0.18×10−3γ/jet. Being expressed in the units of the signal strength, it is less than 15% in
the photon pT range below 80 MeV/c. This value is used as an estimate for the systematic
error due to the event generator (section 3.2).

The comparison of JETSET with HERWIG shows a similar feature, with HERWIG
data tending to decrease further the soft photon rate as compared to ARIADNE. Thus
JETSET appears to be the generator giving the maximal soft photon yield among the
tested event generators.

7The electron identification in DELPHI has different levels of electron tagging. Normally we used the standard tag,
which provides electron identification with efficiency 55% for electrons having momenta above 2 GeV/c [46]. The loose tag
has a higher electron identification efficiency, approaching 80%.
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6.3 Secondary photons

When a high energy photon generates an e+e− pair in the material in front of the TPC
the pair particles may radiate bremsstrahlung photons, which can enter our kinematic
region. In most cases such photons have a small opening angle relative to the parent
photon, which leads to a small-angle enhancement in the distribution of the two-photon
opening angles. Such enhancements, at angles below 30 mrad, were seen in both the RD
and MC distributions of the angles between two converted photons, but they cancelled
in the RD/MC and RD−MC distributions. It follows from this that the given process is
well reproduced in the MC stream and cannot be a source of the observed excess.

6.4 Comment on the pattern recognition bias

An important stage of the reconstruction of the converted photons is the reconstruction
of their constituent e+ and e− tracks from hits left by them in the TPC. A possible
different treatment of the hits in the MC and RD by the pattern recognition would
induce a systematic bias to the photon reconstruction efficiency. This difference may
come from numerous sources. Two of them are listed below:

• in the case of the real data the TPC can be loaded by external tracks, noise, cosmics,
etc., which is difficult to reproduce in the MC stream, thus resulting in different TPC
patterns being fed into the reconstruction program of the RD and MC;

• a difference in the production of true hits from the e+ and e− tracks of the photon
conversion in the RD and the MC data may be induced by an improper setting of
the TPC efficiency in the MC stream (e.g. simply due to TPC ageing), and may
depend on the position of the photon conversion, e+e− track lengths (which vary
with the photon energy) and even on the jet charged multiplicity, which produces a
varying environment around the e+e− track hits.

This difference is expected to be reduced to a great extent by the recalibration proce-
dure described in section 3.1. The only possible pattern recognition distinction between
the RD and MC whose compensation is not ensured by this procedure can take place
within the range of photon polar angles to the parent jet θγ ≤ 200 mrad, since the wide
angle photons (θγ > 200 mrad) were used for the recalibration. In this region the en-
vironment around the e+e− track hits may be affected by charged particles of the jet.
In such a case the difference in the pattern recognition results should depend on the jet
charged multiplicity. In order to test this possibility the RD to MC ratio was studied
in several bands of the jet charged multiplicity, in three angular ranges: θγ < 100 mrad,
100 ≤ θγ < 200 mrad, and 200 ≤ θγ < 400 mrad. The ratios obtained for the different
Nch bands are in mutual agreement (within individual angular ranges) and agree well
with the analogous global ratios of the RD to MC (table 5). This means that the pattern
recognition results appear to be the same for the RD and MC within the full angular
range under consideration.

6.5 Test with charged particles

The analysis of photon distributions described in sect. 5.1 was applied to artificial
photons produced from charged pions. The aim of this test was to check that the
hadronization procedure of the MC event generator in the soft kinematic region has
no big systematic bias as compared to the analogous process in the real data. Being
directly implemented for charged particles (which are charged pions mainly), it has a
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straightforward relation to the π0 production also due to the almost precise SU(2) sym-
metry of the strong interactions8 (earlier the idea of similar tests has been implemented in
[4,5]). Thus, the method was to take three-momenta of charged particles in the real and
MC data as a starting point to represent π0 distributions, to decay these “π0’s” into two
photons, to convolute the resulting photon momenta with the photon detection efficiency
and feed them into the analysis code.

The resulting distributions are shown in fig. 7. They are similar to the genuine photon
spectra (cf. fig. 6), however the main result of this test is an excellent agreement between
the RD and MC samples. The “signal” strength calculated in the same way as that for
true photons is (0.102 ± 0.014) × 10−3γ/jet, i.e. at the level of 9% of the photon signal
(3). Therefore the hadronization mechanism of the applied MC code is concluded to work
well as far as concerns the charged pion production. Being related via SU(2) symmetry
with the production of neutral pions, it is expected to reproduce it sufficiently well too.
The direct comparison of π0 production in the RD and MC is done in the next section.

6.6 π0 tests

A general and powerful check of the adequacy of the MC data can be done via a
comparison of the MC and RD γγ mass spectra, by comparing the π0 signals detected
in each data set. Note that the applicability of the results obtained with the π0 tests
holds for almost the whole soft photon sample under study since the photon production
in the data is dominated by π0 decays, which yield (according to the MC) almost 92% of
photons in our kinematic range.

The production of π0’s in the DELPHI data of Z0 hadronic decays was studied in
[47] including the π0’s arising from two converted photons. The experimental result
for such π0’s shows a tendency for an overestimation of π0 production by JETSET 7.3
at low π0 momenta (< 1 GeV/c). However the results of that work cannot be used
directly to estimate the systematic errors of the photon background rate in our kinematic
range. Therefore a special analysis of π0 production was done in this work to get such an
estimation from π0 signals extracted from the γγ mass distributions of converted photons.

The photons (at least two converted photons per jet were required) were subdivided
into two energy bands: one band of low energy (LE) 0.2-1 GeV, and one band of higher
energy (HE) 1-10 GeV. Each HE photon was combined either with a LE photon of a
given jet or with a HE photon. Both photons in the combination were weighted by the
recalibration corrections. The γγ mass distributions obtained are shown in fig. 8 for both,
the MC and the RD. It can be seen from these distributions that there are distortions of
the lower-mass parts of the π0 peaks. They are induced by the external bremsstrahlung
radiation from at least one of the e+e− arms of a converted photon of the π0. Therefore
the spectra were fitted by two Gaussians superimposed over a smooth background, the
second Gaussian being introduced to describe the distortions. The fit results have shown
a small difference in the MC and RD widths of the first Gaussian, (4.0 ± 0.1) MeV/c2

versus (4.4±0.1) MeV/c2, respectively, for LE×HE combinations, and (4.8±0.1) MeV/c2

versus (5.6 ± 0.1) MeV/c2 for HE×HE combinations. The π0 peak position was stable
at 135 MeV/c2, as well as the 2nd Gaussian parameters, the widths of the latter being
13 and 15 MeV/c2 for the LE×HE and HE×HE combinations, respectively. The ratio
of the integrals under the two Gaussians (with the background subtracted) was found to

8There are processes which break the SU(2) symmetry (e.g. decays of η, η′), but their contribution to the soft photon
rate is small, see sect. 6.7.
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be about two in both cases. The sum of the integrals under the Gaussians represents the
number of π0’s in an appropriate γγ mass distribution. They are given 9 in table 6.

From the HE×HE results the HE photon RD to MC ratio was found to be 1.020±0.007,
i.e. the recalibration procedure succeeded in reducing the RD and MC difference to the
level of 2% for these photons. For the LE photons the effect of the recalibration seems to
be slightly better, the RD to MC ratio deduced from the LE×HE results is 0.986± 0.023
taking into account the factor 1.020 of the HE photon ratio obtained above. This agrees
well with the recalibration results for the difference residuals discussed in section 3.1 and
illustrated by fig. 2.

Thus the upper limit for the systematic bias of soft photon RD to MC ratio which can
be obtained from the π0 test with converted photons is 1.024 at the 95% C.L.

In order to get an independent check of this result the whole procedure described above
was repeated replacing the HE converted photon with a calorimetric (HPC) photon in the
same energy band and within a Θγ range of 50◦−130◦. The HPC photons were combined
with LE and HE converted photons being weighted by the second type of the recalibration
procedure, i.e. with the energy binning. In spite of a worse mass resolution (by a factor
of 4), the statistical gain due to combination of converted photons with those from the
HPC was expected to give a statistical accuracy of the fit results comparable to those
obtained with two converted photon analysis. Since the HPC photons may have their
own systematic bias, the HPC×HPC combinations were also involved in the analysis.

The γγ mass distributions for these photon combinations are displayed in fig. 9. No
distortion effects are visible in the distributions due to the worse mass resolution and
due to a smaller yield of the converted photons to the spectra of a) to d) (by a factor of
two). The distributions were therefore fitted with a single Gaussian superimposed over a
smooth background. The results of the fit for the numbers of π0’s are given in table 7.

It follows from these results that the converted HE photon RD to MC ratio is 1.014±
0.013 if one takes into account the proper HPC RD to MC bias 1.011±0.004 obtained from
the HPC×HPC signals. This ratio agrees well with the double converted photon analysis
value 1.020 ± 0.007. The converted LE photon RD to MC ratio is then 0.985 ± 0.028
and the upper limit for the systematic bias of the converted soft photon RD to MC ratio
obtained from this test is 1.031 at the 95% C.L.

Thus, the two analyses agree and suggest that there is no excess of LE photons from
π0 decays in our kinematic range. A combined upper limit for such an excess derived
from both analyses is 1.015 at the 95% C.L. This means that the observed soft photon
signal is 4 times greater than the 95% C.L. upper limit resulting from the identity of the
π0 production rates in the RD and MC.

These results, in favour of the absence of any non-negligible systematic bias in the
current analysis obtained with the π0 tests, are of high importance due to the fact that
the photon production in hadronic Z0 events is dominated by π0 decays, as mentioned
above. Small admixtures from radiative decays of B∗ mesons, η’s, Σ0 baryons and other
unstable particles to the overall soft photon production rate are not significant and have
been verified not to change the above conclusion on the systematic bias estimations, as
discussed in the next section.

6.7 Soft photons from unstable hadrons other than π0’s

The strongest sources of soft photons from unstable hadrons other than π0’s in hadronic
Z0 decays are B∗ mesons which have dominant radiative branching ratios and low decay

9We do not give the individual Gaussian yields since they interfere strongly due to pile-up of the Gaussians, while their
sum is close to being fit invariant.
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momenta. According to the MC, neutral and charged B∗ mesons yield 3.3% and 2.7% of
the total soft photon rate in our kinematic range, respectively.

In order to check that there is no bias in the DELPHI MC simulation of soft photons
from the B∗ meson decays, the B meson admixture in the data under study was varied
using the DELPHI B tag [65]. It was found that the signal is stable (within the quoted
errors) when varying the B∗ photon yield in our kinematic range by a factor of 40, from
0.3% with depleted B∗ production (the anti-B tag applied) to 12% with enriched B∗

production (the B tag applied), the corresponding results are presented by lines 9 and 10
in table 3, respectively.

The reason for this stability is easy to understand. Since the observed soft photon
signal is of similar strength to the whole relative yield of B∗ mesons (both are at about
6% of the total soft photon rate), the DELPHI MC would have to be wrong in the
prediction of the B∗ production rate by about 100% to allow the signal to come from
these mesons. This is completely excluded by the good agreement between the MC and
real data for the B∗ signal amplitude and its characteristics, studied in [60], from which
the discrepancy between the two data sets is deduced to be below 4%.

This fact was used for an independent proof of the statement that an improper sim-
ulation of soft photons from the B∗ meson decays cannot be responsible for the signal
observed. Making use of the B∗ photon yield in our kinematic range (6%, see above) and
the experimental agreement of the B∗ production rate with the simulation, the systematic
uncertainty in the total soft photon rate due to B∗ photons is established to be below
0.3% . In absolute value, using the total soft photon production rate (4), it is less than
0.05 × 10−3γ/jet. This uncertainty is quoted in table 1.

Similar considerations are applicable to other unstable particles. Therefore the yields
of η’s, Σ0 baryons and other radiatively decaying hadrons (ω0, D∗ mesons, etc.) to our
photon kinematic range were estimated studying the MC data and published results on
their total production rates [66–68].

It was found from the MC data that the yield of η mesons to our photon kinematic
range is (1.03±0.01)%, the quoted error being statistical. The systematic error of this es-
timate can be obtained by comparing the MC and experimental η meson total production
rates [66]. They agree within 10% [69] which leads to an error in the overall soft photon
production rate induced by the η decays of less than 0.1%, or below 0.02 × 10−3γ/jet.
This uncertainty, though relatively small, is included into the software systematic error
list quoted in table 1.

The photon yields from Σ0 baryons, D∗ and other unstable hadrons to our kinematic
range are even smaller due to their lower radiative branching ratios and/or higher decay
momenta, thus the systematic uncertainties due to them can be neglected.

Finally, the hypothetical situation when the excess photons originate from unstable
hadrons which are among Z0 decay products, but are not incorporated (or not incorpo-
rated properly) in the implemented MC event generators, was considered. The method
was to calculate the photon p2

T spectrum from radiative decays of an a priori unknown
unstable (excited) hadron, the excitation energy being varied in a wide range (from 35 to
500 MeV; the mass of the hadron was varied also, from 1 to 5 GeV/c2, and was found to
affect the results very slightly), and to compare the shape of the obtained spectrum with
that of the observed excess. In order to account for a diversity of possible kinematic char-
acteristics of the assumed hadron (its energy spectrum and angular distribution relative
to a jet) various energy and angular distributions of a large number of unstable hadrons
were obtained from the DELPHI MC data and used as templates when generating the
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results. Given all the needed input parameters, the photon p2
T spectra were calculated

using two-body decay phase space formulae.
It was found that only very low excitation energies (below 40 MeV) combined with a

narrow angular distribution of the excited hadron are able to produce the exponentially
decreasing p2

T spectra similar to that of the observed excess (section 5.1). However, no
state with such an excitation energy is present in the PDG tables [70]. The nearest
candidate for such a state is the B∗ (with the excitation energy of 46 MeV), but this
state is well incorporated into the DELPHI MC and was directly tested varying the B∗

yield as described above.
From these results the conclusion is drawn that no known hadron decaying radiatively

can be a source of a viable systematic effect to the observed signal.

7 Conclusions

This analysis shows a significant excess of soft photons close to jet axes in the hadronic
decays of the Z0 collected in the DELPHI experiment at LEP1, as compared to the Parton
Shower MC predictions. The photon kinematic range is defined as follows: 0.2 < Eγ < 1
GeV, pT < 80 MeV/c, the pT being the photon transverse momentum with respect to the
parent jet direction. The net excess is measured to be (1.17±0.06±0.27)×10−3γ/jet for
the data uncorrected for the photon detection efficiency. This value has to be compared
to the calculated level of the inner hadronic bremsstrahlung which was expected to be
the dominant source of direct soft photons in this kinematic region (but which was not
implemented in the standard MC codes used) and is obtained to be (0.340 ± 0.001 ±
0.038) × 10−3γ/jet. Expressed in terms of the bremsstrahlung rate, the observed signal
is 3.4 ± 0.2 ± 0.8.

The various systematic biases capable of producing the excess photons were carefully
studied, leading to the conclusion that the origin of the excess cannot be attributed to
trivial reasons such as an underestimation of the external bremsstrahlung in the MC
events, improper simulation of the soft photon spectra by an event generator or different
treatment of the real and MC data by the pattern recognition code. An important point
is the good agreement between the MC and real data concerning the production and
detection of π0’s when one of the photons of the π0 decay is soft.

Analogous conclusions can be drawn for the data corrected for the photon detection
efficiency: the observed signal rate is found to be (69.1 ± 4.5 ± 15.7) × 10−3γ/jet, while
the inner bremsstrahlung rate is expected to be (17.10± 0.01± 1.21)× 10−3γ/jet. Their
ratio is then 4.0 ± 0.3 ± 1.0.

The signal amplitudes obtained are close to the anomalous soft photon effects seen
earlier in hadronic reactions at high energy and reported in [5–8,11].
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Simonov, T. Sjöstrand and P. Sonderegger for useful discussions, and to Dr. B. French
for detailed considerations of several aspects of this work.

We are greatly indebted to our technical collaborators, to the members of the CERN-
SL Division for the excellent performance of the LEP collider, and to the funding agencies
for their support in building and operating the DELPHI detector.
We acknowledge in particular the support of



19

Austrian Federal Ministry of Education, Science and Culture, GZ 616.364/2-III/2a,98,
FNRS-FWO, Flandres Institute to encourage scientific and technological research in the
industry (IWT), Belgium,
FINEP, CNPq, CAPES, FUJB and FAPERJ, Brazil,
Czech Ministry of Industry and Trade, GA CR 202/99/1362,
Commission of the European Communities (DG XII),
Direction des Sciences de la Matière, CEA, France,
Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie, Germany,
General Secretariat for Research and Technology, Greece,
National Science Foundation (NWO) and Foundation for Research on Matter (FOM),
The Netherlands,
Norwegian Research Council,
State Committee for Scientific Research, Poland, SPUB-M/CERN/P03/DZ296/2000,
SPUB-M/CERN/P03/DZ297/2000, 2PO3B 104 19 and 2PO3B 69 23(2002-2004),
FCT - Fundação para a Ciência e Tecnologia, Portugal,
Vedecka grantova agentura MS SR, Slovakia, Nr. 95/5195/134,
Ministry of Science and Technology of the Republic of Slovenia,
CICYT, Spain, AEN99-0950 and AEN99-0761,
The Swedish Research Council,
Particle Physics and Astronomy Research Council, UK,
Department of Energy, USA, DE-FC02-01ER41155,
EEC RTN contract HPRN-CT-00292-2002.



20

References

[1] L.D. Landau, I.Ya. Pomeranchuk, Dokl. Akad. Nauk SSSR 92, 535, 735
(1953) (Papers No. 75 and 76 in the English edition of L.D. Landau collected
works)

[2] F. Low, Phys. Rev. 110 , 974 (1958)
[3] V.N. Gribov, Sov. J. Nucl. Phys. 5, 280 (1967)
[4] A.T. Goshaw et al., Phys. Rev. Lett. 43, 1065 (1979)
[5] P.V. Chliapnikov et al., Phys. Lett. B 141, 276 (1984)
[6] F. Botterweck et al., Z. Phys. C 51, 541 (1991)
[7] S. Banerjee et al., Phys. Lett. B 305, 182 (1993)
[8] A. Belogianni et al., Phys. Lett. B 408, 487 (1997)

A. Belogianni et al., Phys. Lett. B 548, 122 (2002)
[9] M.L. Tincknell et al., Phys. Rev. C 54, 1918 (1996)

[10] J. Antos et al., Z. Phys. C 59, 547 (1993)
[11] A. Belogianni et al., Phys. Lett. B 548, 129 (2002)
[12] A. Bogolyubski et al., Sov. J. Nucl. Phys. 49, 454 (1989)
[13] L. Van Hove, Ann. of Phys. 192, 66 (1989)
[14] S. Barshay, Phys. Lett. B 227, 279 (1989); Erratum-ibid. 245, 687 (1990)
[15] E.V. Shuryak, Phys. Lett. B 231, 175 (1990)
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Table 1. Systematic uncertainties of the background of hadronic decay photons in
the range of photon pT < 80 MeV/c for the data uncorrected for detection efficiency. The
total systematic error is the quadratic sum of the individual errors.

Source Value, 10−3γ/jet Percentage of signal rate∗)

Hardware systematics
Material uncertainty

and pattern recognition 0.16 14
Software systematics

Event generator 0.20 17
Jet finder 0.07 6
B∗ mesons 0.05 4
η mesons 0.02 2

Total 0.27 23

∗) The signal rate is defined in section 5.1.

Table 2. Systematic uncertainties of the inner hadronic bremsstrahlung calculations
in the range of photon pT < 80 MeV/c. The total systematic error is the quadratic sum
of the individual errors. The uncertainties, given in absolute photon rates (2nd column
of the table) correspond to the case of the data uncorrected for detection efficiency.

Source Value, 10−3γ/jet Percentage of brems rate

Formula (2) 0.014 4
Event generator 0.017 5

Jet finder 0.010 3
Convolution with efficiency∗) 0.029 9

Total 0.038 11

∗) The systematic error due to convolution with efficiency has to be taken into account
when dealing with the results uncorrected for efficiency only.
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Table 3. Signal amplitudes in units of 10−3γ per jet, obtained under various selection
criteria. The jets satisfy all the selection cuts described in section 2.5 and additional cuts
(if any), as indicated in this table. The jets were formed by the LUCLUS jet-finding code
unless the DURHAM or JADE codes are referred to explicitly. The errors are statistical
only. Information on the systematic errors of the experimental photon rates and the
bremsstrahlung predictions is given in tables 1 and 2, respectively.

Selection conditions Signal Brems

1 General selection 1.170±0.062 0.340±0.001
2 General selection, DURHAM 1.060±0.067 0.351±0.001
3 General selection, JADE 1.070±0.074 0.332±0.001
4 The zero experiment 0.069±0.048 0.0750±0.0002
5 No rejection of jets containing e+, e− 1.170±0.061 0.339±0.001
6 No rejection of jets containing e+, e−, DURHAM 1.050±0.066 0.348±0.001
7 Strong rejection of jets with e+, e− 1.150±0.062 0.326±0.001
8 Strong rejection of jets with e+, e−, DURHAM 1.050±0.067 0.336±0.001
9 General selection + anti-B tag 1.240±0.167 0.363±0.002
10 General selection + B tag 1.390±0.159 0.326±0.002

General selection, signal corrected for efficiency 69.1±4.5 17.10±0.01

Table 4. Differential signal and inner hadronic bremsstrahlung rates as a function of
the photon pT , in units of 10−3γ/jet integrated over the pT bin of 8 MeV/c width. The
first errors are statistical, the second ones are systematic.

pT , MeV/c RD−MC corrected for efficiency Inner hadronic bremsstrahlung

0 - 8 0.64 ± 0.38 ± 0.14 0.685 ± 0.001 ± 0.048
8 - 16 2.66 ± 0.84 ± 0.63 1.584 ± 0.002 ± 0.112

16 - 24 6.48 ± 1.18 ± 1.46 1.928 ± 0.002 ± 0.136
24 - 32 8.31 ± 1.40 ± 1.83 2.007 ± 0.002 ± 0.142
32 - 40 11.01 ± 1.55 ± 2.46 1.984 ± 0.002 ± 0.140
40 - 48 8.88 ± 1.69 ± 2.03 1.926 ± 0.001 ± 0.136
48 - 56 9.70 ± 1.66 ± 2.25 1.850 ± 0.001 ± 0.131
56 - 64 6.61 ± 1.62 ± 1.52 1.776 ± 0.001 ± 0.126
64 - 72 7.30 ± 1.60 ± 1.67 1.704 ± 0.001 ± 0.121
72 - 80 7.58 ± 1.61 ± 1.76 1.635 ± 0.001 ± 0.116
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Table 5. RD to MC ratios in three ranges of θγ as a function of the jet charged
multiplicity Nch.

Nch band θγ <100mrad 100mrad≤ θγ <200mrad 200mrad≤ θγ <400mrad

1≤ Nch ≤ 3 1.060 ± 0.013 1.046 ± 0.010 0.980±0.009
3< Nch ≤ 5 1.074 ± 0.010 1.025 ± 0.007 1.001±0.006
5< Nch ≤ 7 1.049 ± 0.009 1.044 ± 0.007 0.973±0.006

Nch >7 1.067 ± 0.007 1.028 ± 0.006 1.005±0.005
all Nch 1.064 ± 0.005 1.033 ± 0.004 0.994±0.003

Table 6. π0 signal amplitudes (numbers of π0’s in the π0 peaks) obtained with two
combinations of converted photons and the upper limits for the RD/MC ratio of the
converted LE photons extracted from the signals.

LEconv×HEconv HEconv×HEconv

RD 9052 ± 147 19529 ± 206
MC 8999 ± 133 18774 ± 154

RD/MC 1.006 ± 0.022 1.040 ± 0.013
Resulting RD/MC for the LE photons: 0.986±0.023

Upper limit for the converted LE photon RD/MC ratio (at 95% C.L.): 1.024

Table 7. π0 signal amplitudes obtained with three combinations of converted and HPC
photons and the upper limits for the RD/MC ratio of the converted LE photons extracted
from the signals. The combined upper limit is a summary of both π0 analyses (see table
6).

LEconv×HEHPC HEconv×HEHPC HEHPC×HEHPC

RD 38396 ± 803 91262 ± 905 1182370 ± 5890
MC 38539 ± 687 89065 ± 690 1156220 ± 4950

RD/MC 0.996 ± 0.027 1.025 ± 0.013 1.023 ± 0.007
Resulting RD/MC for the LE photons: 0.985±0.028

Upper limit for the converted LE photon RD/MC ratio (at 95% C.L.): 1.031

Combined upper limit for the converted LE photon RD/MC ratio: 1.015
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DELPHI

θ

∆Θ ∆Φ

Pjet>40 GeV/c

Figure 1: a) Photon detection efficiency as a function of the photon energy in the angular
band of θγ < 5 mrad (the statistically poorest angular band) integrated over the 3rd
efficiency table variable, Θγ; b) photon detection efficiency as a function of θγ in the
Eγ band from 0.9 to 1 GeV (the region of the highest efficiency) integrated over Θγ; c)
difference between generated and reconstructed photon polar angles Θγ in the photon
energy range of 0.2 < Eγ < 1 GeV; d) the same for the azimuthal angles Φγ ; e) deviation
of the reconstructed jet axis from the initial quark direction for jet momenta > 40 GeV/c.
The curves in figs. 1a,b) are 2nd order polynomial fits used for the efficiency interpolation.
The curves in figs. 1c,d) are the fits by Breit-Wigner form’s (see text).
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DELPHI
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0.2<Eγ<1 GeV

0.2<Eγ<1 GeV

Θ

Figure 2: a) The RD and MC angular distributions (the polar angles relative to the beam
direction, Θγ) for photons produced in hadronic decays of the Z0 and converted in the
DELPHI detector before the TPC. The photon kinematic range is 0.2 < Eγ < 1 GeV
and the photon polar angle relative to the parent jet direction θγ > 200 mrad. The MC
data were corrected by the recalibration procedure reducing the difference in material
distributions in the RD and the MC and possible pattern recognition biases (see text);
b) the relative difference between the RD and corrected MC distributions.
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DELPHI

θ θ

Figure 3: Experimental spectra obtained with the general selection. Left panels: the
ratio of the RD and MC distributions for a) θγ (photon polar angle relative to the parent
jet direction); c) photon pT ; e) photon p2

T . Right panels, b), d), f): the difference between
the RD and MC distributions for the same variables, respectively. “Brems” corresponds
to the inner hadronic bremsstrahlung predictions. The errors are statistical. The curve
in fig. 3f) is the fit by an exponential (see text).
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θ θ

Figure 4: The same as in fig. 3, corrected for the efficiency of photon detection.
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Figure 5: Zero experiment photon distributions. Left panels, a), c), e): the RD and MC
θγ , pT and p2

T distributions; right panels, b), d), f): the difference between the RD and
MC distributions for the same variables together with the bremsstrahlung predictions.
The errors are statistical.
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DELPHI

θ θ

Figure 6: Comparison of the JETSET (JS) and ARIADNE (AR) generators. Left panels,
a), c), e): the MC θγ , pT and p2

T distributions of photons as produced by JETSET and
by ARIADNE. Right panels, b), d), f): the difference between the two MC distributions
for the same variables (open circles). The RD−MC distributions from fig. 3 presenting
the observed excess are also displayed for comparison. The errors are statistical.
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Figure 7: Comparison of the RD and MC distributions of “photons” produced from
charged particles (see text, section 6.5). The RD−MC distributions for these “photons”
are shown by open circles. The observed excess distributions (RD−MC from fig. 3) are
also displayed for comparison. The errors are statistical.
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RD
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Figure 8: Comparison of the MC and RD γγ mass distributions for the two converted
photon combinations. a,b) LE×HE combination; c,d) HE×HE combination. The dashed
line represents the distortion Gaussian (see text). The errors are statistical. The results
of the comparison are given in table 6.
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DELPHI
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MC RD

Figure 9: Comparison of the MC and RD γγ mass distributions for converted and high
energy HPC photon combinations. a,b) converted LE and HPC combination; c,d) con-
verted HE and HPC combination; e,f) HPC and HPC combination (note the different
mass scale for these plots). The errors are statistical. The results of the comparison are
given in table 7.


