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Abstract

After a short introduction to applications of RF linacs and their advantages
and drawbacks as opposed to circular accelerators, the model of RF resonant
cavities and their excitation by RF sources or beam is introduced. Then
beam dynamics notions, essential to linacs, such as transit-time factor,
synchronism, r.m.s. properties, matching and mismatching in linear or non-
linear forces, are presented.

1 INTRODUCTION

A one-hour lecture on RF linear accelerators (linacs) and a ten-hour course were given to the CAS
students. The short lecture introduced the students to RF specifics and beam dynamics basics giving
them a good understanding of linacs. This paper deals with the notions introduced in the lecture.
Students eager to learn more about linacs are advised to read the books in Refs. [1] and [2].

After a short introduction to RF linac applications and their advantages/disadvantages as
opposed to circular accelerators, this paper is divided into two parts:

— Section 3 introduces the RF cavity through its basic principle and model, the notion of RF
modes, and the way they are excited either from the RF source or by the beam.

— Section 4 gives useful notions of beam dynamics in linacs: the transit time factor; the notion of
synchronism; the particle motion in continuous non-linear forces (longitudinal dynamics); and
periodic linear forces (transverse dynamics). The notion of beam r.m.s. properties and matching
in the linac is discussed. The effects of non-linear forces on emittance growth are introduced.

2 WHY RF LINACS?

The goal of a particle accelerator is to produce a ‘low-cost wanted’ beam. By ‘wanted’, one means a
given particle type, with a given intensity, at a given energy within a given emittance (or brightness)
in a given time structure. Costs should cover construction, operation, and personnel.

Synchrotrons, cyclotrons, and RF linear accelerators (linacs)' can all achievethis.
The main advantages of linacs are that

— they can handle high current beams (they are less limited by tune shift),

— they can run in high duty-cycle (the beam passes only once at each position),

— they exhibit low synchrotron radiation losses (no dipoles).
Their main drawbacks are that

— they consume space and cavities,

— the synchrotron radiation damping of light particles (electrong/positrons) cannot be easily used
to reduce the beam emittance.

! Electrostatic machines are also suitable for low-current, low-energy beams.
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That iswhy linacs are mainly used:
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— as low-energy injectors (where the space-charge force is more important and the duty-cycle is

high),

— with high-intensity/power proton beams (high space-charge level or/and duty cycle),

— in new lepton collider projects at very high energy (no radiation losses).

3 RFCAVITIES

The RF cavity gives energy to the beam. As the cost of the RF generally represents the main expense
of the linac structure apart from the building, the choice of the RF structure has to be studied very
carefully. This paper presents only the principle of an RF cavity. More precise information can be

found in the CAS dedicated to RF [3].

3.1 A standing-wave RF cavity

3.1.1 Fied calculation

An RF cavity is simply a piece of conductor enclosing an empty volume (generally a vacuum).
Solutions of Maxwell’s equations in this volume, taking into account the boundary conditions on the
conductor, allow the existence of electromagnetic field configurations in the cavity. These are called

the resonant modes.

Maxwell’s equations

V.E=£ V-B=0,
80

VxE=_98
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& = 1/uoC? : permittivity of free space,

VxB=p,J+
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o= 41107 T-m-A™ : permeability of free space,

Cc = 2.99792458-10° m-s* : speed of light in vacuum.

Boundary conditions

AxE, =0, 1B, =0,
= _Z
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n, the normal to the conductor,
¥ (C/m?), the surface charge density,

K (A/m), the surface current density.

Each mode, labelled n, is characterized by an electromagnetic field amplitude configuration
E,(F)/B,(F) oscillating with an RF frequency f,. The electric field amplitude configuration is the

solution of the equation:

V?E, +—-E, =0,

NN

CZ

(D)

where E, () should satisfy the boundary conditionsand @, =27 - f,, isthe mode pulsation.

The electric field in the cavity is aweighted sum of all the modes:

E(F.t)=Y e ) -E,(F)=>a,-e* E(F) .

Here a, isa complex number and e,(t) isthe field variation with time, it is the solution of [4]:
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Here H isthe magnetic induction. It is often used close to the surface in place of B, as unlike I_5>, it
is macroscopically continuous through the surface. J is the current density, of the beam for example.
The first term on the right-hand side is an integration over the conductor which is not a perfect
conductor. Because of power losses by Joule effects, it can be rewritten as a damping term:

w .
—_n . é,.
QOn

The calculation of Qqy, the quality factor of the mode, can be deduced from power loss considerations:

(4)

U,(0) is the energy stored by the n-mode at time t = 0. For t > 0, nho more power is injected in
the cavity. Let us define k(t) as:

)=

=N/ 5
et=0 ®
The energy lost per unit time is the power dissipated in the conductor Py
du . (t)
— =P (t). 6
) ©

The average power dissipated in the conductor per cycle is proportional to the square of the
current density (and then the magnetic field) close to the surface:

&:%J;deS:%iHﬁdS, 7

where R; is the surface resistance defined as:

R = \/@ . for normal conductors (8)
o

where ois the conductor conductivity (1/o = 1.7-10” Q-m for copper).

f; (GHz)
T(K)

where R is the residua resistance (10°-10® Q) depending on the surface imperfections, T is the
working absolute temperature, T.= 9.2 K isthe critical temperature.

From Egs. (5) and (7) can be deduced:
P.(t)=k(t)’-P,(t=0). (10)

-R =R +9.10° exp[—l.%-%j , for superconducting niobium 9)

The stored energy is proportional to the square of the field:

%o [l o2 [fflal s &

U, () =k(t)*-U, (t=0). (12)

then:
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Equation (6) becomes:

= =N k2=2.Kk, (13)
dt U,
giving :
°___ B . (14)
dt 2-U,
A comparison with the damping term written in (4) gives:
w, U,
Qon = “p (15)

In the second term, the integration is performed over the open surfaces S and represents the coupling
with the outside system. This coupling can be divided into two contributions:

— theinjected power coming from the power generator through the coupler,

— an additional damping, which can be represented by another quality factor Qe known as the
external Q, corresponding to power losses through the opened surfaces. The coupling can be
calculated from the coupler geometry with electromagnetic codes.

wn
Qexn

S, - /%) isthe RF source filling through the coupler.

. en + Sn . ei(wRF”%) ) (16)

The last term, represents the field excited by the beam, known as the beam loading. It is proportional
to the beam intensity:

k,-1(t) . (17)
I (t) isacomplex number (it has a phase) representing the beam current.
Equation (3) can then be modelized by:

d’e, @ de, (@Rt o)
+ —t+@ie =S e Lk I (t
dtZ Qn dt a)ﬂ Qﬁ Sﬁ n ()

: (18)

which is the equation of a damped harmonic oscillator in a forced regime. Q, is the quality factor of
the cavity, with

1 1 1
—_— =t
Qn QOn Qexn
and
a)RF

isthe cavity filling time.
Note that both the coupler or the beam can excite some RF modes.

Equation (18) shows an RLC circuit which is often used to modelize the system. A complete
study of this model can be found in Ref. [4].
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From these modes, one with a field amplitude along the longitudinal direction on the axis is
used to accelerate the beam. The geometry of the cavity is then calculated to match the frequency of
this accelerating mode to the RF frequency. This mode is excited in the cavity through a power
coupler whose geometry is calculated and adjusted to transfer electromagnetic energy in the cavity to
the beam without reflection—a process called coupler matching.

3.1.2 Shunt impedances

To first order, only the accelerating mode is excited in the cavity. The transverse component of the
electric field is generaly null along the axis. An expression of the zcomponent of the field on the axis
is then:

E,(st)=E,(s)-cos(at+¢). (19
The field amplitude is Ex(S9).

One defines the cavity voltage V, as:

Vo = [|EL(s)- ds. (20)

)

Then gV, represents the maximum energy (in eV) that a particle with charge g could gain if the field
was alway's maximum.

Let P4 be the power deposition in the cavity:
— V02
¢ 2R

The cavity shunt impedance Ris very useful in cavity design. For optimum acceleration, it hasto be as
high as possible.

(21)

Because the electric field changes with time as the particle transits through the cavity, the
maximum energy -V that can be gained in the cavity by a particle of charge q islower than q-Vo. One
defines the transit-time factor T as:

T= v <1 (22
VO

This corrective factor to the energy gain takes the particle transit time in the cavity into account,
and is obviously dependent on the particle velocity. The calculation of this factor is described in
Section 4.

The effective shunt impedance RT? is then proportional to the ratio between the square of the
maximum energy AU, that can be gained by the beam and the power lost in the cavity:
AUZ,

2P,

RT? = (23)

It is some sort of cavity efficiency and has to be maximum.

The shunt impedance is often used to compare the efficiency of different structures at a given
energy. Usually, the geometry is different, so one extends the preceding definition per unit length to
allow abetter comparison.
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Let L be the cavity length’. The mean cavity electric field E; is defined as:

V
E.=—9 24
0= (24)
The power deposition per unit length in the cavity Pj isthen:
_ B
P = , 25
=5 (25)

where Z is the cavity shunt impedance per unit length.
The effective shunt impedance per unit length ZT? is then proportional to the ratio between the

square of the maximum energy AU, that can be gained per unit length by the beam and the power

lost per unit length in the cavity:

_AUZ

26
2P (26)

ZT°?

As it is depending on the particle velocity, one chooses the structure that maximize ZT? at a
given energy. Figure 1 represents the evolution of the effective shunt impedance per metre for two
different structures (SDTL and CCL) with different apertures ¢. The higher the aperture (space for
beam), the lower the effective shunt impedance. SDTL structures are more efficient at lower energy,
CCL structures are more efficient at higher energy. The optimum transition energy is around 100 MeV
for protons.
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Fig. 1: Effective shunt impedance per metre of different TRISPAL structures (C. Bourat)

3.2 A traveling-wave RF cavity

A travelling-wave cavity is generally used to accelerate ultrarelativistic particles. These cavities
generally have two power ports. One where the power enters, and another, at the other end, where the
power exits (Fig. 2). The electric field travels through the cavity from the input to the output port. Its
phase velocity is adjusted to the beam velocity. The field phase is adjusted to continuously accelerate
the beam.

2 Owing to the cavity fringe field, L is often arbitrarily defined as the physical length of the cavity.
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from RF
Source

Output

Input
coupler

coupler

Fig. 2: A travelling-wave cavity
The RF phase velocity in empty cavities or wave-guides is usually higher than (or equal to) the
speed of light in vacuum c. As particle velocity cannot exceed c, the RF phase velocity should be
decelerated to reach the synchronism condition by introducing some periodic obstacles into the guide

(such as iris-loaded waveguide). The periodic field can then be expanded into a Fourier series with
different wave numbers:

Ez(t,z)= i ez,-exp| j-(at—k,2)], 27)

N=—oo

with ez, the space harmonic amplitude, k, the space harmonic wave numbers,
n
K =k + 20 28)
d
d the obstacle period, and ko the waveguide number.
The phase velocity v, of space harmonic number nis

vV, =—. (29)

Particles whose velocity is close to the phase velocity of one space harmonic exchange energy
with it. Otherwise, the average effect is null.

A complete calculation of these insertion obstacles as well as alarge bibliography can be found
in Ref. [5]. This kind of travelling-wave accelerating structure is mainly used to accelerate ultra-
relativistic electrons.

Moreover, the modd of a travelling-wave acceleration, even with acceleration with standing-
wave cavities, is often used to simplify the calculation of the longitudinal-motion equations.

4 ELEMENTSOF BEAM DYNAMICS

4.1 Thetransit-timefactor and the particle synchronous phase

A cavity has afinite length L. The cavity input abscissais s, and E,(s) is the amplitude of the electric
field longitudinal component on axis.

The energy® gained by a charged particle on axis in the cavity is

3 Thisis actually the longitudinal energy, but we can consider that there is no transverse field on the cavity axis.
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S+L

AW = [ GE,(s)-cos[¢(s)]-ds , (30)
%
where q is the particle charge, ¢(s) is the cavity RF phase when the particle is at abscissa s. It is

defined as

0> ds
<@ @D

where ¢, = &) isthe RF phase when the particle enters the cavity.

(s)= ¢, +

Writing ¢(s) = #(s) + (ds— @), ¢ being an arbitrary phase and using trigonometric relationships,
one gets for the energy gain:

%+L %-%—L

AW =cosg, - [ qEZ(s)-cos| ¢(s)—¢, ]-ds—sing,- | dEz(s)-sin[¢(s)-¢.]-ds. (32
% %
By defining ¢, as:
S+L

[ 4Ez(s)-sin[ ¢(s)-¢,]-ds=0,

giving the definition of the synchronous phase ¢

$+L
[ Ez(s)-sin[¢(s)]-ds
¢, =arctan| o : (33)
[ Ez(s)-cos[ ¢(s)]-ds
%
onefinaly gets
S+L
AW:[q I|Ez(s)|-dsJ-T.cos¢>s:qVO-T-cos¢)S , (34
S
with
1 S+L
T=_" [ Ez(s)-cos[¢(s)—¢.]-ds] . (35)
v, 1

The transit-time factor T, depends on the particle initia velocity as well as on the field
amplitude. This definition does not make any assumption about the field shape (no symmetry)
resulting from a dlightly different synchronous-phase definition, which can be found in the literature
(which is often taken as the RF phase when the particle reaches mid-cavity). When the velocity gainin
the cavity is much lower than the input-particle velocity, T depends only on the velocity and can be
easily tabulated.
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The calculation of T with formula (35) is sometimes difficult to perform, as ¢ has to be known.
In fact, T does not depend on ¢s when the velocity gain is small and another formula (a little bit more
difficult to understand physically) can be used:

T= %U Ez(s)- e/ . ds{ : (36)

4.2 Notion of synchronism

A linac is designed so that one theoretical particle called the synchronous particle enters successively
along the axis of RF cavities with a wanted RF phase law in order to get a wanted energy gain. This
very important notion of synchronism allows the understanding of the efficiency and the stability of
linacs.

Particles can be accelerated with travelling waves as well as standing waves (Fig. 3).

Synchronous Bz'c
particle >
L0)
Kk
>
Fig. 3: Particle accelerated by atravelling wave
4.2.1 Acceleration with travelling waves
The on-axis RF accelerating field can be written as:
E,(zt)=E,-coslwt —kz), (37)

where wis the RF pulsation and k is the RF wave number.

The synchronism condition is reached when the particle-longitudinal velocity equals the RF
phase velocity:

k
B,c=—. (38)
w
Here c is the speed of light in vacuum, £, is the reduced longitudina velocity of the synchronous

particle. Note that when the paraxial approximation® is used, /3, is replaced by /3, the reduced total
speed of the particle.

‘“As B = B, AL+ X+ y’2 , paraxial approximation occurswhen X' << landy' <<1.
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4,22 Sanding waves

In most linacs, the beam is accel erated with RF cavities or gaps operating in standing-wave conditions.
An RF power, produced by one or many RF sources, is introduced through a coupler in a resonant
cavity exciting the wanted standing-wave accelerating mode. The cavity shape has been calculated and
adjusted to match the accelerating mode to the power-supply frequencies and to throw the other mode
frequencies far from the RF one.

As afirst step, let us assume a set of thin independently phased RF cavities along the beam path
(Fig. 4).

RF phase B ) B+1
Particle velocity i Ds
— - —5 —+ -
Distances Di.1 Di
Synchronous phase Ps1 Ps Psi+1
Cavity number i-1 [ i+1

Fig. 4: A set of independently phased cavities

— @ is the absolute RF phase in the i cavity when t =0 (the t = 0 instant has been arbitrarily
chosen),

— s isthe synchronous, particle reduced velocity at thei™ cavity output,
— ¢ isthe RF synchronous phase of the i™ cavity of the synchronous particle’,
— D; isthe distance between the i and the i+1" cavities.

The synchronism condition is reached when:
Ps1 — s :m‘i+¢i+l_¢i +[2m]. (39)
BsiA
The RF wavelengthisA=c/ f .

One observes that the synchronism condition does not depend on the RF field amplitude. It has
a non-intuitive consequence: an increase of the accelerating field amplitude in the cavities without
phase change does not induce an increase of the synchronous-particle final energy but a change of the
synchronous phase fulfilling the synchronism condition.

Two different kinds of structures exist;

— The coupled-cavity structures where the phase between cavities is fixed. The synchronism
condition is achieved by adjusting the distance between the cavities.

In a Drift-Tube Linac (DTL), for example, the phase difference between the cells is fixed
(= 2m). The distance between cells is then calcul ated to have:

D, =(¢5‘+1—2;¢9+1]-ﬂ5i/1 . (40)

® Do not confuse the synchronous-particle phase, the phase of the synchronous particle in a cavity and a particle
synchronous-phase, the synchronous phase of a particle (whatever it is) in a cavity.
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— The independent cavity structures where the distance between cavities is fixed. The
synchronism condition is then achieved by adjusting the phase difference between the cavities.

In a Superconducting-Cavity Linac (SCL), for example, the distance between cavities is fixed
by the cryogenics mechanism. The phase difference between cavities is then calculated to have:

D

'ﬁ.,1+[2’m]' (41)

P — 0 =Ps—0s — 27

4.3 Particle motion in electromagnetic fields

431 Bass
The electromagnetic field can be divided into two contributions:
— The electric field: E.

— The magnetic field: B.

The intensity of these contributions depends on the referential where they are expressed. The
equation of motion of aparticle of charge g in thesefieldsis:
@=q~(\7><§+ﬁ), (42)
dt
where p isthe momentum of the particle and V isitsvelocity.

Let us call sthe abscissa of the beam in the linac path (rather than z to avoid any confusion with
the particle longitudinal position in the bunch), the equation of motion can be rewritten:

dp_  UxB+E

, 43
ds v, “43)
where v, is the particle longitudinal velocity.
A projection on the Cartesian axis® (x, y, 2) gives:
di, _ a yB,-B, + == _dpB,x
ds mc v, ds
d E ¢
By _ . B, - xB, 2 |- 9PV | (44)
ds mc Vv, ds
%:i. X’By_y’BX+EJ
ds mc v,
Here
X’:%:&:&
ds p, £,
and
Py By
ds p, A,

®In general, x and y play the samerolein alinac (contrary to their rolein acircular accelerator).
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are the slopes of the particle, and

is the reduced vel ocity w-component, w being X, y or z v, is the particle velocity w component; m and
g are, respectively, the rest mass and the particle charge; c is the speed of light.

One clearly observes that longitudinal and transverse motions are coupled. However, for an
easier understanding, and because the coupling is often very weak, the longitudinal and the transverse
motions are usually treated as uncoupled, the longitudinal velocity v, variations are considered
separately. To uncouple the transverse and longitudinal mations, the paraxial approximation has to be
done.

4.3.2 Paraxial approximation
The paraxial approximation is based on the assumption that x'% + y’% <<1.

Its natural consequenceis
B.=B-1+x*+y? =p. (45)

For X' <100 mrad and y* < 100 mrad, the error on £ (or ;) islower than 1% .

This approximation is quite accurate at high energy where the beam divergence is small, but is
more difficult to justify at very low energy.

4.3.3 Energy gain calculation

From Eqgs. (44), one can easily obtain the energy gain:

dy , dp, , dipy  dyp,
L =f| X Ly L X 46
ds 'BZ( ds 7 Tds ds (46)
giving:
dy _ a4 (. ,
L= . (XE ,+YE, +E,) . 47
ds 2 ( xTY y Z) ( )

One finds the well-known result that only the electric field contributes to energy gain.

4.4  Longitudinal particle dynamics (motion in non-linear force)

44.1 Thelongitudinal variables
The variables generally used to describe the longitudinal particle motion, as afunction of s, are:
— ¢, the absolute particle phase, calculated from the RF frequency, with ¢ = 0 arbitrarily chosen.
— W, the particle kinetic energy’.
The evolution of these variables with sis given by the equations:

d¢ _ a)rf _

2
ds L B-Ay 1-x2-y? . (48)

OLI_"::q-(x'Ex(s,¢,r)+ YE,(s.6.1)+E,(s.0.1))

"Thisisrealy a‘longitudinal’ particle property only in paraxial approximation.
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Applying these equations to the synchronous particle, one gets:
do; 27
ds ﬁ s’ Z“rf
dw;,
ds
L et us define the reduced phase and energy variables for each particle:
o= ¢ - ¢s
w=W-W,

. (49)
q- Ez (S! ¢s !0)

(50)

L ate particles have a positive ¢.

The equations of motion with these new variables become:

do 2z

1 1
ds ﬂ’rf [ﬁ\/l— X,2 — y'2 ﬂs] (51)
dw
o q.[XEX (s.0.1)+YE, (s.0.r)+E,(s.¢.r)-E, (s,¢s,0)]

When the beam is accelerated by a standing-wave cavity structure, synchronous particles enter
successive cavities giving it a strong energy gain, separated by long drift spaces where no acceleration
occurs. In order to understand the physics, this periodic acceleration scheme can be replaced by a
continuous acceleration one. This scheme assumes that the beam is accelerated by a travelling wave
propagating at the same speed as that of the synchronous particle. This scheme allows a mathematical
resolution of the dynamics equations® with an electric field independent of s.

442 Thedectricfield model

The electric field, generally a function of s, is the chosen constant. The field amplitude of the
travelling wave is EqT (mean electric field) on axis. Here E, is defined as the potential gain of one
cavity V, divided by the distance between the centres of consecutive cavities. The transit-time factor T
has been included to take into account the variable efficiency of the acceleration in standing-wave
cavities with the particle velocity.

The on-axis electric field longitudinal component becomes:
E,(s.¢.r =0)=E,T coslo+ ). (52)
@« being the RF synchronous phase of the synchronous particle.
The energy gain per metre of the synchronous particleis then:
G=0qE,T, - cosdy,. (53
Here Tsis the transit-time factor of the synchronous particle.
Let us assume an axisymmetric accelerating field, the off-axis eectric field longitudinal

component can be written:

E,(s,0,1)=E,T-R(r)-coslo+dy,), (54)

8 Equations are smoothed for analytic solutions, then quantified for a numerical solution.
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r being the radial position of the particle, R(r) expressing the radial evolution of the eectric field
longitudinal component. It can usually be written as R(r) =1+ O(rz). Close to the axis, the Bessel
function, solution of the Maxwell equations in axisymmetric geometry in vacuum, can be used to
express R(r) [2][6], but far from the axis, the cavity geometry has a strong influence through the
boundary conditions. The radial position (r) can be replaced by (x,y) if the cavity is not axisymmetric.
Some authors include the variation of the field with r in the transit time factor: T(r).

From the relationship V-E =0 and remarking that the electric field transverse component is
null on the axis, one gets the electric field transverse component:

1 (0E,(so,r)
E (s¢,r)=—=|———"-r-dr
(s.r) r{ s
(55)
1 ET f
=—=—-——.sin(e+4¢,) | R(r)-r-dr
r ﬁs/ft ((P ¢s())_([ ()
The electric field radial component can be written:
Er(S,(p,r):—Z;~sin((p+¢so)~(L2+O(r3)j . (56)

Three assumptions are made to decouple the longitudinal motion from the transverse one;

— In general, we assume:
%+O(r3)<<ﬂs/1.As (X,y)<<1,

and the contribution of the transverse electric field to the energy gain can usually be neglected
in Eq. (51):
XE,+YE, <<E, - E. (57)
— Generally, the paraxial assumption occurs, and we consider:
X2 +y?<<1. (58)
— Finally, we assume that the longitudinal field does not depend on the radia position r, by
taking:
R(r)=1. (59)

4.4.3 The equations of motion

Using these assumptions, Egs. (51) become:

d_@:_Z_ﬂ( 11 ]
ds A\B(s) B(s) (60)
dw

which isin fact the equation of motion of on-axis particles.

cosg,, - (1-cosg)+sing,, -sing) ,

Moreover, a small longitudinal velocity dispersion assumption can be carried out:

i—izéﬁ‘l <<i, (61)

B Bs Bs
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and afirst order development around synchronous velocity gives:

w
Pl=emr————.
(:Bsys )3 ’ rnC2
If one considers that the transit-time factor does not depend on the beam particles’ energy:
T(w)=T,, (62)
Eq. (60) becomes:
do_ .. W _ M,
ds oA Coow
(B.7.) N (63)
dw . .
—=-q-E,T.-| cosg,, - (1-cos@)+sing,,-sing |=——2
ds q EO s |: ¢SO ( (P) ¢so (p:l a(p

As g and w are canonical variables with the independent variable s, a Hamiltonian H,, has been
used to describe the particle motion:

H¢w=‘<m)ffmz.ﬂ'g—qms-R<r>-[sin¢so-<cos<p—1>+cos¢so-<s‘n<p—<p)] ©

In the phase space (¢, w), particles follow curves where H,, = Cst. They are represented in
Fig. 5 for on-axis particles. In Fig. 5(8), fs% = Cst, as in Fig. 5(b), an adiabatic acceleration (S #
Cst) is added and the bucket turns into the well-known golf club shape.

a) b)

14 14

Fig. 5: Particle trgjectoriesin longitudinal phase-space. (a) Sy = Cst. (b) Adiabatic acceleration: the golf club
represents the input acceptance [in red, (1)]. In blue (2) are the trgjectories of two particles. They exhibit the
damping of the phase oscillation amplitude with accel eration.

A particle entering the cavity after the synchronous particle gets a larger energy gain. A particle
entering the cavity in advance (called the early particle) gets a smaller energy gain.
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Fig. 6: Energy gain—synchronous particle

The synchronous phase of the synchronous particle is a stable point situated between —nt/2 and 0 °.
The choice of the synchronous phase delimits a phase acceptance:

— The higher limit ¢ is the phase where a late particle gets the same energy gain as the
synchronous particle:

¢ =—Ps0 = 0 =29 - (65)

— At the lower limit ¢,, the confinement potential equals the potential at the higher limit (#). As
the potential is the integral of the force, ¢ is the phase where the horizontally hatched surface
(in Fig. 6) equals the vertically hatched one. It can be calculated from the Hamiltonian given in
Eq. (64):

Hou(9=0, — 00, W=0)=H ,,, (0 =01 — 90, W=0). (66)

2 is the solution of
(sing, — ¢, cosg, )+ (sing,, — d,, COSPy, )=0. (67)
— The choice of the synchronous phase also determines the energy acceptance AE corresponding

to the difference between the potential energy of a particle with a phase ¢, and the synchronous
particle. It can also be calculated from the Hamiltonian given in Eq. (64):

Ho(@=0Ww=AE)=H , (0=¢ —9y,,w=0), (68)

giving:

® For positively charged particles, as for negatively charged ones, it depends on convention (is gEq > 0 or
Eo>07).
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AE =2 qE,T (¢, COSPy, —SiNgyp). (69)
3 2 2
AE = [(ﬂsys) . i -me : 2' qEOT(¢sO COS¢SO - Sin ¢SO )J i . (70)
T

The acceptance area in the phase-energy space is called the bucket, its limit is called the
separatrix. The energy acceptance AE and the phase ¢, are represented as a function of the
synchronous phasein Fig. 7.
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Fig. 7: Bucket dimensions as a function of the synchronous phase

For small phase amplitude oscillations, Egs. (63) become:

ds (ﬂsys)s 'rmZ A

do o w
(71)
dw

E:q'EOTs'Sin¢sO'(P

giving the second order differential equation of phase evolution:

+Z. T4 kZ.0=0 (72)

with:

k2= 2mq - E0T§ .Sm(z_ ®) _ (73)
(ﬂsy's) -mc” -4

Here k; is the phase advance per metre of the beam core. In periodic structures of period L, o, =k, L

isthe longitudinal core phase advance per lattice.

_2 B
Sy e
3 d(Br,)/ds
Here ¢ isthe damping length of the core oscillations.

(74)

Both ¢ and the variation of k, with B contribute to phase oscillation damping with
acceleration. The adiabatic damping of the phase amplitude oscillation ¢, defined when the
contribution of ¢isnegligible, can be calculated [7]:

-3/4

Py < (ﬂsys) (75)
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Liouville' s theorem implies that the energy amplitude oscillation w, variation is

3/4
w, o< (B.7.)
The Hamiltonian in linear force then becomes:
27 w? 2

: 4
How=— —+q-E T, -singy, - — . (76)
? (ﬂs}/s)g'rmz'ﬂ 2 ° ° 2

The curves where the Hamiltonian is constant are then ellipses.

45 Motionin linear force

We have seen that the longitudinal particle motion is basically non-linear, but it can be linearized
when the particle phase oscillation amplitude is very small compared to ¢. The transverse forces are
much more linear than the longitudinal ones, and the use of the linear focusing force is very close to
reality, and can be solved analytically.

451 Linear transverse forces

In linacs, the main elements used to transport a beam are the cavities and the quadrupoles. Both these
elements induce transverse forces.

45.1.1 Quadrupoles

In a perfect thick-lens quadrupol e the magnetic field is

szG'y
{By:Gx (77)

where G isthe quadrupole gradient (in T/m).

With the paraxia approximation and because the magnetic field does not change the particle’s
energy, the equations of transverse dynamics in quadrupole are then:

dyB, dax’ q-G
—_— =——X
ds ZE ds mc
%:X’:%

S z

By =B d’_9qG
ds ds mc
dy , B

ds B,

The transverse perfect quadrupole force is linear. Actually, fringe field and non-perfect hyperbolic
poles induce non-linear effects which can generally be neglected at first order in linacs.
4512 RFgap

When a particle travels through a cavity, the integration of the effect of the radial electric field and the
azimuthal magnetic field can be modelized by a transverse kick, which is linear at second order. This
kick modifies the particle transverse momentum:

A(?ﬂﬁ-%dmp-[r +O(r3)] =A(yB,)-r'+98,- A", (79)

122



INTRODUCTION TO RF LINEAR ACCELERATORS

with B2 =%+ B:. The term in r’ shows that the particle transverse oscillation is damped by
acceleration in accelerating cavities.

45.2 Motion of particlein periodic linear force

At first order, the motion of a particle can be linearized and the motion along al directions can be
decoupled. The equation of motion in the w direction (w being x, y or ¢) is the solution of a second-
order equation:

2
d'w, A, d7, -d—W+kW(s)~w=0. (80)
ds? B3, ds ds
Here A, isaconstant equal to 1 for w=xory, and 3 for w = ¢.

Now, let us consider that the focusing force is periodic with period S, i.e. k, (s+S)=k,(s).
Generaly, the damping term given by the acceleration is very small and can be considered as a

perturbation:
<i.d_7r’3z.d_w> << (K, (s)- W), (81)

where <a> s givesthe average value of quantity a over one lattice period. In this assumption, the
solution of Eg. (80) is:

W(S) =\ Bum () L/ 16, -0S[ y, (5=%) + ¥4, (%) ] (82)
with B,m periodic [ B (5+S) = By (S)] , known as the structure beta function, solution of:
P .k (5). f -2 14 L[ Bom |
i K ()" Bum o [1+4 ( " ) ] , (83)

with 1,,/78,, known as the Courant-Shyder invariant (which is actually invariant with no
acceleration), and ¥, the particle phase advance, defined as:

¢ ds
Vu(S) s{ e (84)
Particles are turning around periodic ellipses whose equations are:
7wm(s)'W2+2'awm(s)'w'w+ﬁwm(s)'\/\/2:lw/wz1 (85)
. _ 1dBum(s)
with Oy (8)= > s (86)
1+] &, (s)]2
and m (S) = —————=. (87)
=5 (9

The surface of the ellipses decreases as 1/y3, which is close to 1/ with the paraxia
approximation.

The phase advance per lattice o, defined as
Ow=Vy (S+ S) —Vw (S) ' (88)
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gives an idea of how fast the particles turn around the ellipses. The number 27/ o, is the number of

lattice periods when the particle has made one turn around the ellipses. One can note that, in linear
forces, the phase advance per lattice is the same whatever the particle amplitude.
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Fig. 8: Particle transport in a FODO channel

As an example, have a look at a particle motion along one direction in a FODO channel. In
Fig. 8, five FODO lattices have been represented. The particle phase advance per lattice is
360°/5 = 72°. The particle position in 2D phase-space is represented by the red point in four different
positionsin the lattice. Each line correspond to one position:

— 1st line: middle of focusing quadrupole,

— 2nd line: between focusing and defocusing quadrupoles,
— 3rd line: middle of defocusing quadrupole,

— 4th line: between defocusing and focusing quadrupoles.

One observes that lattice after lattice the particle turns around an ellipse at the same position.
The dlipse is different from position to position within the lattice. Its equation is given by (85). It is
very important to understand that these ellipses have nothing to do with the beam (no beam has been
defined here, just one particle). These ellipses are defined by the transport channel.

To conclude, we should keep in mind that a large number of assumptions have been made to
achieve the results. The opportunity of each assumption has to be studied very carefully in practical
cases. Nevertheless, the results presented here help to elucidate beam dynamics.
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4.6 Beamr.m.s. dimension and Twiss parameters

A bunch is constituted of N particles. Its dimensions are defined statistically as follows:

— The beam centre of gravity position: (w) :% Dw
i=1,N

— The beam centre of gravity slope: (W) :% D w.

i=L,N

— Thebeamr.m.s. size: W= <(W—<W>)2> Z\/ﬁ

— Thebeam r.m.s. divergence: W = <(V\/—<\A/>)2> :\/ﬁ (W, —(w))* .

2

— The beam r.m.s. emittance: £, = \/\TVZWZ —{(w—(w))- (W = (w)))
The beam Twiss parameters are then deduced from the beam r.m.s. dimensions:

;W S W 5 o {w=(w)-fw - w))

’ }/W w =

w =

Generally, at least 90% of the particlesin the bunch occupy an ellipse of equation™:

7, W 2@, ww+ 4, w=5Z,.

(89)

(90)

(91)

(92)

(93)

(94)

(95)

The parameter w can be X, y, z or ¢. The phase-space 2D projections of a beam with ~100 000
particles are represented in Fig. 9. Ellipsesin red correspond to ellipses calculated with Eq. (95). They

contain, in this example, 92% of the particles.
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Fig. 9: Phase-space beam distribution and Twiss parameters

47 Matched/mismatched beam

A beam is matched when its Twiss parameters at a given position s correspond to the transport channel
periodic Courant-Snyder parameters. In this condition, the same beam phase-space shape is

191 the bunch were uniform, 100% of the particles would occupy this ellipse.
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reproduced period after period. The envelope evolution with sis periodic and as smooth as possible. In
Fig. 10 the evolution of beams in the same FODO channel as before (upper ling) has been represented.
In the middle line, the ellipses represent the beams in the phase-space at the focusing quadrupole
centre. The dashed-black circle represents a particle motion in this channel. One matched (in
continuous red) and two mismatched (in dashed pink and dotted blue) beams have been represented.
One particle of each beam has also been represented.

The matched beam €llipse is periodic, as one particle is replaced by another one. Its envelope
(last line) is periodic with the | attice period L.

The mismatched beam ellipses sweep a bigger area (dashed-black circle) than the beam ellipse
surfaces. Their envelope period is greater than the lattice period. Its oscillation is a combination of two
oscillations with two different periods: one is the lattice period L, the other is 27/0,, - L, with &,

being the channel phase advance per lattice.

FEE

Fig. 10: Matched and mismatched beam in the FODO channel

When the forceislinear (Fig. 11), al particles turn in the phase-space with the same period (i.e.
the same phase advance per lattice). The beam phase-space distribution changes lattice after lattice,
but its emittance is kept constant.

x Hamiltonian=Cst

-
.
.
v’ -7
, -
.
’ ’
i s
’ .

M atched beam Mismatched beam

Fig. 11: Matched (left) and mismatched (right) beam in linear forces

126



INTRODUCTION TO RF LINEAR ACCELERATORS

When the force is non-linear (Fig. 12) [external force or force induced by space-charge
(Coulomb interactions between beam particles)], the particle phase-advance per lattice depends on its
oscillation amplitude. Beam particles no longer turn all at the same speed, and an apparent emittance
growth is observed™. This effect is known as beam filamentation (Fig. 13). After a long time (many
particle betatron periods), the phase-space swept by the beam is completely full of particles. The
apparent emittance is higher.

Hamiltonian = Cst

XI

Initial beam

Final beam

M atched beam Mismatched beam

Fig. 12: Matched (left) and mismatched (right) beam in non-linear forces

riRa

r/Ra

rIRa IRa r/Ra

Fig. 13: Filamentation of mismatched beam in non-linear force

1 Even if the phase-space area occupied by the particleis constant (Liouville's theorem applies).
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5 CONCLUSION

This paper is a short introduction with basic notions on linacs. A better understanding cannot be
obtained without tackling subjects like the existing structures, the RF control, the space-charge effects,
or the resonances. Mativated students are strongly advised to read Tom Wangler's book [2].
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