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Abstract 
After a short introduction to applications of RF linacs and their advantages 
and drawbacks as opposed to circular accelerators, the model of RF resonant 
cavities and their excitation by RF sources or beam is introduced. Then 
beam dynamics notions, essential to linacs, such as transit-time factor, 
synchronism, r.m.s. properties, matching and mismatching in linear or non-
linear forces, are presented. 

1 INTRODUCTION 

A one-hour lecture on RF linear accelerators (linacs) and a ten-hour course were given to the CAS 
students. The short lecture introduced the students to RF specifics and beam dynamics basics giving 
them a good understanding of linacs. This paper deals with the notions introduced in the lecture. 
Students eager to learn more about linacs are advised to read the books in Refs. [1] and [2]. 

After a short introduction to RF linac applications and their advantages/disadvantages as 
opposed to circular accelerators, this paper is divided into two parts: 

– Section 3 introduces the RF cavity through its basic principle and model, the notion of RF 
modes, and the way they are excited either from the RF source or by the beam. 

– Section 4 gives useful notions of beam dynamics in linacs: the transit time factor; the notion of 
synchronism; the particle motion in continuous non-linear forces (longitudinal dynamics); and 
periodic linear forces (transverse dynamics). The notion of beam r.m.s. properties and matching 
in the linac is discussed. The effects of non-linear forces on emittance growth are introduced. 

2 WHY RF LINACS? 

The goal of a particle accelerator is to produce a ‘low-cost wanted’ beam. By ‘wanted’, one means a 
given particle type, with a given intensity, at a given energy within a given emittance (or brightness) 
in a given time structure. Costs should cover construction, operation, and personnel. 

Synchrotrons, cyclotrons, and RF linear accelerators (linacs)1 can all achieve this. 

The main advantages of linacs are that 

– they can handle high current beams (they are less limited by tune shift), 

– they can run in high duty-cycle (the beam passes only once at each position), 

– they exhibit low synchrotron radiation losses (no dipoles). 

Their main drawbacks are that  

– they consume space and cavities,  

– the synchrotron radiation damping of light particles (electrons/positrons) cannot be easily used 
to reduce the beam emittance.  

                                                      
1 Electrostatic machines are also suitable for low-current, low-energy beams. 
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That is why linacs are mainly used: 

– as low-energy injectors (where the space-charge force is more important and the duty-cycle is 
high),  

– with high-intensity/power proton beams (high space-charge level or/and duty cycle), 

– in new lepton collider projects at very high energy (no radiation losses). 

3 RF CAVITIES 

The RF cavity gives energy to the beam. As the cost of the RF generally represents the main expense 
of the linac structure apart from the building, the choice of the RF structure has to be studied very 
carefully. This paper presents only the principle of an RF cavity. More precise information can be 
found in the CAS dedicated to RF [3]. 

3.1 A standing-wave RF cavity 

3.1.1 Field calculation 

An RF cavity is simply a piece of conductor enclosing an empty volume (generally a vacuum). 
Solutions of Maxwell’s equations in this volume, taking into account the boundary conditions on the 
conductor, allow the existence of electromagnetic field configurations in the cavity. These are called 
the resonant modes. 

 

Each mode, labelled n, is characterized by an electromagnetic field amplitude configuration 
( )rEn / ( )rBn  oscillating with an RF frequency fn. The electric field amplitude configuration is the 

solution of the equation: 
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where ( )rEn  should satisfy the boundary conditions and nn f⋅= πω 2  is the mode pulsation. 

The electric field in the cavity is a weighted sum of all the modes: 

( , ) ( ) ( ) ( )nj t
n n n nE r t e t E r a e E rω= ⋅ = ⋅ ⋅∑ ∑  . (2) 

Here an is a complex number and en(t) is the field variation with time, it is the solution of [4]: 

Maxwell’s equations 
 

0ε
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μ0 = 4π⋅10-7 T·m·A-1 : permeability of free space, 
ε0 = 1/μ0c2 : permittivity of free space, 
c = 2.99792458⋅108 m·s-1 : speed of light in vacuum. 

Boundary conditions 
 

0=× nEn , 0=⋅ nBn , 

0ε
Σ=⋅ nEn , KHn n =× . 

n , the normal to the conductor, 
Σ (C/m2), the surface charge density, 
K  (A/m), the surface current density. 
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Here H  is the magnetic induction. It is often used close to the surface in place of ,B  as unlike ,B  it 
is macroscopically continuous through the surface. J is the current density, of the beam for example. 
The first term on the right-hand side is an integration over the conductor which is not a perfect 
conductor. Because of power losses by Joule effects, it can be rewritten as a damping term: 

n
n

n e
Q

⋅−
0

ω
. (4) 

The calculation of Q0n, the quality factor of the mode, can be deduced from power loss considerations: 

Un(0) is the energy stored by the n-mode at time t = 0. For t > 0, no more power is injected in 
the cavity. Let us define k(t) as: 

( ) ( )
( )0=

=
te

te
tk

n

n . (5) 

The energy lost per unit time is the power dissipated in the conductor Pn:  

( ) ( )tP
dt

tdU
n

n −= . (6) 

The average power dissipated in the conductor per cycle is proportional to the square of the 
current density (and then the magnetic field) close to the surface: 

2 2s s

2 2n n n
S S

R RP K dS H dS= =∫ ∫ , (7) 

where Rs is the surface resistance defined as: 

0 0
s

fR μ π
σ

− = , for normal conductors (8) 

where σ is the conductor conductivity (1/σ = 1.7⋅10-7 Ω·m for copper). 
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where Rres is the residual resistance (10-9–10-8
 Ω) depending on the surface imperfections, T is the 

working absolute temperature, Tc = 9.2 K is the critical temperature. 

From Eqs. (5) and (7) can be deduced: 

( ) ( ) ( )02 =⋅= tPtktP nn  . (10) 

The stored energy is proportional to the square of the field: 
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then: 
2( ) ( ) ( 0)n nU t k t U t= ⋅ = . (12) 
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Equation (6) becomes: 
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A comparison with the damping term written in (4) gives: 

n

nn
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U
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⋅
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ω
0   .  (15) 

In the second term, the integration is performed over the open surfaces S ′ and represents the coupling 
with the outside system. This coupling can be divided into two contributions: 

– the injected power coming from the power generator through the coupler, 

– an additional damping, which can be represented by another quality factor Qexn known as the 
external Q, corresponding to power losses through the opened surfaces. The coupling can be 
calculated from the coupler geometry with electromagnetic codes. 

( )RF 0

exn

j tn
n ne S e

Q
ωω +ϕ− ⋅ + ⋅   . (16) 

( )RF 0j t
nS e ω +ϕ⋅  is the RF source filling through the coupler. 

The last term, represents the field excited by the beam, known as the beam loading. It is proportional 
to the beam intensity:  

( )nk I t⋅   . (17) 

( )I t is a complex number (it has a phase) representing the beam current. 

Equation (3) can then be modelized by: 

( )RF 0

2
2RF

2 ( )j tn n
n n n n

n

d e de e S e k I t
dt Q dt

ωω ω +ϕ+ ⋅ + ⋅ = ⋅ + ⋅   , (18) 

which is the equation of a damped harmonic oscillator in a forced regime. Qn  is the quality factor of 
the cavity, with  

0 exn

1 1 1

n nQ Q Q
= + , 

and 

RF

2 nQτ
ω

= ⋅  

is the cavity filling time. 

Note that both the coupler or the beam can excite some RF modes. 

Equation (18) shows an RLC circuit which is often used to modelize the system. A complete 
study of this model can be found in Ref. [4]. 
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From these modes, one with a field amplitude along the longitudinal direction on the axis is 
used to accelerate the beam. The geometry of the cavity is then calculated to match the frequency of 
this accelerating mode to the RF frequency. This mode is excited in the cavity through a power 
coupler whose geometry is calculated and adjusted to transfer electromagnetic energy in the cavity to 
the beam without reflection––a process called coupler matching. 

3.1.2 Shunt impedances 

To first order, only the accelerating mode is excited in the cavity. The transverse component of the 
electric field is generally null along the axis. An expression of the z component of the field on the axis 
is then: 

( ) ( ) ( )0, cosz zE s t E s tω= ⋅ + ϕ . (19) 

The field amplitude is Ez0(s). 

One defines the cavity voltage V0 as:  

( )∫
+∞

∞−

⋅= dssEV z00 . (20) 

Then q⋅V0 represents the maximum energy (in eV) that a particle with charge q could gain if the field 
was always maximum. 

Let Pd be the power deposition in the cavity: 
2

0
d 2

VP
R

=
⋅

. (21) 

The cavity shunt impedance R is very useful in cavity design. For optimum acceleration, it has to be as 
high as possible. 

Because the electric field changes with time as the particle transits through the cavity, the 
maximum energy q⋅V  that can be gained in the cavity by a particle of charge q is lower than q⋅V0. One 
defines the transit-time factor T as: 

0V
VT = ≤ 1. (22) 

This corrective factor to the energy gain takes the particle transit time in the cavity into account, 
and is obviously dependent on the particle velocity. The calculation of this factor is described in 
Section 4. 

The effective shunt impedance RT2 is then proportional to the ratio between the square of the 
maximum energy ΔUmax that can be gained by the beam and the power lost in the cavity: 

dP
U

RT
2

2
max2 Δ

= . (23) 

It is some sort of cavity efficiency and has to be maximum. 

The shunt impedance is often used to compare the efficiency of different structures at a given 
energy. Usually, the geometry is different, so one extends the preceding definition per unit length to 
allow a better comparison. 
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Let L be the cavity length2. The mean cavity electric field E0 is defined as: 

L
V

E 0
0 = . (24) 

The power deposition per unit length in the cavity 
dP′  is then: 

2
0

d 2
EP

Z
′ =

⋅
, (25) 

where Z is the cavity shunt impedance per unit length. 

The effective shunt impedance per unit length ZT2 is then proportional to the ratio between the 
square of the maximum energy maxU ′Δ that can be gained per unit length by the beam and the power 
lost per unit length in the cavity: 

dP
U

ZT
′

′Δ
=

2

2
max2 . (26) 

As it is depending on the particle velocity, one chooses the structure that maximize ZT2 at a 
given energy. Figure 1 represents the evolution of the effective shunt impedance per metre for two 
different structures (SDTL and CCL) with different apertures φ. The higher the aperture (space for 
beam), the lower the effective shunt impedance. SDTL structures are more efficient at lower energy, 
CCL structures are more efficient at higher energy. The optimum transition energy is around 100 MeV 
for protons. 

375 MeV85 MeV45 MeV19 MeV 234 MeV  
Fig. 1: Effective shunt impedance per metre of different TRISPAL structures (C. Bourat) 

3.2 A travelling-wave RF cavity 

A travelling-wave cavity is generally used to accelerate ultrarelativistic particles. These cavities 
generally have two power ports. One where the power enters, and another, at the other end, where the 
power exits (Fig. 2). The electric field travels through the cavity from the input to the output port. Its 
phase velocity is adjusted to the beam velocity. The field phase is adjusted to continuously accelerate 
the beam. 

                                                      
2 Owing to the cavity fringe field, L is often arbitrarily defined as the physical length of the cavity. 
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Fig. 2: A travelling-wave cavity 

The RF phase velocity in empty cavities or wave-guides is usually higher than (or equal to) the 
speed of light in vacuum c. As particle velocity cannot exceed c, the RF phase velocity should be 
decelerated to reach the synchronism condition by introducing some periodic obstacles into the guide 
(such as iris-loaded waveguide). The periodic field can then be expanded into a Fourier series with 
different wave numbers: 

( ) ( ), expn n
n

Ez t z ez j t k zω
+∞

=−∞

⎡ ⎤= ⋅ ⋅ −⎣ ⎦∑  , (27) 

with ezn the space harmonic amplitude, kn the space harmonic wave numbers, 

0
2= +n

nk k
d
π

  , (28) 

d the obstacle period, and k0 the waveguide number. 

The phase velocity vn of space harmonic number n is 

n
n k

v ω= . (29) 

Particles whose velocity is close to the phase velocity of one space harmonic exchange energy 
with it. Otherwise, the average effect is null. 

A complete calculation of these insertion obstacles as well as a large bibliography can be found 
in Ref. [5]. This kind of travelling-wave accelerating structure is mainly used to accelerate ultra-
relativistic electrons. 

Moreover, the model of a travelling-wave acceleration, even with acceleration with standing-
wave cavities, is often used to simplify the calculation of the longitudinal-motion equations. 

4 ELEMENTS OF BEAM DYNAMICS 

4.1 The transit-time factor and the particle synchronous phase 

A cavity has a finite length L. The cavity input abscissa is s0, and Ez(s) is the amplitude of the electric 
field longitudinal component on axis. 

The energy3 gained by a charged particle on axis in the cavity is 

                                                      
3 This is actually the longitudinal energy, but we can consider that there is no transverse field on the cavity axis. 
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where q is the particle charge, φ(s) is the cavity RF phase when the particle is at abscissa s. It is 
defined as 
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where φ0 = φ(s0)  is the RF phase when the particle enters the cavity. 

Writing φ(s) = φ(s) + (φs − φs), φs being an arbitrary phase and using trigonometric relationships, 
one gets for the energy gain: 
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0 0

0 0

cos cos sin sin
s L s L

s s s s
s s

W qEz s s ds qEz s s dsφ φ φ φ φ φ
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By defining φs as:  
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giving the definition of the synchronous phase φs: 
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one finally gets 
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with 
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0

00

1 cos
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s
s

T Ez s s ds
V

φ φ
+

⎡ ⎤= ⋅ − ⋅⎣ ⎦∫   . (35) 

The transit-time factor T, depends on the particle initial velocity as well as on the field 
amplitude. This definition does not make any assumption about the field shape (no symmetry) 
resulting from a slightly different synchronous-phase definition, which can be found in the literature 
(which is often taken as the RF phase when the particle reaches mid-cavity). When the velocity gain in 
the cavity is much lower than the input-particle velocity, T depends only on the velocity and can be 
easily tabulated. 

N. PICHOFF

112



 

The calculation of T with formula (35) is sometimes difficult to perform, as φs has to be known. 
In fact, T does not depend on φs when the velocity gain is small and another formula (a little bit more 
difficult to understand physically) can be used:  

( ) ( )∫ ⋅⋅= dsesEz
V

T sjφ

0

1
  . (36) 

4.2 Notion of synchronism 

A linac is designed so that one theoretical particle called the synchronous particle enters successively 
along the axis of RF cavities with a wanted RF phase law in order to get a wanted energy gain. This 
very important notion of synchronism allows the understanding of the efficiency and the stability of 
linacs. 

Particles can be accelerated with travelling waves as well as standing waves (Fig. 3). 

βz⋅c

ω
k

Synchronous
particle

 

Fig. 3: Particle accelerated by a travelling wave 

4.2.1 Acceleration with travelling waves 

The on-axis RF accelerating field can be written as: 

( )kztEtzEz −⋅= ωcos),( 0 , (37) 

where ω is the RF pulsation and k is the RF wave number. 

The synchronism condition is reached when the particle-longitudinal velocity equals the RF 
phase velocity: 

ω
β kcz = . (38) 

Here c is the speed of light in vacuum, βz is the reduced longitudinal velocity of the synchronous 
particle. Note that when the paraxial approximation4 is used, βz is replaced by β, the reduced total 
speed of the particle. 
                                                      
4 As 2 21z x yβ β ′ ′= ⋅ + + , paraxial approximation occurs when x' << 1 and y' << 1. 
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4.2.2 Standing waves 

In most linacs, the beam is accelerated with RF cavities or gaps operating in standing-wave conditions. 
An RF power, produced by one or many RF sources, is introduced through a coupler in a resonant 
cavity exciting the wanted standing-wave accelerating mode. The cavity shape has been calculated and 
adjusted to match the accelerating mode to the power-supply frequencies and to throw the other mode 
frequencies far from the RF one. 

As a first step, let us assume a set of thin independently phased RF cavities along the beam path 
(Fig. 4). 

Fig. 4: A set of independently phased cavities 

– φi is the absolute RF phase in the ith cavity when t = 0 (the t = 0 instant has been arbitrarily 
chosen), 

– βsi is the synchronous, particle reduced velocity at the ith cavity output, 

– φsi is the RF synchronous phase of the ith cavity of the synchronous particle5, 

– Di is the distance between the ith and the i+1th cavities. 

The synchronism condition is reached when: 

[ ]n
D

ii
is

i
sisi πφφ

λβ
πφφ 22 11 +−+⋅=− ++ . (39) 

The RF wavelength is /c fλ = . 

One observes that the synchronism condition does not depend on the RF field amplitude. It has 
a non-intuitive consequence: an increase of the accelerating field amplitude in the cavities without 
phase change does not induce an increase of the synchronous-particle final energy but a change of the 
synchronous phase fulfilling the synchronism condition. 

Two different kinds of structures exist: 

– The coupled-cavity structures where the phase between cavities is fixed. The synchronism 
condition is achieved by adjusting the distance between the cavities. 

In a Drift-Tube Linac (DTL), for example, the phase difference between the cells is fixed 
(= 2π). The distance between cells is then calculated to have: 

λβ
π

φφ
is

sisi
iD ⋅⎟

⎠

⎞
⎜
⎝

⎛ +
−

= + 1
2
1  . (40) 

                                                      
5 Do not confuse the synchronous-particle phase, the phase of the synchronous particle in a cavity and a particle 
synchronous-phase, the synchronous phase of a particle (whatever it is) in a cavity. 

φsi φsi+1 φsi-1 

Di Di-1 

φi φi+1 φi-1 

βsi-1 

Cavity number i-1 i i+1 

Synchronous phase 

Particle velocity 

RF phase 

Distances 

βsi 
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– The independent cavity structures where the distance between cavities is fixed. The 
synchronism condition is then achieved by adjusting the phase difference between the cavities. 

In a Superconducting-Cavity Linac (SCL), for example, the distance between cavities is fixed 
by the cryogenics mechanism. The phase difference between cavities is then calculated to have: 

[ ]n
D

is

i
sisiii π

λβ
πφφφφ 2211 +⋅−−=− ++ . (41) 

4.3 Particle motion in electromagnetic fields 

4.3.1 Basis 

The electromagnetic field can be divided into two contributions: 

– The electric field: E. 

– The magnetic field: B. 

The intensity of these contributions depends on the referential where they are expressed. The 
equation of motion of a particle of charge q in these fields is: 

( )EBvq
dt
pd +×⋅=  , (42) 

where p  is the momentum of the particle and v  is its velocity. 

Let us call s the abscissa of the beam in the linac path (rather than z to avoid any confusion with 
the particle longitudinal position in the bunch), the equation of motion can be rewritten: 

zv
EBvq

ds
pd +×⋅= , (43) 

where vz is the particle longitudinal velocity.  

A projection on the Cartesian axis6 (x, y, z) gives: 
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6 In general, x and y play the same role in a linac (contrary to their role in a circular accelerator). 
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are the slopes of the particle, and 

c
vw

w =β , 

is the reduced velocity w-component, w being x, y or z; vw is the particle velocity w component; m and 
q are, respectively, the rest mass and the particle charge; c is the speed of light. 

One clearly observes that longitudinal and transverse motions are coupled. However, for an 
easier understanding, and because the coupling is often very weak, the longitudinal and the transverse 
motions are usually treated as uncoupled, the longitudinal velocity vz variations are considered 
separately. To uncouple the transverse and longitudinal motions, the paraxial approximation has to be 
done. 

4.3.2 Paraxial approximation 

The paraxial approximation is based on the assumption that 122 <<′+′ yx .  

Its natural consequence is 

βββ ≈′+′+⋅= 221 yxz . (45) 

For x' < 100 mrad and y' < 100 mrad, the error on β (or βz) is lower than 1% . 

This approximation is quite accurate at high energy where the beam divergence is small, but is 
more difficult to justify at very low energy. 

4.3.3 Energy gain calculation 

From Eqs. (44), one can easily obtain the energy gain: 
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giving: 
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q
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d +′+′⋅= 2

γ
  . (47) 

One finds the well-known result that only the electric field contributes to energy gain. 

4.4 Longitudinal particle dynamics (motion in non-linear force) 

4.4.1 The longitudinal variables 

The variables generally used to describe the longitudinal particle motion, as a function of s, are: 

– φ, the absolute particle phase, calculated from the RF frequency, with φ = 0 arbitrarily chosen. 

– W, the particle kinetic energy7. 

The evolution of these variables with s is given by the equations: 
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7 This is really a ‘longitudinal’ particle property only in paraxial approximation.  
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Applying these equations to the synchronous particle, one gets: 
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Let us define the reduced phase and energy variables for each particle:  

⎩
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s
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 .  (50) 

Late particles have a positive ϕ. 

The equations of motion with these new variables become: 
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⎪
′ ′⎡ ⎤= ⋅ + + −⎪ ⎣ ⎦⎩

 (51) 

When the beam is accelerated by a standing-wave cavity structure, synchronous particles enter 
successive cavities giving it a strong energy gain, separated by long drift spaces where no acceleration 
occurs. In order to understand the physics, this periodic acceleration scheme can be replaced by a 
continuous acceleration one. This scheme assumes that the beam is accelerated by a travelling wave 
propagating at the same speed as that of the synchronous particle. This scheme allows a mathematical 
resolution of the dynamics equations8 with an electric field independent of s. 

4.4.2 The electric field model 

The electric field, generally a function of s, is the chosen constant. The field amplitude of the 
travelling wave is E0T (mean electric field) on axis. Here E0 is defined as the potential gain of one 
cavity V0 divided by the distance between the centres of consecutive cavities. The transit-time factor T 
has been included to take into account the variable efficiency of the acceleration in standing-wave 
cavities with the particle velocity. 

The on-axis electric field longitudinal component becomes: 

( ) ( )00 cos0,, sz TErsE φ+ϕ⋅==ϕ , (52) 

φs0 being the RF synchronous phase of the synchronous particle. 

The energy gain per metre of the synchronous particle is then: 

00 cos ssTqEG φ⋅= . (53) 

Here Ts is the transit-time factor of the synchronous particle. 

Let us assume an axisymmetric accelerating field, the off-axis electric field longitudinal 
component can be written: 

( ) ( )00 cos)(,, sz rRTErsE φφ +ϕ⋅⋅= , (54) 

                                                      
8 Equations are smoothed for analytic solutions, then quantified for a numerical solution. 
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r being the radial position of the particle, R(r) expressing the radial evolution of the electric field 
longitudinal component. It can usually be written as ( )21)( rOrR += . Close to the axis, the Bessel 
function, solution of the Maxwell equations in axisymmetric geometry in vacuum, can be used to 
express R(r) [2][6], but far from the axis, the cavity geometry has a strong influence through the 
boundary conditions. The radial position (r) can be replaced by (x,y) if the cavity is not axisymmetric. 
Some authors include the variation of the field with r in the transit time factor: T(r). 

From the relationship 0=⋅∇ E  and remarking that the electric field transverse component is 
null on the axis, one gets the electric field transverse component: 

( ) ( )

( ) ( )

0

0
0

0

, ,1, ,

1 sin   .

r
z

r

r

s
s

E s r
E s r r dr

r s

E T R r r dr
r

φ
β λ

∂ ϕ
ϕ = − ⋅ ⋅ ⋅

∂

= − ⋅ ⋅ ϕ + ⋅ ⋅ ⋅

∫

∫
 (55) 

The electric field radial component can be written: 

( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ +⋅+ϕ⋅−=ϕ 3

0
0

2
sin,, rOrTE

rsE s
s

r φ
λβ

 . (56) 

Three assumptions are made to decouple the longitudinal motion from the transverse one: 

– In general, we assume: 

( ) λβ srOr <<+ 3

2
. As ( , ) 1x y′ ′ <<   ,  

and the contribution of the transverse electric field to the energy gain can usually be neglected 
in Eq. (51):  

zszyx EEEyEx −<<′+′ . (57) 

– Generally, the paraxial assumption occurs, and we consider: 

122 <<′+′ yx . (58) 

– Finally, we assume that the longitudinal field does not depend on the radial position r, by 
taking: 

( ) 1≈rR . (59) 

4.4.3 The equations of motion 

Using these assumptions, Eqs. (51) become: 

( ) ( )

( )( )0 0 0

2 1 1 ,

cos 1 cos sin sin   ,

s

s s

d
ds s s

dw q E T
ds

π
λ β β

φ φ

⎧ ⎛ ⎞ϕ = − −⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎨
⎪ = − ⋅ ⋅ ⋅ − ϕ + ⋅ ϕ⎪⎩

 (60) 

which is in fact the equation of motion of on-axis particles. 

Moreover, a small longitudinal  velocity dispersion assumption can be carried out: 

ss β
δβ

ββ
111 1 <<=− − , (61) 
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and a first order development around synchronous velocity gives:  

( ) 23
1

mc
w

ss ⋅
−=−

γβ
δβ . 

If one considers that the transit-time factor does not depend on the beam particles’ energy: 

( ) sTwT = , (62) 

Eq. (60) becomes: 

( )

( )

3 2

0 0 0

2

cos 1 cos sin sin

w

s s

w
s s s

Hd w
ds wmc

Hdw q E T
ds

φ

φ

π
β γ λ

φ φ

∂⎧ ϕ = − ⋅ =⎪ ∂⋅ ⋅⎪
⎨

∂⎪ ⎡ ⎤= − ⋅ ⋅ ⋅ − ϕ + ⋅ ϕ = −⎣ ⎦⎪ ∂ϕ⎩

 . (63) 

As ϕ and w are canonical variables with the independent variable s, a Hamiltonian Hϕw has been 
used to describe the particle motion: 

( )
( ) ( ) ( )

2

0 0 03 2

2 sin cos 1 cos sin
2w s s s

s s

wH q E T R r
mc

ϕ
π φ φ

β γ λ
⎡ ⎤= − ⋅ − ⋅ ⋅ ⋅ ⋅ ϕ − + ⋅ ϕ − ϕ⎣ ⎦⋅ ⋅

 (64) 

In the phase space (ϕ, w), particles follow curves where Hφw = Cst. They are represented in 
Fig. 5 for on-axis particles. In Fig. 5(a), βsγs = Cst, as in Fig. 5(b), an adiabatic acceleration (βsγs ≠ 
Cst) is added and the bucket turns into the well-known golf club shape. 

ϕ

w

 ϕ

w

 
Fig. 5: Particle trajectories in longitudinal phase-space. (a) βsγs = Cst. (b) Adiabatic acceleration: the golf club 
represents the input acceptance [in red, (1)]. In blue (2) are the trajectories of two particles. They exhibit the 
damping of the phase oscillation amplitude with acceleration. 

A particle entering the cavity after the synchronous particle gets a larger energy gain. A particle 
entering the cavity in advance (called the early particle) gets a smaller energy gain. 

a) b) 

(1) 

(2) 
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Fig. 6: Energy gain––synchronous particle 

The synchronous phase of the synchronous particle is a stable point situated between –π/2 and 0 9. 
The choice of the synchronous phase delimits a phase acceptance: 

– The higher limit φ1 is the phase where a late particle gets the same energy gain as the 
synchronous particle: 

             01 sφφ −=               ⇒              01 2 sφ⋅−=ϕ  . (65) 

– At the lower limit φ2, the confinement potential equals the potential at the higher limit (φ1). As 
the potential is the integral of the force, φ2 is the phase where the horizontally hatched surface 
(in Fig. 6) equals the vertically hatched one. It can be calculated from the Hamiltonian given in 
Eq. (64): 

( ) ( )0,0, 0102 =−=ϕ==−=ϕ ϕϕ wHwH swsw φφφφ .  (66) 

φ2 is the solution of  

( ) ( ) 0cossincossin 000022 =−+− ssss φφφφφφ . (67) 

– The choice of the synchronous phase also determines the energy acceptance ΔE corresponding 
to the difference between the potential energy of a particle with a phase φ1 and the synchronous 
particle. It can also be calculated from the Hamiltonian given in Eq. (64): 

( ) ( )0,,0 01 =−=ϕ=Δ==ϕ ϕϕ wHEwH sww φφ  , (68) 

giving: 

                                                      
9 For positively charged particles, as for negatively charged ones, it depends on convention (is qE0 > 0 or 
E0 > 0 ?). 

ϕ+φs0 

Synchronous particle 

βs 

φs0 

q⋅E0T 

Late particle 

Early Particle 

φ1 φ2 
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( )0000 sincos2 sssTqEE φφφ −⋅=Δ . (69) 

( ) ( )
2
1

0000

23

sincos2 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅⋅

⋅⋅
=Δ sss

ss TqE
mc

E φφφ
π

λγβ
. (70) 

The acceptance area in the phase-energy space is called the bucket, its limit is called the 
separatrix. The energy acceptance ΔE and the phase φ2 are represented as a function of the 
synchronous phase in Fig. 7. 
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Fig. 7: Bucket dimensions as a function of the synchronous phase 

For small phase amplitude oscillations, Eqs. (63) become: 

( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

ϕ⋅⋅⋅=

⋅⋅
⋅−=ϕ

00

23

sin

2

ss

ss

TEq
ds
dw

mc
w

ds
d

φ

λγβ
π

 (71) 

giving the second order differential equation of phase evolution: 

02 2
2

2

=ϕ⋅+ϕ⋅+ϕ
zk

ds
d

ds
d

ς
 (72) 

with: 

( )
( ) λγβ

φπ
⋅⋅

−⋅⋅
=

23
002 sin2

mc
TEq

k
ss

ss
z . (73) 

Here kz is the phase advance per metre of the beam core. In periodic structures of period L, Lk zz =σ  
is the longitudinal core phase advance per lattice. 

( ) dsd ss

ss

γβ
γβς ⋅=

3
2 . (74) 

Here ς  is the damping length of the core oscillations. 

Both ς and the variation of kz with βsγs contribute to phase oscillation damping with 
acceleration. The adiabatic damping of the phase amplitude oscillation ϕa, defined when the 
contribution of ς is negligible, can be calculated [7]: 

( ) 3/ 4
a s sϕ β γ −∝ . (75) 
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Liouville’s theorem implies that the energy amplitude oscillation wa variation is 

( ) 4/3
ssaw γβ∝ . 

The Hamiltonian in linear force then becomes: 

( ) 2
sin

2
2 2

00

2

23

ϕφ
λγβ

π ⋅⋅⋅+⋅
⋅⋅

−=ϕ ss
ss

w TEqw
mc

H  . (76) 

The curves where the Hamiltonian is constant are then ellipses. 

4.5 Motion in linear force 

We have seen that the longitudinal particle motion is basically non-linear, but it can be linearized 
when the particle phase oscillation amplitude is very small compared to φ1. The transverse forces are 
much more linear than the longitudinal ones, and the use of the linear focusing force is very close to 
reality, and can be solved analytically. 

4.5.1 Linear transverse forces 

In linacs, the main elements used to transport a beam are the cavities and the quadrupoles. Both these 
elements induce transverse forces. 

4.5.1.1 Quadrupoles 

In a perfect thick-lens quadrupole the magnetic field is 

⎩
⎨
⎧

⋅=
⋅=
xGB
yGB

y

x  (77) 

where G is the quadrupole gradient (in T/m). 

With the paraxial approximation and because the magnetic field does not change the particle’s 
energy, the equations of transverse dynamics in quadrupole are then: 

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=′=
′
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=

=′=

⋅−=
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=
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z
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z
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ds
yd
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mc

Gq
ds
yd

ds
d

x
ds
dx

x
mc

Gq
ds
xd

ds
d

β
β

γβ
γβ

β
β

γβγβ

  . (78) 

The transverse perfect quadrupole force is linear. Actually, fringe field and non-perfect hyperbolic 
poles induce non-linear effects which can generally be neglected at first order in linacs. 

4.5.1.2 RF gap 
When a particle travels through a cavity, the integration of the effect of the radial electric field and the 
azimuthal magnetic field can be modelized by a transverse kick, which is linear at second order. This 
kick modifies the particle transverse momentum: 

( ) ( ) ( )30
22

sinr z z

z

qE TL r O r r r
mc

πγβ φ γβ γβ
γβ λ

⎡ ⎤ ′ ′Δ = − ⋅ ⋅ + = Δ ⋅ + ⋅Δ⎣ ⎦  , (79) 
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with 222
yxr βββ += . The term in r′  shows that the particle transverse oscillation is damped by 

acceleration in accelerating cavities. 

4.5.2 Motion of particle in periodic linear force 

At first order, the motion of a particle can be linearized and the motion along all directions can be 
decoupled. The equation of motion in the w direction (w being x, y or ϕ) is the solution of a second-
order equation: 

( ) 02

2

=⋅+⋅⋅+ wsk
ds
dw

ds
dA

ds
wd

w
z

z

w γβ
γβ

. (80) 

Here Aw is a constant equal to 1 for w = x or y, and 3 for w = ϕ. 

Now, let us consider that the focusing force is periodic with period S, i.e. ( ) ( )skSsk xx =+ . 
Generally, the damping term given by the acceleration is very small and can be considered as a 
perturbation: 

( )
Sw

S

z

z

w wsk
ds
dw

ds
dA

⋅<<⋅⋅
γβ

γβ
, (81) 

where Sa  gives the average value of quantity a over one lattice period. In this assumption, the 
solution of Eq. (80) is: 

( ) ( ) ( ) ( )0 0coswm w z w ww s s I s s sβ γβ ψ ψ⎡ ⎤= ⋅ ⋅ − +⎣ ⎦ , (82) 

with βwm  periodic ( ) ( )wm wms S sβ β⎡ ⎤+ =⎣ ⎦ , known as the structure beta function, solution of: 

( )
22

2

2 12 1
4

wm wm
w wm

wm

d dk s
ds dt
β ββ

β
⎡ ⎤⎛ ⎞+ ⋅ ⋅ − ⋅ + ⋅⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 , (83) 

with zwI γβ , known as the Courant–Snyder invariant (which is actually invariant with no 
acceleration), and ψw the particle phase advance, defined as: 

( ) ( )∫=
s

s wm
w s

dss
0

β
ψ . (84) 

Particles are turning around periodic ellipses whose equations are: 

( ) ( ) ( ) zwwmwmwm Iwswwsws γββαγ =′⋅+′⋅⋅⋅+⋅ 22 2 , (85) 

with                                             ( ) ( )
ds

sd
s wm

wm
βα

2
1−= , (86) 

and                                               ( ) ( )
( )

2
1 wm

wm
wm

s
s

s
α

γ
β
⎡ ⎤+ ⎣ ⎦= . (87) 

The surface of the ellipses decreases as zγβ1 which is close to γβ1  with the paraxial 
approximation. 

The phase advance per lattice σw defined as 

( ) ( )sSs www ψψσ −+= , (88) 
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gives an idea of how fast the particles turn around the ellipses. The number 2 / wπ σ  is the number of 
lattice periods when the particle has made one turn around the ellipses. One can note that, in linear 
forces, the phase advance per lattice is the same whatever the particle amplitude. 

 

Fig. 8: Particle transport in a FODO channel 

As an example, have a look at a particle motion along one direction in a FODO channel. In 
Fig. 8, five FODO lattices have been represented. The particle phase advance per lattice is 
360°/5 = 72°. The particle position in 2D phase-space is represented by the red point in four different 
positions in the lattice. Each line correspond to one position: 

– 1st line: middle of focusing quadrupole, 

– 2nd line: between focusing and defocusing quadrupoles,  

– 3rd line: middle of defocusing quadrupole,  

– 4th line: between defocusing and focusing quadrupoles.  

One observes that lattice after lattice the particle turns around an ellipse at the same position. 
The ellipse is different from position to position within the lattice. Its equation is given by (85). It is 
very important to understand that these ellipses have nothing to do with the beam (no beam has been 
defined here, just one particle). These ellipses are defined by the transport channel. 

To conclude, we should keep in mind that a large number of assumptions have been made to 
achieve the results. The opportunity of each assumption has to be studied very carefully in practical 
cases. Nevertheless, the results presented here help to elucidate beam dynamics. 

w

w
'
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4.6 Beam r.m.s. dimension and Twiss parameters 

A bunch is constituted of N particles. Its dimensions are defined statistically as follows: 

– The beam centre of gravity position: ∑
=

=
Ni

iw
N

w
,1

1 .                                                      (89) 

– The beam centre of gravity slope: ∑
=

′=′
Ni

iw
N

w
,1

1 .                                                      (90) 

– The beam r.m.s. size: ( ) ( )∑
=

−=−=
Ni

i ww
N

www
,1

22 1~ .                                         (91) 

– The beam r.m.s. divergence: ( ) ( )∑
=

′−′=′−′=′
Ni

i ww
N

www
,1

22 1~ .                            (92) 

– The beam r.m.s. emittance: ( ) ( ) 222 ~~~ wwwwwww ′−′⋅−−′=ε .                            (93) 

The beam Twiss parameters are then deduced from the beam r.m.s. dimensions: 

       
w

w
w
ε

β ~
~~ 2

= ,                     
w

w
w
ε

γ ~
~~

2′
= ,                

( ) ( )
w

w

wwww

ε
α ~
~ ′−′⋅−

−= . (94) 

Generally, at least 90% of the particles in the bunch occupy an ellipse of equation10: 

wwww wwww εβαγ ~5~~2~ 22 ⋅=′⋅+′⋅⋅⋅+⋅ . (95) 

The parameter w can be x, y, z or ϕ. The phase-space 2D projections of a beam with ~100 000 
particles are represented in Fig. 9. Ellipses in red correspond to ellipses calculated with Eq. (95). They 
contain, in this example, 92% of the particles. 

 
Fig. 9: Phase-space beam distribution and Twiss parameters 

4.7 Matched/mismatched beam 

A beam is matched when its Twiss parameters at a given position s correspond to the transport channel 
periodic Courant–Snyder parameters. In this condition, the same beam phase-space shape is 

                                                      
10 If the bunch were uniform, 100% of the particles would occupy this ellipse. 
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reproduced period after period. The envelope evolution with s is periodic and as smooth as possible. In 
Fig. 10 the evolution of beams in the same FODO channel as before (upper line) has been represented. 
In the middle line, the ellipses represent the beams in the phase-space at the focusing quadrupole 
centre. The dashed-black circle represents a particle motion in this channel. One matched (in 
continuous red) and two mismatched (in dashed pink and dotted blue) beams have been represented. 
One particle of each beam has also been represented. 

The matched beam ellipse is periodic, as one particle is replaced by another one. Its envelope 
(last line) is periodic with the lattice period L. 

The mismatched beam ellipses sweep a bigger area (dashed-black circle) than the beam ellipse 
surfaces. Their envelope period is greater than the lattice period. Its oscillation is a combination of two 
oscillations with two different periods: one is the lattice period L, the other is Lw ⋅σπ2 , with σw 
being the channel phase advance per lattice. 

 

Fig. 10: Matched and mismatched beam in the FODO channel 

When the force is linear (Fig. 11), all particles turn in the phase-space with the same period (i.e. 
the same phase advance per lattice). The beam phase-space distribution changes lattice after lattice, 
but its emittance is kept constant. 
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Fig. 11: Matched (left) and mismatched (right) beam in linear forces 
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When the force is non-linear (Fig. 12) [external force or force induced by space-charge 
(Coulomb interactions between beam particles)], the particle phase-advance per lattice depends on its 
oscillation amplitude. Beam particles no longer turn all at the same speed, and an apparent emittance 
growth is observed11. This effect is known as beam filamentation (Fig. 13). After a long time (many 
particle betatron periods), the phase-space swept by the beam is completely full of particles. The 
apparent emittance is higher.  

X'
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X
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Fig. 12: Matched (left) and mismatched (right) beam in non-linear forces 
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Fig. 13: Filamentation of mismatched beam in non-linear force 

                                                      
11 Even if the phase-space area occupied by the particle is constant (Liouville’s theorem applies). 
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5 CONCLUSION 

This paper is a short introduction with basic notions on linacs. A better understanding cannot be 
obtained without tackling subjects like the existing structures, the RF control, the space-charge effects, 
or the resonances. Motivated students are strongly advised to read Tom Wangler's book [2]. 
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