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Abstract

The dominant theoretical uncertainty in extracting |Vtd/Vts| from the ratio of branching

ratios R ≡ B(B → (ρ, ω)γ)/B(B → K∗γ) is given by the ratio of form factors ξ ≡
TB→K∗

1 (0)/TB→ρ
1 (0). We re-examine ξ in the framework of QCD sum rules on the light-

cone, taking into account hitherto neglected SU(3)-breaking effects. We find ξ = 1.17 ±
0.09. Using QCD factorisation for the branching ratios, and the current experimental

average for R quoted by HFAG, this translates into |Vtd/Vts|HFAG
B→V γ = 0.192 ± 0.014(th) ±

0.016(exp). This result agrees, within errors, with that obtained from the Standard Model

unitarity triangle, |Vtd/Vts|SM = 0.216 ± 0.029, based on tree-level-only processes, and

with |Vtd/Vts|∆m = 0.2060+0.0081
−0.0060(th) ± 0.0007(exp), from the CDF measurement of Bs

oscillations.

This version differs from the original version of the paper, published as JHEP

04 (2006) 046, by the inclusion of the new BaBar measurement of B → ρ(ω)γ

presented at ICHEP 2006, which significantly shifts the results for |Vtd/Vts|.
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1 Introduction

Recently, the Belle collaboration measured the b → d penguin-dominated decay B →
(ρ , ω)γ [1], whereas BaBar obtained an upper bound in 2004 [2] and presented a measure-

ment at ICHEP 2006 [3]. Assuming the Standard Model (SM) to be valid, this process

offers the possibility to extract the CKM matrix element |Vtd|, in complementarity to the

determination from Bd mixing and the SM unitarity triangle based on |Vub/Vcb| and the

angle γ. In order to extract |Vtd| from the measured rate, one needs to know both short-

distance weak and strong interaction effects and long-distance QCD effects. Whereas the

former can, at least in principle, be calculated to any desired precision in the framework of

effective field theories, and actually are currently known to next-to-leading order in QCD

[4], the assessment of long-distance QCD effects is notoriously difficult. After a long history

of phenomenologically or 1/Nc-motivated factorisation formulas, QCD factorisation [5, 6]

has provided a consistent framework allowing one to write the relevant hadronic matrix

elements as

〈V γ|Qi|B〉 =

[

TB→V
1 (0)T I

i +

∫ 1

0

dξ du T II
i (ξ, u)φB(ξ)φV ;⊥(v)

]

· ǫ . (1)

Here ǫ is the photon polarisation 4-vector, Qi is one of the operators in the effective

Hamiltonian, TB→V
1 is a B → V transition form factor, and φB, φV ;⊥ are leading-twist light-

cone distribution amplitudes of the B meson and the vector meson V , respectively. These

quantities are universal non-perturbative objects and describe the long-distance dynamics

of the matrix elements, which is factorised from the perturbative short-distance interactions

included in the hard-scattering kernels T I
i and T II

i . The above QCD factorisation formula

is valid in the heavy-quark limit mb → ∞ and is subject to corrections of order ΛQCD/mb.

Although it is possible to determine |Vtd| from the branching ratio of B → (ρ, ω)γ itself,

the associated theoretical uncertainties get greatly reduced when one considers the ratio

of branching ratios for B → K∗γ and B → (ρ, ω)γ instead. One then can extract |Vtd/Vts|
from

B(B → (ρ, ω)γ)

B(B → K∗γ)
=

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2(1 −m2
ρ,ω/m

2
B

1 −m2
K∗/m2

B

)3(
T ρ,ω

1 (0)

TK∗

1 (0)

)2

[1 + ∆R] , (2)

where the estimates of ∆R available in the literature lie between, approximately, 0 and

0.2 [5, 6]. ∆R contains all non-factorisable effects induced by T I,II
i in (1). As |Vts| = |Vcb|

in the SM, up to a small correction ∼ 2%, and |Vcb| is known with a precision of 2% [7],

|Vtd| follows immediately from |Vtd/Vts|. The theoretical uncertainty of this determination

is governed by both the ratio of form factors TK∗

1 (0)/T ρ,ω
1 (0) and the value of ∆R, which

parametrises not only SU(3)-breaking effects, but also power-suppressed corrections to the

QCD factorisation formula. The aim of the present paper is to re-examine the size of

SU(3)-breaking corrections to TK∗

1 (0)/T ρ,ω
1 (0) from QCD sum rules on the light-cone and

to determine a value of |Vtd/Vts| from (2), evaluating ∆R in QCD factorisation; we will

address the issue of power-suppressed corrections to ∆R in a separate publication [8].

Our paper is organised as follows: in Section 2 we discuss the QCD sum rule for the

ratio of form factors TK∗

1 (0)/T ρ,ω
1 (0) and its dependence on SU(3)-breaking parameters.
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In Section 3 we extract a value of |Vtd/Vts| from the experimental branching ratio, using

QCD factorisation for the calculation of ∆R. We summarise in Section 4. The appendix

contains some formulas relevant to the calculation of NLO evolution of twist-2 vector-meson

light-cone distribution amplitudes.

2 The Form-factor Ratio T B→K∗

1 /T B→ρ
1

In this section, we present a concise formula for the form factor TB→V
1 (0), as obtained

from QCD sum rules on the light-cone, and discuss the hadronic quantities that enter this

expression. We do not discuss the technique of QCD sum rules itself, or that of QCD sum

rules on the light-cone, for which we refer to the literature [9]. Suffice it to say that the

light-cone sum rule for T1 is based on the light-cone expansion of the correlation function

of the chromomagnetic dipole operator Q7 and the interpolating field q̄iγ5b of the B meson.

The expansion is in terms of the convolution of process-specific perturbative kernels and

universal meson light-cone distribution amplitudes (DAs) of the final-state vector meson,

which are ordered in terms of increasing twist. These DAs have been studied in Refs. [10,

11], mostly for the ρ meson, including two- and three-particle Fock states up to twist 4.

An extension to the K∗ meson is in preparation [12]. The light-cone expansion is matched

to the description of the correlation function in terms of hadrons by analytic continuation

into the physical regime and the application of a Borel transformation, introducing the

Borel parameter M2 and exponentially suppressing contributions from higher-mass states.

In order to extract the contribution of the B meson, one describes that of other hadron

states by a continuum model, which introduces a second model parameter, the continuum

threshold s0. The sum rule then yields the form factor in question, T1, multiplied by the

coupling of the B meson to its interpolating field, i.e. the B meson’s leptonic decay constant

fB. At tree level, the sum rule for TB→V
1 (0) then reads, to twist-4 accuracy:

m2
BfB

mb
TB→V

1 (0)e−m2
B/M2

= f⊥
V mb

∫ 1

u0

due−m2
b
/(uM2) φ⊥(u)

2u

+ f
‖
VmV

∫ 1

u0

due−m2
b
/(uM2)

[

Φ(u)

2u
+

1

2
g

(v)
⊥ (u) +

1

8u

(

1 − u
d

du

)

g
(a)
⊥ (u)

−1

u

d

du

∫ u

0

dα1

∫ ū

0

dα2
u− α1

2α2
3

(

A(α) + V(α)

)]

+ f⊥
V mb

m2
V

m2
b

∫ 1

u0

due−m2
b
/(uM2)

[

1

2

d

du

{

uūφ⊥(u) + 2IL(u) + uH3(u)

−
∫ u

0

dα1

∫ ū

0

dα2
1

α3

(

S(α) − S̃(α) + T
(4)
1 (α) − T

(4)
2 (α) + T

(4)
3 (α) − T

(4)
4 (α)

)

}

−1

8
u
d2

du2
A⊥(u)

]

, (3)
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≡ mb

∫ 1

u0

due−m2
b
/(uM2)

[

f⊥
V R1(u) + f

‖
V

mV

mb
R2(u) + f⊥

V

(

mV

mb

)2

R3(u)

]

, (4)

where u0 is given by m2
b/s0. f

‖
V and f⊥

V are the decay constants of, respectively, longitu-

dinally and transversely polarised vector mesons. φ⊥, Φ, g
(v,a)
⊥ , IL and H3 are two-particle

distribution amplitudes and integrals thereof, as defined in Ref. [13]. A, V, S, S̃ and T
(4)
i

are three-particle DAs. u is the longitudinal momentum fraction of the quark in a two-

particle Fock state of the final-state vector meson, whereas α1,2,3, with
∑

αi = 1, are the

momentum fractions of the partons in a three-particle state. The light-cone expansion is

accurate up to terms of order (mV /mb)
3. Although we only write down the tree-level ex-

pression for the form factor, radiative corrections are known for R1 [14] and the two-particle

contributions to R2 [13], and will be included in the numerical analysis. All scale-dependent

quantities are calculated at the (infra-red) factorisation scale µ2
F = m2

B −m2
b . The form

factor itself carries an ultra-violet scale dependence, which however cancels in the ratio.

It is clearly visible from the above formula that the respective weight of various contri-

butions is controlled by the parameter mV /mb; the next term in the light-cone expansion

contains twist-3, -4 and -5 DAs and is of order (mV /mb)
3. Nonetheless, (4) cannot be in-

terpreted as 1/mb expansion: for mb → ∞, the support of the integrals in u also becomes

of O(1/mb), as 1 − u0 ∼ 1 −m2
b/s0 ∼ ω0/mb, with ω0 ∼ 1 GeV a hadronic quantity [15].

In this case, the scaling of the various terms in mb is controlled by the behaviour of the

DAs near the end-point u → 1. For finite mb, however, the sum rules are not sensitive to

the details of the end-point behaviour, as we shall see below. Numerically, the expansion

in terms of mV /mb works very well and is a reformulation of the ordering of contributions

in terms of the parameter δ introduced in Ref. [13].

We have already discussed T1 in Refs. [14, 13]; in the present paper we focus on the

ratio

ξ ≡ TB→K∗

1 (0)

TB→ρ
1 (0)

, (5)

which governs the extraction of |Vts/Vtd| from B → V γ decays. Our sum rules can of

course be used to determine each form factor separately, but we expect the ratio to be

more accurate, because ξ is independent of the B-meson decay constant fB and also, to

very good accuracy, of mb and the sum rule parameters M2 and s0; we shall come back

to that point below. Hence, in this paper, we will not re-analyse the absolute values

of T
B→(ρ,K∗)
1 (0) nor, consequently, the branching ratios themselves. However, ξ is very

sensitive to SU(3)-breaking effects in the DAs, and it is precisely these effects we shall

focus on in this paper. A similar analysis for the ratio of the D → K and D → π form

factors was carried out in Ref. [16].

Compared with our previous results of Refs. [14, 13], in this paper we implement the

following improvements:

• updated values of SU(3)-breaking in twist-2 parameters;

• complete account of SU(3)-breaking in twist-3 and -4 DAs;

3



• estimate of higher-order conformal contributions to twist-4 DAs, using the renor-

malon model of Ref. [17];

• NLO evolution for twist-2 parameters.

Before presenting numerical results for ξ, let us first discuss the values of the hadronic

input parameters collected in Table 1. First of all, we would like to mention that we will

not distinguish between the form factors of ρ and ω. Their difference is mainly caused

by different values of the decay constants, f
‖(⊥)
ρ 6= f

‖(⊥)
ω , whose precise determination, e.g

from experimental data for ω → e+e−, is complicated by mixing with the φ meson. In the

present paper we take the view that the uncertainty induced by letting TB→ρ
1 = TB→ω

1 is

negligible compared to other uncertainties.

The longitudinal decay constants f
‖
ρ,K∗ can be extracted from the experimental decay

rates τ− → (ρ−, K∗−)ντ as [22]

f ‖
ρ = (0.209 ± 0.002) GeV, f

‖
K∗ = (0.217 ± 0.005) GeV.

There is no direct experimental measurement of the tensor decay constants f⊥
ρ,K∗ , which

instead have to be determined from non-perturbative methods such as lattice calculations

[23, 24] or QCD sum rules [25, 18]. Lattice results are available in the quenched approx-

imation with a chirally improved lattice Dirac operator, which allows one to reach small

quark masses, and for the ratio of decay constants f⊥
V /f

‖
V [24]; a first study for the ρ with

dynamical fermions was reported in Ref. [26]. One result of these calculations is that the

ratio of decay constants only weakly depends on the quark masses. For the ρ, Ref. [24]

quotes
(

f⊥
ρ

f
‖
ρ

)

latt

(2 GeV) = 0.72 ± 0.02 ,

obtained for the lattice spacing a = 0.15 fm. As for QCD sum rules, the value f⊥
ρ (1 GeV) =

(0.160± 0.010) GeV was obtained in Ref. [27]. For the present paper, we have re-analysed

the corresponding sum rules, using updated values of αs and NLO evolution of f⊥
ρ , and

find

f⊥
ρ (1 GeV) = (0.165 ± 0.009) GeV. (6)

Also f
‖
ρ can be calculated from sum rules, yielding (0.206 ± 0.007) GeV. If one calculates

the ratio directly from QCD sum rules, one finds1

(

f⊥
ρ

f
‖
ρ

)

SR

(2 GeV) = 0.69 ± 0.04 ,

in agreement with the lattice result.

The determination of f⊥
K∗ is less straightforward, see Ref. [18], where

f⊥
K∗(1 GeV) = (0.185 ± 0.010) GeV (7)

1The NLO scaling factor f⊥(2 GeV)/f⊥(1 GeV) is 0.876.
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ρ µ = 1 GeV Ref. K∗ µ = 1 GeV Ref. Order Remarks

R1 f
⊥
ρ 0.165 ± 0.009 TP f⊥

K∗ 0.185 ± 0.010 [18] twist-2 in units of GeV

a⊥1 (ρ) 0 a⊥1 (K∗) 0.04 ± 0.03 [18] twist-2 G-odd

a⊥2 (ρ) 0.15 ± 0.07 TP a⊥2 (K∗) 0.11 ± 0.09 TP twist-2 a⊥2 (K∗) − a⊥2 (ρ)

constrained

∆⊥
ρ 1.24 ± 0.11 TP ∆⊥

K∗ 1.18 ± 0.14 TP twist-2 BT model [19]

p⊥ρ 3 p⊥K∗ 3 twist-2 for φ⊥

R2 f
‖
ρ 0.209 ± 0.002 exp. f

‖
K∗ 0.217 ± 0.005 exp. twist-2 in units of GeV

a
‖
1(ρ) 0 a

‖
1(K

∗) 0.03 ± 0.02 [18] twist-2 G-odd

a
‖
2(ρ) = a⊥2 (ρ) TP a

‖
2(K

∗) = a⊥2 (K∗) TP twist-2 a
‖
2(K

∗) − a
‖
2(ρ)

constrained

∆
‖
ρ = ∆⊥

ρ ∆
‖
K∗ = ∆⊥

K∗ twist-2 BT model [19]

p
‖
ρ = p⊥ρ p

‖
K∗ = p⊥K∗ twist-2 for φ‖

ζA
3ρ 0.032 ± 0.010 [20] ζA

3K∗ (1.0 ± 0.1)ζA
3ρ TP LO twist-3 UR

κ
‖
3ρ 0 κ

‖
3K∗ 0.001 ± 0.001 TP LO twist-3 G-odd, UR

ωA
3ρ −2 ± 2 [20] ωA

3K∗ = ωA
3ρ NLO twist-3 UR

ωV
3ρ 4 ± 2 [20] ωV

3K∗ = ωV
3ρ NLO twist-3 UR

λA
3ρ 0 λA

3K∗ 0 ± 2 TP NLO twist-3 G-odd, UR

λV
3ρ 0 λV

3K∗ 0 ± 2 TP NLO twist-3 G-odd, UR

R3 κ
⊥
3ρ 0 κ⊥3K∗ 0 ± 0.01 TP LO twist-3 G-odd, UR

ωT
3ρ 7 ± 7 [10] ωT

3K∗ = ωT
3ρ NLO twist-3 UR

λT
3ρ 0 λT

3K∗ 0 ± 2 TP NLO twist-3 G-odd, UR

ζT
4ρ 0.10 ± 0.05 [21] ζT

4K∗ = ζT
4ρ LO twist-4 UR

Table 1: Hadronic parameters entering R1,2,3 in the sum rule for T1, Eq. (4). For twist-

2 DAs, we use both the conformal expansion Eq. (8), truncated after n = 2, and the

model of Ball and Talbot (BT) [19] given in terms of two parameters, ∆ and p. The

values of a2(ρ) and a2(K
∗) are highly correlated; we fix a2(K

∗)− a2(ρ) = −0.04± 0.02 for

both longitudinal and transverse DAs. The twist-3 and -4 G-odd parameters have never

been considered before; all twist-3 and -4 parameters are under revision (UR) and will be

considered in full detail in Ref. [12]. In this paper (TP), twist-3 SU(3)-breaking effects are

only taken into account at LO in the conformal expansion. Higher-orders in the conformal

expansion of twist-4 DAs are calculated in the renormalon model of Ref. [17], see text.
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was obtained. Evaluating the ratio f⊥
K∗/f

‖
K∗ directly from sum rules, we find

(

f⊥
K∗

f
‖
K∗

)

SR

(2 GeV) = 0.73 ± 0.04 ,

which agrees with the interpolation between the corresponding results for ρ and φ obtained

from lattice [24].

Summarising, it is probably fair to say that the present status of f⊥
V decay constants

is not entirely satisfactory. The accuracy of the QCD sum rule estimates is unlikely to

improve, so any significant reduction of uncertainty has to come from lattice. For the

moment, however, all existing lattice results still come with considerable uncertainty (no

continuum limit, no results for K∗ with chirally improved Dirac operator), so that in the

numerical analysis of ξ we will use the experimental results for f
‖
ρ,K∗ and the QCD sum

rule results (6) and (7) for f⊥
ρ,K∗.

As for twist-2 DAs, the standard approach is to parametrise them in terms of a few

parameters which are the leading-order terms in the conformal expansion

φ(u, µ2) = 6u(1 − u)

(

1 +

∞
∑

n=1

an(µ2)C3/2
n (2u− 1)

)

. (8)

To leading-logarithmic accuracy the (non-perturbative) Gegenbauer moments an renormal-

ize multiplicatively. This feature is due to the conformal symmetry of massless QCD at

one-loop, the an start to mix at next-to-leading order, see appendix. Although (8) is not

an expansion in any obvious small parameter, the contribution of terms with large n to

physical amplitudes is suppressed by the fact that the Gegenbauer polynomials oscillate

rapidly and hence are “washed out” upon integration over u with a “smooth” (i.e. not too

singular) perturbative hard-scattering kernel. For vector mesons, one usually takes into

account the terms with n = 1, 2; the an are estimated from QCD sum rules which are

known to become less reliable for larger n. As an alternative, one can build models for φ

based on an assumed fall-off behaviour of an for large n. The model of Ball and Talbot

(BT) [19], for instance, assumes that, at a certain reference scale, e.g. µ = 1 GeV, the an

fall off as powers of n:

a2n ∝ 1

(n+ 1)p
.

BT fix the absolute normalisation of the Gegenbauer moments by the first inverse moment:

∫ 1

0

du

2u
(φ(u) + φ(1 − u)) ≡ 3∆ = 3

(

1 +
∞
∑

n=1

a2n

)

,

which can be viewed as a convolution with the singular hard-scattering kernel 1/u and

gives all an the same (maximum) weight 1. The rationale of this model is that the DA is

given in terms of only two parameters, p and ∆, and allows one to estimate the effect of

higher order terms in the conformal expansion on observables. In this paper, we calculate

the form factor using both conformal expansion, truncated after n = 2, and the BT model,

6



normalised by a2 and taking into account terms up to n = 8. We shall see below that the

effect of terms with n > 2 is very small.

For the ρ, a
⊥,‖
2 have been determined in Ref. [27]. In the present study we have re-

examined the corresponding sum rules and find, at the scale µ = 1 GeV, a⊥2 (ρ) = 0.15±0.07

and a
‖
2(ρ) = 0.14 ± 0.06, which is slightly smaller than the results quoted in Ref. [27]. As

both values are nearly equal, we shall use a common value

a⊥2 (ρ) = 0.15 ± 0.07 = a
‖
2(ρ) . (9)

The corresponding value of ∆ is

∆⊥
ρ = 1.24 ± 0.11 = ∆‖

ρ ,

with a central value slightly larger than that used in Ref. [13]. The value of a2(K
∗) has been

determined in Ref. [25]. Again, we re-examine these sum rules for the present paper. We

find a⊥2 (K∗) = 0.11± 0.09 and a
‖
2(K

∗) = 0.10± 0.08, which is more conveniently presented

by the difference between a2(K
∗) and a2(ρ):

a⊥2 (K∗) − a⊥2 (ρ) = −0.04 ± 0.02 ,

a
‖
2(K

∗) − a
‖
2(ρ) = −0.03 ± 0.02.

As both differences are nearly equal, we shall use

a2(K
∗) − a2(ρ) = −0.04 ± 0.03 (10)

for both polarisations. This translates into ∆⊥
K∗ = 1.18±0.14, with errors largely correlated

with those of ∆⊥
ρ .

The value of a1(ρ) vanishes by G-parity. The values of a
‖,⊥
1 (K∗) have been subject to

some controversy over the recent years, which was settled only very recently; in this work,

we use the values obtained in Ref. [18]:

a⊥1 (K∗) = 0.04 ± 0.03, a
‖
1(K

∗) = 0.03 ± 0.02 . (11)

All odd Gegenbauer moments, i.e. the antisymmetric contribution to φ(u), can be re-

summed using the same power-like behaviour of large moments as in the BT model. This

model is also discussed in Ref. [19] and normalised to a1; we include terms up to n = 9.

Twist-3 and -4 DAs of vector mesons have been studied in Refs. [10, 11]. The results

are complete for mesons with definite G-parity (with equal-mass quarks), but miss certain

G-parity-breaking corrections. A complete analysis of all these corrections is in preparation

[12]; here, we include those results that are already available [28]. In Ref. [10], the two-

particle twist-3 DAs g
(v,a)
⊥ and h

(s,t)
‖ have been expressed in terms of integrals over the

twist-2 DAs φ⊥,‖ and the three-particle twist-3 DAs A,V, T . These integral relations are

complete, but the explicit expressions for the three-particle twist-3 DAs given in [10] have

7



to be extended to include G-parity-breaking corrections as follows:

A(α) = 360α1α2α
2
3ζ

A
3

{

1 + λA
3 (α1 − α2) + ωA

3

(

7

2
α3 −

3

2

)}

,

V(α) = 360α1α2α
2
3

{

κ
‖
3 +

3

2
ζA
3 ω

V
3 (α1 − α2) + κ

‖
3λ

V
3

(

7

2
α3 −

3

2

)}

,

T (α) = 360α1α2α
2
3

{

κ⊥3 +
3

2
ζA
3 ω

T
3 (α1 − α2) + κ⊥3 λ

T
3

(

7

2
α3 −

3

2

)}

. (12)

Here ζA
3 and ω3 are G-parity conserving quantities, whereas κ3 and λ3 are G-parity breaking.

As κ⊥3 contributes to the form factor only at O(m2
V /m

2
b), and the λ3 parameters are of

non-leading conformal spin, we set, in the present analysis, the central values of all these

parameters to zero and only take into account κ
‖
3. A QCD sum rule estimate of this

parameter yields [12, 28]

κ
‖
3(1 GeV) = 0.001 ± 0.001. (13)

The effect of non-zero values of κ⊥3 and λ3 is taken into account by the variation of these

parameters around zero within the range given in Table 1; the dependence of TK∗

1 on NLO

G-parity breaking parameters is very small, as expected.

The two-particle twist-4 DAs h3 and A⊥ have been discussed in Ref. [11]; they are

given by integrals over chiral-odd twist-4 three-particle DAs. The determination of the

conformal-expansion coefficients of the latter is complicated by the fact that they contain

“kinetic” mass-correction terms given by twist-2 matrix elements, which, to date, have not

been obtained in a closed form, but have to be unravelled order by order in the conformal

expansion. In addition, the direct determination of the “genuine” twist-4 corrections from

QCD sum rules becomes increasingly complicated at higher-order conformal spin. For that

reason, we invoke an alternative estimate of these corrections based on the renormalon-

model developed in Ref. [17]. The general idea of this technique is to estimate matrix

elements of “genuine” twist-4 operators by the quadratically divergent contributions that

appear when the matrix elements are defined using a hard UV cut-off. In this way, three-

particle twist-4 DAs can be expressed in terms of the leading-twist DA φ⊥ [17]:

T1(α) = −T3(α) = ζT
4

[

α2φ⊥(α1)

(1 − α1)2
− α1φ⊥(1 − α2)

(1 − α2)2

]

,

T2(α) = T4(α) = −1

2
ζT
4

[

φ⊥(α1)

1 − α1
− φ⊥(1 − α2)

1 − α2

]

,

S(α) = −S̃(α) =
1

2
ζT
4

[

φ⊥(α1)

1 − α1
+
φ⊥(1 − α2)

1 − α2

]

. (14)

The above formulas differ from those given in Ref. [17] by the change of argument α2 →
1−α2 in the second terms on the right-hand side; this is to properly account for G-parity-

breaking effects [29]. One prediction of the renormalon model is that the two independent

LO twist-4 couplings ζT
4 and ζ̃T

4 add up to 0, which is consistent with the direct calculation

8



0.5 0.6 0.7 0.8 0.9 1.

-0.05

0.

0.05

0.1

0.15

0.2

u

Ri

Figure 1: Contribution of Ri to the convolution integral in (4) as a function of u. Solid

line: f⊥
ρ R1(u), long dashes: f

‖
ρ (mρ/mb)R2(u), short dashes: f⊥

ρ (mρ/mb)
2R3(u).

from QCD sum rules [21]. The above formulas also allow one to estimate the “genuine”

twist-4 G-parity breaking contributions to Ti and S, S̃; we refrain from giving explicit

formulas in this paper, but refer to Ref. [12]. For the calculation of the contribution of

twist-4 terms to ξ, we use two methods: firstly the full renormalon model (14), and the

corresponding expression for A⊥ as given by the equations of motion [11] (h3 = 0 in this

model). This accounts for the genuine twist-4 corrections; the “kinetic” corrections, as

far as they are known, are added using truncated conformal expansion. Secondly, we use

truncated expansion for all twist-4 DAs, describing G-parity-breaking terms by the values

they assume in the renormalon model, see Refs. [29, 12] for more details. The predictions of

both methods for the end-point behaviour of the DAs near u = 0, 1 differ quite drastically;

nonetheless, both prescriptions given nearly the same result after integration over u.

One more parameter that enters the kinetic mass corrections to twist-3 and -4 DAs,

induced by the equations of motion, are the quark masses ms,u,d. We choose ms(2 GeV) =

(0.10 ± 0.02) GeV, which is in accordance with both lattice [30] and QCD sum rule calcu-

lations [31], and let mu,d = 0.

With all DAs available, we can now assess the respective size of the contributions of

the various Ri to the sum rule (4). To this end, we plot, in Fig. 1, the functions Ri for the

ρ meson, multiplied by the corresponding weight factors, for u > 0.5 which is about the

smallest value of u0. The plot clearly shows that R1 is dominant. It also shows that R2,3

exhibit (integrable) end-point singularities for u → 1. Based on these results, we expect

the impact of the first neglected term in the light-cone expansion, which is O(m3
V /m

3
b), to

be very small.

Before we can evaluate the sum rule for ξ, we also have to discuss the choice of mb and

the sum-rule-specific parameters M2 and s0. The good news is that, although numerator

and denominator of (5) both depend on mb, s0 and M2, this dependence cancels to a large

extent in the ratio. The reason hereof is quite evident from (4): M2 controls the respective

weights of contributions of different u; as these contributions are nearly equal in numerator

and denominator of (5), except for moderately sized SU(3) breaking, it follows that one

can choose M2 equal in T
B→(ρ,K∗)
1 and that the resulting dependence on M2 should be very

small. This is borne out by the left panel of Fig. 2, where we plot ξ as function of M2 for

central values of the input parameters and s0 = 35 GeV2. For comparison, we also show

9
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Figure 2: Left panel: ξ as a function of the Borel parameter M2 for s0 = 35 GeV2 and

central values of the input parameters. Right panel: ξ as a function of the continuum

threshold s0 for M2 = 8 GeV2 and central values of the input parameters. Solid lines: DAs

in conformal expansion; long dashes: BT model [19] for twist-2 DAs; short dashes: BT

model for twist-2 DAs and renormalon model for twist-4 DAs [17].
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Figure 3: ξ as a function of f⊥
K∗(1 GeV). Solid line: f⊥

ρ (1 GeV) = 0.165 GeV, dashed lines:

f⊥
ρ shifted by ±0.009 GeV.
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Figure 4: Left panel: ξ as a function of a1(K
∗) at 1 GeV. Right panel: ξ as a function of

a2(ρ) at 1 GeV. Solid line: a2(K
∗) = a2(ρ) − 0.04; dashed lines: a2(K

∗) shifted by ±0.02.

Longitudinal and transverse parameters a
‖
i and a⊥i are set equal.
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ξ calculated using the BT model for the twist-2 DAs (long dashes) and, in addition, the

renormalon-model for twist-4 DAs (short dashes). All three calculations agree with one

another very well. The fact that the impact of the BT model is only minor shows that

the sum rules are sensitive only to a few gross characteristics of the twist-2 DAs, but not

to the details of their behaviour near the end-point u = 1. As for the renormalon-model

DAs, the difference to the truncated conformal expansion is most marked for small values

of M2, which can be easily understood from the fact that for smaller M2 the weight of

contributions from u close to 1 gets enhanced and hence the difference between the end-

point behaviour of conformally expanded DAs and renormalon-modelled DAs becomes

more visible. The right panel of Fig. 2 illustrates the effect of a variation of s0 for fixed

M2, which is also small. The value of s0 sets the lower limit of the integral over u, and

again the dependence on s0 largely cancels in the ratio as the integrands are equal up to

SU(3)-breaking effects. As s0 itself is nearly independent of the final-state meson, it is

natural to choose the same value in both numerator and denominator. As for mb, it only

enters in the ratio mV /mb, which controls the respective contributions of R1,2,3, the lower

limit of integration u0 = m2
b/s0 and the Borel exponential exp(−m2

b/(uM
2)). In the latter

two parameters, a change of mb is effectively compensated by a change of s0 or M2, which,

as we have just discussed, induces only very small variations of the sum-rule result. The

ratio mV /mb changes from 0.185 for K∗ and mb = 4.8 GeV to 0.193 for mb = 4.6 GeV,

which also has only very minor impact. Based on these observations, we choose to evaluate

ξ for fixed mb = 4.8 GeV, M2 = 8 GeV2 and s0 = 35 GeV2 and attach to ξ a corresponding

uncertainty of ±0.005.

We are now in a position to obtain a result for ξ and estimate its uncertainty. The

dominant uncertainty is due to the dependence of ξ on the chiral-odd twist-2 parameters.

In Fig. 3 we plot ξ as a function of f⊥
K∗(1 GeV), for various values of f⊥

ρ (1 GeV). The

uncertainty in both parameters causes an uncertainty in ξ of ±0.08. In Fig. 4, left panel,

we show the dependence of ξ on a1(K
∗), which induces a change in ξ by ±0.03; the variation

of a⊥1 (K∗) and a
‖
1(K

∗) as separate quantities induces the same change. The right panel

shows the dependence on a2 which is rather mild and causes ξ to change by ±0.02. The

variation of the remaining parameters within the limits specified in Table 1 causes another

±0.02 shift in ξ, so that we arrive at the following result:

ξ =
TB→K∗

1 (0)

TB→ρ
1 (0)

= 1.17 ± 0.08(f⊥
ρ,K∗) ± 0.03(a1) ± 0.02(a2) ± 0.02(twist-3 and -4)

± 0.01(sum-rule parameters, mb and twist-2 and -4 models)

= 1.17 ± 0.09 . (15)

The total uncertainty of ±0.09 is obtained by adding the individual terms in quadrature.

Let us stress again that the error of this result is dominated by far by parameter uncertain-

ties, and is nearly independent of the sum rule specific parameters; it is also independent

of fB.
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3 Determination of |Vtd/Vts|

Let us now turn to the calculation of the ratio of branching ratios and the determination

of |Vtd/Vts|. The Belle collaboration has measured the quantity

Rexp ≡ B(B → (ρ, ω)γ)

B(B → K∗γ)
,

where B(B → (ρ, ω)γ) is defined as the CP-average 1
2
[B(B → (ρ, ω)γ) + B(B̄ → (ρ̄, ω)γ)]

of

B(B → (ρ, ω)γ) =
1

2

{

B(B+ → ρ+γ) +
τB+

τB0

[

B(B0 → ρ0γ) + B(B0 → ωγ)
]

}

,

and B(B → K∗γ) is the isospin- and CP-averaged branching ratio of the B → K∗γ

channels. In 2005, Belle reported a 5.1σ measurement [1],

RBelle
exp = 0.032 ± 0.008(stat) ± 0.002(syst) , (16)

followed by a 5.2σ measurement by BaBar in 2006 [3]:

RBaBar
exp = 0.024 ± 0.005 , (17)

where the statistical and systematical uncertainty are added in quadrature. HFAG com-

bines both results into the average [32]

RHFAG
exp = 0.028 ± 0.005 . (18)

Within QCD factorisation, and using the notations of Ref. [6], the amplitude for B →
V γ can be written as

A(B̄ → V γ) =
GF√

2
[λua

u
7(V γ) + λca

c
7(V γ)] 〈V γ|Q7|B̄〉 ,

where λq are products of CKM matrix elements and the factorisation coefficients au,c
7 consist

of Wilson coefficients and non-factorisable corrections from hard scattering and annihila-

tion; explicit expressions can be found in Ref. [6]. au,c
7 depends in particular on the form

factor T1 and the twist-2 DA φV ;⊥. The theoretical expression for R is then given by

Rth =

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2
1

ξ2

(

1 −m2
ρ/m

2
B

1 −m2
K∗/m2

B

)3 ∣
∣

∣

∣

ac
7(ργ)

ac
7(K

∗γ)

∣

∣

∣

∣

2(

1 + Re (δa± + δa0)

[

R2
b − Rb cos γ

1 − 2Rb cos γ + R2
b

]

+
1

2

(

|δa±|2 + |δa0|2
)

{

R2
b

1 − 2Rb cos γ +R2
b

})

(19)

with δa0,± = au
7(ρ

0,±γ)/ac
7(ρ

0,±γ) − 1. Here, γ is one angle of the CKM unitarity triangle

and Rb one of its sides:

Rb =

(

1 − λ2

2

)

1

λ

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

.
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Equation (19) differs from the expression given in Ref. [6] by the terms in |δa|2 which were

neglected in that paper. It is obtained in the SM, assuming that B̄(B0 → ρ0γ) ≡ B̄(B0 →
ωγ), which indeed should be the case up to a small difference in the decay constants, a

tiny difference in phase space and the sign of the contribution of weak annihilation (WA)

diagrams, which is also small numerically. Equation (19) is also valid in extensions of the

SM where the CKM matrix is still unitary and the a7 do not carry a new weak phase, for

instance Minimal Flavour Violation; in this case new physics could change the values of

δa0,±.

Let us first discuss the dependence of (19) on CKM parameters, described by the terms

in square and curly brackets. The up-to-date value of |Vub/Vcb|, as provided by the heavy

flavour averaging group HFAG in March 2006, is, adding errors in quadrature [32]:

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

= 0.106 ± 0.008.

In Fig. 5 we plot the CKM factors

fCKM =
R2

b −Rb cos γ

1 − 2Rb cos γ +R2
b

, gCKM =
R2

b

1 − 2Rb cos γ +R2
b

as functions of γ; the uncertainty induced by Rb is small. What is the currently preferred

value of γ? HFAG is yet to provide averages of the individual results obtained by BaBar

and Belle, so we use the value quoted by the UTfit collaboration in March 2006 [33]:

γUTfit = (71 ± 16)◦ , (20)

which is obtained from tree processes only and hence can be assumed to be free of new

physics. We then obtain

fCKM = 0.07 ± 0.12 , gCKM = 0.23 ± 0.07 . (21)

As fCKM is rather small for the angle γUTfit, Eq. (20), the contribution of the corresponding

non-factorisable contributions to (19), collected in Re δa0,±, is heavily suppressed.

The parameters |ac
7(ργ)| and |ac

7(K
∗γ)| are almost exactly equal, so we set |ac

7(ργ)/

ac
7(K

∗γ)| = 1. Is that value likely to be changed by non-factorisable corrections? One

type of such corrections, soft-gluon emission from charm loops, has been calculated in

Refs. [34, 28]; it amounts to a contribution to |ac
7| of O(1/(mbm

2
c)) and is small by itself

(∼ 2%), and even smaller is its SU(3)-breaking that changes |ac
7(ργ)/a

c
7(K

∗γ)| by less than

1%. Another source of corrections comes from terms in (au
7(K

∗γ) − ac
7(K

∗γ))/ac
7(K

∗γ),

multiplied by the CKM factor ∼ λ2fCKM, which is tiny indeed. Hence, we do not see any

obvious source of significant corrections to |ac
7(ργ)/a

c
7(K

∗γ)| = 1.

The value of δa0,± is calculated in QCD factorisation, which is accurate to O(αs), but

misses, in general, terms that are suppressed by inverse powers ofmb,c. The most important

of these power-suppressed corrections is weak annihilation, which can actually be calculated

in QCD factorisation, at least at tree level. WA is CKM suppressed in B → K∗γ and

mainly affects au
7(ρ

±γ), but it is small for au
7((ρ

0, ω)γ) because of a suppression by Wilson
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Figure 5: Left panel: the CKM factor fCKM in Eq. (19) (square brackets) as a function

of γ for |Vub/Vcb| = 0.106 (solid line) and |Vub/Vcb| = 0.106 ± 0.008 (dashed lines). Right

panel: ditto for gCKM (curly brackets).

coefficients and the fact that WA is proportional to the electric charge of the quark involved,

namely the u quark for au
7(ρ

±γ) and the d quark for au
7((ρ

0, ω)γ). Although WA is formally

power-suppressed, it gets enhanced in au
7(ρ

±γ) by large Wilson coefficients and the absence

of O(αs) suppression that affects other non-factorisable corrections. Numerically, WA is

actually as large as the leading (in 1/mb) non-factorisable terms. In view of the importance

of this contribution, we treat WA in two different ways: firstly, by using the QCD-factorised

expression given in Ref. [6]; and secondly, by using the results obtained from QCD sum

rules on the light-cone [35, 36, 8].

The WA contribution to the amplitude of e.g. B− → ρ−γ can be written in the following

way:

A(B− → ρ−γ)WA =
GF√

2
λu

(

C1 +
1

3
C2

)

〈ρ−γ|(d̄u)V −A(ūb)V −A|B−〉 .

In naive factorisation, the matrix element on the r.h.s. can be written as

〈ρ−γ|(d̄u)V −A(ūb)V −A|B−〉 = 〈ρ−|(d̄u)V −A|0〉〈γ|(ūb)V −A|B−〉

+ 〈ρ−γ|(d̄u)V −A|0〉〈0|(ūb)V −A|B−〉 .

The second term on the r.h.s. has been shown to vanish in the chiral limit, see Ref. [37]

for more details, so we will focus on the first term. Corrections to naive factorisation are

of O(αs), which may also relax the chiral suppression of the second term. Neglecting the

latter, we have, in the notations of Ref. [36]:2

〈ρ−(p)γ(q)|(d̄u)V −A(ūb)V −A|B−(pB)〉 =
√

4πα
mρf

‖
ρ

mB
ǫ(ρ)
µ

{

FV ǫ
µνρσǫ(γ)

ν pBρqσ

−iFA[ǫµ(γ)(pB · q) − qµ(ǫ(γ) · pB)]
}

. (22)

2Equation (22) differs from the definition given in Ref. [36] by an overall sign. The reason is that in

[36] the covariant derivative Dµ = ∂µ − ieAµ was used, corresponding to a negative value of e. In order to

keep FV,A positive, we change the sign of the definition.
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The form factors FA,V can be calculated in QCD factorisation themselves; both FA,V are

then equal, and to LO accuracy one has

FQCDF
WA ≡ FQCDF

A,V =
QufB

λB
(23)

with Qu = 2/3 the electric charge of the u quark and λB the first inverse moment of the

B-meson DA φB:
∫ 1

0

dξ
φB(ξ)

ξ
=
mB

λB
.

Equation (23) agrees with the result obtained in Ref. [6] by direct calculation of the WA

diagram. Corrections are either of O(αs), and have been calculated in Ref. [38], or they

are suppressed by powers of 1/mb. The dominant source of the latter comes from photon-

emission from a soft u quark and has been calculated in Refs. [35, 36], together with the

perturbative photon emission giving rise to (23). The emission of photons from a soft

quark line is governed by the parameter χ, the so-called magnetic susceptibility of the

quark condensate, 〈0|q̄σαβq|0〉F =
√

4παQqχ〈q̄q〉Fαβ , which has been discussed in detail

in Refs. [21, 39], together with higher-twist DAs of the photon. Its contribution is, in

the heavy quark limit, suppressed by one power of 1/mb with respect to (23), but at

finite quark mass its size is set by the dimensionless parameter χ〈ūu〉/fB ≈ 0.2, with

χ(1 GeV) = (3.15 ± 0.3) GeV−2 [39], which is not really small. In calculating the WA

contribution to δa±, we will use both expressions for FV,A: FQCDF
WA , Eq. (23), and FQCDSR

WA

from the QCD sum rule calculation, see Ref. [8] for details.

Let us first discuss δa0, where WA is suppressed and can be neglected. Its dependence

on hadronic parameters is controlled by the factor fB/(T
B→ρ
1 λB); it also depends, to a lesser

extent, on f⊥
ρ and the twist-2 DA φρ;⊥. To estimate the uncertainty of Re δa0 and |δa0|2,

we set fB = (0.205± 0.025) GeV, which is an average of quenched and unquenched lattice

calculations [40, 41] and QCD sum rule determinations [42]. We also use T ρ
1 = 0.27± 0.03

from light-cone sum rules,3 and λB(1 GeV) = (0.46±0.11) GeV, obtained in Ref. [43]. This

value supersedes the guesstimate λB = (0.35±0.15) GeV [44] used in previous calculations

and agrees with the value (0.46± 0.16) GeV found in Ref. [45]. We evaluate all spectator-

interaction contributions, that is those involving λB, at the scale µ2
h = m2

B −m2
b , which is

of order ∼ ΛQCDmb as advocated in Ref. [6], but by a factor 2 larger; this is motivated,

in part, by the fact that the anomalous dimensions governing the renormalisation-group

running of the Wilson coefficients are given for 5 flavours only in Ref. [4] and hence should

not be used at scales as small as (ΛQCDmb)
1/2 ∼ 1.5 GeV. We then need to evolve λB from

1 GeV to µh, which can be done using the following evolution relation [46]:

λ−1
B (µ) = λ−1

B (µ0)

{

1 +
αs

3π
ln
µ2

µ2
0

(1 − 2σB(µ0))

}

, (24)

where σB(1 GeV) = 1.4 ± 0.4 is given by an integral over the B-meson DA φB and was

estimated in Ref. [43]. We then have

λB(µh) = (0.51 ± 0.12) GeV.
3This value, and in particular its error, is quoted from our previous paper in Ref. [13], but is in agreement

with the evaluation of Eq. (4).
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We can now cast most of the dependence of δa0 on hadronic input parameters into a

dependence on λB(µh) only, varying it in the interval λB = (0.51+0.20
−0.11) GeV. We also allow

for 20% power-suppressed corrections to the leading (in 1/mb) non-factorisable corrections

and find

Re δa0 = 0.06 ± 0.02(λB, fB, T1) ± 0.06(O(1/mb)) ,

|δa0|2 = 0.014 ± 0.004(λB, fB, T1)
+0.017
−0.009(O(1/mb)) . (25)

Let us now turn to δa±. Neglecting the effect of WA, one has δa± = δa0. Varying λB,

fB and T1 as before, and allowing for 20% power-suppressed corrections to leading non-

factorisable contributions, we find

Re δaQCDF
± = −0.19 ± 0.09(λB, fB, T1) ± 0.06(O(1/mb)) ,

|δaQCDF
± |2 = 0.05+0.04

−0.03(λB, fB, T1)
+0.02
−0.01(O(1/mb)) , (26)

in QCD factorisation and

Re δaQCDSR
± = −0.06 ± 0.04(SR) ± 0.06(O(1/mb)) ,

|δaQCDSR
± |2 = 0.02 ± 0.01(SR)+0.03

−0.02(O(1/mb)) , (27)

using QCD sum rules for the WA contribution. The SR error reflects the dependence of

the result on the QCD sum rule specific parameters M2 and s0 and the value of χ.

Taking everything together, we have

RQCDF
th =

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2

[0.75 ± 0.11(ξ)± 0.03(au,c
7 , γ, Rb)] ,

RQCDSR
th =

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2

[0.75 ± 0.11(ξ)± 0.02(au,c
7 , γ, Rb)] . (28)

This result makes it clear that the theoretical uncertainty associated with δa is small and

that the error is dominated by that of ξ — the reduction of which is mostly a matter of

more accurate (lattice and QCD sum rule) calculations, but is not affected by uncalculable

1/mb corrections. Within the quoted accuracy, the two different methods to calculate

the WA contribution agree. We would like to stress here that it is precisely the CKM

suppression of δa0,± which also suppresses their uncertainties and renders the application

of QCD factorisation to B → V γ viable.

We are now in a position to obtain values for |Vtd/Vts|. Comparing (28) with the

experimental results (16), (17) and (18), we get

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

Belle

B→V γ

= 0.207 ± 0.016(th) ± 0.027(exp) ,

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

BaBar

B→V γ

= 0.179 ± 0.014(th) ± 0.020(exp) ,
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∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

HFAG

B→V γ

= 0.192 ± 0.014(th) ± 0.016(exp) . (29)

These values can be compared with that following from Rb, γ and the unitarity of the

CKM matrix:
∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

SM

= λ(1 +R2
b − 2Rb cos γ)1/2 = 0.216 ± 0.029 . (30)

Both results agree well within errors. As (30) is obtained from tree-level processes only, it

represents the “true” value of |Vtd/Vts| in the SM.

A third determination of |Vtd/Vts| can be obtained from B mixing. In the SM, we have

∆ms

∆md

=
mBs

mBd

f 2
Bs
BBs

f 2
Bd
BBd

∣

∣

∣

∣

Vts

Vtd

∣

∣

∣

∣

2

. (31)

The current world average for ∆md is ∆md = (0.507 ± 0.005) ps−1 [22]. ∆ms has recently

been measured by the CDF collaboration [47],

∆ms = 17.77 ± 0.10(stat) ± 0.07(syst)ps−1 , (32)

with an accuracy that exceeds 5σ significance. D0 provided a two-sided bound at 90% CL

[48]:

17 ps−1 < ∆ms < 21 ps−1 . (33)

The hadronic matrix elements in (31) are obtained from lattice simulations. The most

up-to-date results for the decay constants have been obtained by the HPQCD group, using

unquenched nf = (2 + 1) configurations [49]:

fBs
/fBd

= 1.20(3)(1) ,

where the first error is statistical and from chiral extrapolation and the second comes from

“other uncertainties” [49]. The particular strength of this calculation is that light quark

masses as small asms/8 could be reached, which implies that only a moderate extrapolation

to the physical chiral limit is required. As for the ratio of BBd,s
, the currently best result

is obtained from unquenched nf = 2 calculations (JLQCD collaboration [50]):

BBs
/BBd

= 1.017(16)(+56
−17) ,

where the first error is statistical and the second systematic. In this calculation, the

minimal light quark mass was mq = 0.5ms, which requires a more substantial extrapolation

to the physical limit and is responsible for the large systematic uncertainty. A combination

of both results yields [41]:

fBs
B

1/2
Bs

fBd
B

1/2
Bd

= 1.210
(

+47
−35

)

, (34)
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where the errors have been added in quadrature. This procedure may be problematic as it

combines results with different systematic effects, but yields the most reliable unquenched

result to date.4 From this, one finds

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

∆m

= 0.2060+0.0081
−0.0060(th) ± 0.0007(exp) , (35)

which is the result obtained by the CDF collaboration [47]. This value, too, agrees with

the two previous determinations. Finally, one can compare our result also to the results

of global fits of the unitarity triangle. The UTfit collaboration quotes, in September 2006,

[33]
∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

UTfit

= 0.202 ± 0.008 ,

whereas CKMfitter gets [52]

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

CKMfitter

= 0.201+0.008
−0.007 .

Again, all values agree within errors.

4 Summary and Conclusions

In this paper we have presented a new analysis of the form-factor ratio ξ ≡ TB→K∗

1 /TB→ρ
1

from QCD sum rules on the light-cone, paying particular attention to the size of SU(3)-

breaking effects. We have obtained

ξ = 1.17 ± 0.09 ;

this value is nearly independent of QCD sum-rule-specific parameters and the error is

dominated by that of the tensor decay constants f⊥
ρ,K∗. A reduction of these errors by a

factor of two would reduce the total uncertainty to ±0.06. The numerical values of these

constants come mainly from QCD sum rules, partly from quenched lattice calculations.

A determination from unquenched lattice calculations with reduced errors would be very

desirable indeed.

We then have analysed the non-factorisable corrections to R ≡ B̄(B → (ρ, ω)γ)/B̄(B →
K∗γ) in the framework of QCD factorisation. The dominant power-suppressed correction

comes from weak annihilation diagrams that mostly affect B± → ρ±γ. We have estimated

these corrections both in QCD factorisation and using QCD sum rules, and find that the

results agree within errors; we will present a more detailed discussion of power-suppressed

corrections in a separate publication [8]. Our present best estimate of Rth is given in

Eq. (28). We then extracted the ratio of CKM matrix elements |Vtd/Vts|B→V γ from Rexp

obtained by BaBar and Belle, respectively, and averaged by HFAG, and find the values

4A critical discussion of these lattice results, and their impact on the constraints on new physics from

B mixing, can be found in Ref. [51].

18



given in Eq. (29). Our results for this parameter agree well with all other determinations

available from various sources as summarised in the previous section. They also agree with

the value extracted from B mixing, using the new measurement of ∆ms reported by the

CDF collaboration. Presently, there is no indication for new physics to be inferred from

these results.
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Addendum to v3

Please note that in the arXiv version v2 of this paper, which is identical with the published

version JHEP 04 (2006) 046, we used the BaBar bound quoted in Ref. [2], RBaBar
exp <

0.029 at 90% CL, which was combined, by HFAG, with the Belle measurement to RHFAG
exp =

0.024±0.006 and resulted in |Vtd/Vts|HFAG
B→V γ = 0.179±0.014(th)±0.022(exp). These values

have changed with the BaBar measurement of B(B → (ρ, ω)γ) reported in Ref. [3]; the

corresponding new result for |Vtd/Vts| is given in (29).

Appendix: NLO Evolution of Twist-2 DAs

To leading-logarithmic accuracy, the (non-perturbative) Gegenbauer moments an in Eq. (8)

renormalize multiplicatively as

aLO
n (µ2) = Lγ

(0)
n /(2β0) an(µ2

0), (A.1)

where L = αs(µ
2)/αs(µ

2
0), β0 = (33−2Nf)/3, and the anomalous dimensions γ

(0)
n are given

by

γ‖(0)n = 8CF

(

ψ(n + 2) + γE − 3

4
− 1

2(n+ 1)(n+ 2)

)

,

γ⊥(0)
n = 8CF

(

ψ(n + 2) + γE − 3

4

)

.

To next-to-leading order accuracy, the scale dependence of the Gegenbauer moments is

more complicated and reads [53]

aNLO
n (µ2) = an(µ2

0)E
NLO
n +

αs(µ
2)

4π

n−2
∑

k=0

ak(µ
2
0)L

γ
(0)
k

/(2β0) d
(1)
nk , (A.2)

where

ENLO
n = Lγ

(0)
n /(2β0)

{

1 +
γ

(1)
n β0 − γ

(0)
n β1

8πβ2
0

[

αs(µ
2) − αs(µ

2
0)
]

}
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with L = αs(µ)/αs(µ0), β1 = 102 − (38/3)Nf ; γ
(1)
n are the diagonal two-loop anomalous

dimensions, which have been calculated, for the vector current, in Ref. [54], and, for the

tensor current, in Ref. [55]. The mixing coefficients d
(1)
nk , k ≤ n − 2, are given in closed

form in Ref. [53]; these formulas are valid for arbitrary currents upon substitution of the

corresponding one-loop anomalous dimension.5

For the lowest moments n = 0, 1, 2 one has, explicitly:

γ
‖(1)
0 = 0 , γ

‖(1)
1 =

23110

243
− 512

81
Nf , γ

‖(1)
2 =

34072

243
− 830

81
Nf ,

γ
⊥(1)
0 =

724

9
− 104

27
Nf , γ

⊥(1)
1 = 124 − 8Nf , γ

⊥(1)
2 =

38044

243
− 904

81
Nf , (A.3)

and

d
‖(1)
20 =

35

9

20 − 3β0

50 − 9β0

(

1 − L50/(9β0)−1
)

,

d
⊥(1)
20 =

28

9

16 − 3β0

40 − 9β0

(

1 − L40/(9β0)−1
)

. (A.4)
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