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1. Introduction

The discovery of an approximate SU(3) flavour symmetry of strong interactions [1, 2]

predates the quark model and has been of paramount importance in all subsequent devel-

opments. This symmetry has its origin in the smallness of up, down and strange quark

masses with respect to the QCD scale ΛQCD. In static hadron properties, such as masses,

magnetic moments, decay constants, etc., it is accurate to about 1 to 3% for quantities

related by isospin and to about 20% for those related by U- and V-spin. The breaking

of SU(3) in dynamical observables can be larger and up to now is not fully understood.

One particularly striking example is the weak radiative decay Σ → pγ: the experimental

azimuthal asymmetry in this decay is αγ = −0.76 ± 0.08 [3], which according to Hara’s

theorem [4] implies 100% SU(3) symmetry violation.

In recent years SU(3)-symmetry-breaking effects in heavy-meson decays have attracted

increasing interest. These processes can be treated in heavy-quark expansion, which has

proved a very powerful theoretical tool, so that in some cases, for instance weak radiative

decays, B → ργ vs. B → K∗γ, the uncertainty in SU(3) breaking is actually the dominant

source of theoretical error. The particular challenge of such processes is that, in the pres-

ence of a hard scale, hard exclusive reactions are dominated by rare configurations of the

hadrons’ constituents: either only valence-quark configurations contribute and all quarks
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have small transverse separation (hard mechanism), or one of the partons carries most

of the hadron momentum (soft or Feynman mechanism) [5]. The size of SU(3)-breaking

effects in such rare configurations cannot be deduced from the symmetry breaking in static

properties, where the bulk of the wave-function contributes.

Hard contributions are simpler to treat than their soft counterparts and their structure

is well understood, see ref. [6]. They can be calculated in terms of the hadron distribution

amplitudes (DAs) which describe the momentum-fraction distribution of partons at zero

transverse separation in a particular Fock state, with a fixed number of constituents. DAs

are ordered by increasing twist; the leading-twist-2 meson DA φ2;P , which describes the

momentum distribution of the valence quarks in the meson P , is related to the meson’s

Bethe-Salpeter wave function φP,BS by an integral over transverse momenta:

φ2;P (u, µ) = Z2(µ)

∫ |k⊥|<µ

d2k⊥ φP,BS(u, k⊥).

Here u is the quark momentum fraction, Z2 is the renormalization factor (in the light-cone

gauge) for the quark-field operators in the wave function, and µ denotes the renormaliza-

tion scale. The study of the leading-twist DA of the pion has attracted much attention

in the literature, whereas the status of SU(3)-breaking effects that are responsible for

the difference between the kaon and the pion DAs has been controversial for a while [7].

These corrections have been recently reconsidered in the framework of QCD sum rules in

refs. [8 – 11], with a consistent picture finally emerging. We will give a short review of these

developments below.

Higher-twist DAs are much more numerous and describe either contributions of “bad”

components in the wave function, or contributions of transverse motion of quarks (an-

tiquarks) in the leading-twist components, or contributions of higher Fock states with

additional gluons and/or quark-antiquark pairs. Within the hard-rescattering picture, the

corresponding contributions to the hard exclusive reactions are suppressed by a power (or

powers) of the large momentum Q, which explains why they have received less attention.

In turn, soft contributions are intrinsically non-perturbative and cannot be further

reduced (or factorized) in terms of simpler quantities without additional assumptions. At

present, they can only be estimated using light-cone sum rules [12 – 14], see refs. [15, 16]

for sample applications to heavy quark decays. In this technique soft contributions are

extracted from the dispersion relations for suitable correlation functions, by introducing

an auxiliary “semi-hard” scale (Borel parameter) at which the two different representations

of the correlation function, in terms of quarks and in terms of hadronic states, are matched.

In calculations of this kind, the necessary non-perturbative input again reduces to DAs,

and the higher-twist DAs play a very important role, since they are only suppressed by

powers of the Borel parameter and not by powers of the hard scale Q. The crucial point and

main technical difficulty in the construction of higher-twist DAs is the necessity to satisfy

the exact equations of motion (EOM), which yield relations between physical effects of

different origins: for example, using EOM, the contributions of orbital angular momentum

in the valence component of the wave function can be expressed (for mesons) in terms

of contributions of higher Fock states. An appropriate framework for implementing these
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constraints was developed in ref. [17]: it is based on the derivation of EOM relations for non-

local light-ray operators [18], which are solved order by order in the conformal expansion;

see ref. [19] for a review and further references. In this way it is possible to construct

self-consistent approximations for the DAs, which involve a minimum number of hadronic

parameters. Another approach, based on the study of renormalons, was suggested for twist

4 in refs. [20, 21]: this technique is appealing as it allows one to obtain an estimate of high-

order contributions to the conformal expansion which are usually omitted. In this paper,

we generalize this approach to include SU(3)-breaking corrections and show how to combine

renormalon-based estimates of “genuine” twist-4 effects with meson mass corrections.

Pion DAs of twist 3 and 4 have already been studied in ref. [17]. In ref. [22], these results

were extended to the pseudoscalar octet; they include those meson-mass corrections that

break chiral symmetry, while still preserving G-parity. SU(3)-breaking in the normalization

of the twist-4 DA was estimated in ref. [23]. In this paper we continue the analysis of twist-3

and 4 DAs of the K meson and present, for the first time, the complete set of DAs, including

also G-parity-breaking terms that vanish in the limit of quarks with equal mass. The results

are of direct relevance to the discussion of, for instance, B-meson decays into light mesons

using light-cone sum rules and also in the SCET framework. We refrain from an analysis of

the η DAs, as the inclusion of the singlet part is crucial for phenomenological applications,

but goes beyond the scope of this paper, and in fact deserves a separate study.

Our paper is organized as follows: in section 2 we explain notation and review the ex-

isting information on leading-twist DAs. Section 3 is devoted to twist-3 DAs: we give their

general classification, calculate meson-mass corrections, perform a conformal expansion and

formulate models in terms of a few non-perturbative parameters. A similar programme is

carried out for twist-4 DAs in section 4. In section 5 we present numerical results for all

DAs and conclude in section 6 with a short summary and outlook. The appendices contain

a collection of relevant formulas, in particular the QCD sum rules for the relevant twist-2,

-3 and -4 matrix elements.

2. General framework and twist-2 DAs

Light-cone meson DAs are defined in terms of matrix elements of non-local light-ray oper-

ators stretched along a certain light-like direction zµ, z2 = 0, and sandwiched between the

vacuum and the meson state. We adopt the generic notation

φt;M (u), ψt;M (u), . . . (2.1)

and

Φt;M (α), Ψt;M (α), . . . (2.2)

for two-particle and three-particle DAs, respectively. The first subscript t = 2, 3, 4 stands

for the twist; the second one, M = π,K, . . ., specifies the meson. For definiteness, we

will write most of the expressions for K mesons, i.e. sq̄ bound states with q = u, d. The

variable u in the definition of two-particle DAs always refers to the momentum fraction

carried by the quark, u = us; ū ≡ 1 − u = uq̄ is the antiquark momentum fraction. The
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set of variables in the three-particle DAs, α = {α1, α2, α3} = {αs, αq̄, αg}, corresponds to

the momentum fractions carried by the quark, antiquark and gluon, respectively.

To facilitate the light-cone expansion, it is convenient to introduce a second light-like

vector pµ such that

pµ = Pµ −
1

2
zµ

m2
M

pz
, (2.3)

where Pµ is the meson momentum, P 2 = m2
M . We also need the projector onto the

directions orthogonal to p and z,

g⊥µν = gµν −
1

pz
(pµzν + pνzµ), (2.4)

and use the notation

az ≡ aµzµ, ap ≡ aµpµ, bµz ≡ bµνzν , etc. (2.5)

for arbitrary Lorentz vectors aµ and tensors bµν . a⊥ denotes the generic component of aµ

orthogonal to z and p.

We use the standard Bjorken-Drell convention [24] for the metric and the Dirac matri-

ces; in particular, γ5 = iγ0γ1γ2γ3, and the Levi-Civita tensor εµνλσ is defined as the totally

antisymmetric tensor with ε0123 = 1. The covariant derivative is defined as Dµ = ∂µ−igAµ

and the dual gluon-field-strength tensor as G̃µν = 1
2εµνρσGρσ.

The leading twist-2 DA of the K meson is defined as1

〈0|q̄(z)[z,−z]γzγ5s(−z)|K(P )〉 = ifK(pz)

∫ 1

0
du eiξpz φ2;K(u, µ2) . (2.6)

Here [x, y] stands for the path-ordered gauge factor along the straight line connecting the

points x and y:

[x, y] = P exp

[
ig

∫ 1

0
dt (x − y)µAµ(tx + (1 − t)y)

]
, (2.7)

and µ is the renormalization (factorization) scale. We also use the short-hand notation

ξ = 2u − 1. (2.8)

The decay constant fK is defined, as usual, as

〈0|q̄(0)γµγ5s(0)|K(P )〉 = ifKPµ, (2.9)

with fK = 160MeV [3]. The normalization follows from the requirement that the local

limit z → 0 of (2.6) reproduce (2.9), so that

∫ 1

0
duφ2;K(u) = 1 . (2.10)

1The leading-twist DA of a K̄ meson is given by φ2;K̄(u) = φ2;K(1 − u).
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A convenient tool to study DAs is provided by conformal expansion [19].2 The un-

derlying idea is similar to partial-wave decomposition in quantum mechanics and allows

one to separate transverse and longitudinal variables in the Bethe-Salpeter wave-function.

The dependence on transverse coordinates is formulated as scale dependence of the rel-

evant operators and is governed by renormalization-group equations, the dependence on

the longitudinal momentum fractions is described in terms of irreducible representations

of the corresponding symmetry group, the collinear conformal group SL(2,R). The confor-

mal partial-wave expansion is explicitly consistent with the equations of motion since the

latter are not renormalized. It thus makes maximum use of the symmetry of the theory to

simplify the dynamics.

To construct the conformal expansion for an arbitrary multiparticle distribution, one

first has to decompose each constituent field into components with fixed Lorentz-spin pro-

jection onto the light-cone. Each such component has conformal spin

j =
1

2
(l + s),

where l is the canonical dimension and s the (Lorentz-) spin projection. In particular,

l = 3/2 for quarks and l = 2 for gluons. The quark field is decomposed as ψ+ ≡ Λ+ψ

and ψ− = Λ−ψ with spin projection operators Λ+ = /p/z/(2pz) and Λ− = /z/p/(2pz), corre-

sponding to s = +1/2 and s = −1/2, respectively. For the gluon field strength there are

three possibilities: Gz⊥ corresponds to s = +1, Gp⊥ to s = −1, and both G⊥⊥ and Gzp

correspond to s = 0. Multiparticle states built of fields with definite Lorentz-spin projec-

tion can be expanded in irreducible representations of SL(2,R) with increasing conformal

spin. The explicit expression for the DA of an m-particle state with the lowest possible

conformal spin j = j1 + · · · + jm, the so-called asymptotic DA, is [17]

φas(α1, α2, . . . , αm) =
Γ(2j1 + · · · + 2jm)

Γ(2j1) · · ·Γ(2jm)
α2j1−1

1 α2j2−1
2 . . . α2jm−1

m . (2.11)

Multiparticle irreducible representations with higher spin j + n, n = 1, 2, . . ., are given by

polynomials of m variables (with the constraint
∑m

k=1 αk = 1 ), which are orthogonal over

the weight function (2.11).

In particular, for the leading-twist DA φK;2 defined in (2.6), the expansion goes in

Gegenbauer polynomials:

φK;2(u, µ2) = 6u(1 − u)

(
1 +

∞∑

n=1

aK
n (µ2)C3/2

n (2u − 1)

)
. (2.12)

To leading-logarithmic accuracy (LO), the (non-perturbative) Gegenbauer moments an

renormalize multiplicatively with

aLO
n (µ2) = Lγ

(0)
n /(2β0) an(µ2

0), (2.13)

2See ref. [25] for an alternative approach not based on conformal expansion.
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where L ≡ αs(µ
2)/αs(µ

2
0), β0 = (11Nc − 2Nf )/3, and the anomalous dimensions γ

(0)
n are

given by

γ(0)
n = 8CF

(
ψ(n + 2) + γE −

3

4
−

1

2(n + 1)(n + 2)

)
. (2.14)

The reason why leading-order renormalization respects the (anomalous) conformal sym-

metry is that it is driven by tree-level counterterms that retain the symmetry proper-

ties of the Lagrangian. More technically, the Callan-Symanzik equation that governs the

renormalization-scale dependence coincides to this accuracy with the Ward identity for the

dilatation operator, which is an element of the collinear conformal group [19].

To next-to-leading order (NLO) accuracy, the scale dependence of the Gegenbauer

moments is more complicated and reads [26, 27]

aNLO
n (µ2) = an(µ2

0)E
NLO
n +

αs(µ
2)

4π

n−2∑

k=0

an(µ2
0)ENLO

k d
(1)
nk , (2.15)

where

ENLO
n = Lγ

(0)
n /(2β0)

[
1 +

γ
(1)
n β0 − γ

(0)
n β1

8πβ2
0

[
αs(µ

2) − αs(µ
2
0)

]]
, (2.16)

γ
(1)
n are the diagonal two-loop anomalous dimensions [28], β1 = 102 − (38/3)Nf , and the

mixing coefficients d
(1)
nk , k ≤ n−2, are given in closed form in ref. [27], see also, for instance,

ref. [29] for a recent compilation. For the lowest moments n = 0, 1, 2 one needs

γ
(1)
0 = 0 , γ

(1)
1 =

23096

243
−

512

81
Nf , γ

(1)
2 =

34450

243
−

830

81
Nf (2.17)

and

d
(1)
20 =

7

30
(5CF − β0)

γ
(0)
2

γ
(0)
2 − 2β0

[
1 − L−1+γ

(0)
2 /(2β0)

]
. (2.18)

The odd Gegenbauer moments a2n+1 are first order in SU(3)-symmetry breaking for

the kaon and vanish for the pion by virtue of G-parity. The numerical value of aK
1 was

the subject of significant controversy until recently. The existing estimates are all obtained

using QCD sum rules. The first calculation of aK
1 by Chernyak and Zhitnitsky yielded

aK
1 ≈ 0.1 [30, 31], but unfortunately suffers from a sign mistake in the perturbative contri-

bution [7]. After the error is corrected, one finds that the two numerically leading contri-

butions come with different sign and cancel to a large extent, so that the sum rule becomes

unstable and numerically unreliable. This problem was reanalysed in refs. [8 – 11] using a

different set of sum rules, where it was also checked that the results are consistent with the

equations of motion for the relevant operators [9, 11]. The results are given in table 1.

As our best estimate, we take

aK
1 (1GeV) = 0.06 ± 0.03. (2.19)

Calculations of the second Gegenbauer moment for the pion DA, aπ
2 , have attracted

quite a bit of attention and have a long history. Three different approaches have been used:

direct calculations using QCD sum rules, pioneered by Chernyak and Zhitnitsky; analysis
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Method µ = 1 GeV µ = 2 GeV Reference

QCDSR,D 0.05 ± 0.02 0.04 ± 0.02 [8]

QCDSR,ND;EOM 0.10 ± 0.12 0.08 ± 0.09 [9]

QCDSR,D;EOM 0.06 ± 0.03 0.05 ± 0.02 [10, 11]

Table 1: The Gegenbauer moment aK
1 (µ2) from QCD sum rules. The abbreviations stand for:

QCDSR: QCD sum rules; D and ND: diagonal and non-diagonal correlation function, respectively;

EOM: equations of motion. The error estimates should be taken with some caution, as there is no

systematic approach to estimate uncalculated higher-order terms in the OPE.

Method µ = 1 GeV µ = 2 GeV Reference

CZ model 0.56 0.38 [32, 31]

QCDSR 0.26+0.21
−0.09 0.17+0.14

−0.06 [8]

QCDSR 0.28 ± 0.08 0.19 ± 0.05 this paper

QCDSR,NLC 0.19 ± 0.06 0.13 ± 0.04 [33 – 35]

Fπγγ∗ ,LCSR 0.19 ± 0.05 0.12 ± 0.03 (µ = 2.4) [36]

Fπγγ∗ ,LCSR 0.32 0.20 (µ = 2.4) [37]

Fπγγ∗ ,LCSR,R 0.44 0.30 [38]

Fπγγ∗ ,LCSR,R 0.27 0.18 [39]

F em
π ,LCSR 0.24 ± 0.14 ± 0.08 0.16 ± 0.09 ± 0.05 [40, 41]

F em
π ,LCSR,R 0.20 ± 0.03 0.13 ± 0.02 [42]

FB→π`ν ,LCSR 0.19 ± 0.19 0.13 ± 0.13 [16]

LQCD, quenched, 0.381 ± 0.234+0.114
−0.062 0.233 ± 0.143+0.088

−0.038 UKQCD [43]

W/CW (µ = 2.67)

LQCD, Nf = 2, W/CW 0.364 ± 0.126 0.236 ± 0.082 (µ2 = 5) QCDSF/UKQCD [44]

Table 2: The Gegenbauer moment aπ
2 (µ2). The CZ model involves aπ

2 = 2/3 at the low scale

µ = 500MeV; for the discussion of the extrapolation to higher scales, see ref. [37]. The abbreviations

stand for: QCDSR: QCD sum rules; NLC: non-local condensates; LCSR: light-cone sum rules; R:

renormalon model for twist-4 corrections; LQCD: lattice calculation; Nf = 2: calculation using

Nf = 2 dynamical quarks; W/WC: Wilson glue and non-perturbatively O(a) improved Clover-

Wilson fermion action.

of the experimental data on the pion electromagnetic and transition form factors and the B

weak decay form factor, using light-cone sum rules; and lattice calculations. The summary

of these results is presented in table 2; see also, for instance, refs. [37, 29] for another recent

compilation.
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Our conclusion from table 2 is rather pessimistic: aπ
2 can only be determined with

large errors, whatever approach is chosen. A fair quote is probably

aπ
2 (1GeV) = 0.25 ± 0.15 . (2.20)

The K-meson DA has attracted comparatively less attention. The old estimate by

Chernyak and Zhitnitsky, 〈ξ2〉K/〈ξ2〉π = 0.8 ± 0.02 [31], translates to

aK
2 /aπ

2 = 0.59 ± 0.04 ↔ (aK
2 )CZ(1GeV) = 0.33 (2.21)

for the CZ model. A recent calculation, ref. [8], including radiative corrections to the sum

rules gives, however

aK
2 /aπ

2 ' 1 , aK
2 (1GeV) = 0.27+0.37

−0.12. (2.22)

This result is consistent with the most recent lattice calculation, using Nf = 2 dynamical

fermions [44], which shows that 〈ξ2〉π stays practically constant under a variation of the

pion mass. For the purpose of the present paper we have done an update of the QCD

sum-rule calculation [8], using the corrected O(αs) quark-condensate contribution given in

ref. [10], see appendix B, which yields

aK
2 /aπ

2 = 1.05 ± 0.15 , aK
2 (1GeV) = 0.30 ± 0.15 . (2.23)

The difference with [8] is small and mainly due to the larger value of the strong coupling

that we are using in this work. We conclude that the existing evidence points towards a

very small SU(3) violation in the second coefficient in the Gegenbauer expansion, so that

we accept aK
2 = aπ

2 in the range given in eq. (2.20) as our final estimate.

Estimates of yet higher-order Gegenbauer coefficients are rather uncertain. The light-

cone sum-rule calculations of the transition form factor Fπγγ∗ in refs. [36 – 39] suggest a

negative value for aπ
4 , which is consistent with the result aπ

4 (1GeV) > −0.07 obtained in

ref. [16]. However, this conclusion may be premature because of the omission of yet higher

moments and absence of any convincing method to estimate systematic errors involved in

the analysis. For this reason we adopt, in this paper, a model for the leading-twist DA,

which is given by the Gegenbauer expansion (2.12) truncated after the second term.

Last but not least we have to specify the value of the strange-quark mass. In the

last year several lattice calculations with dynamical fermions have been published; see

refs. [45, 46] for a summary and short review. In all these calculations the physical kaon

mass is used as an input to fix the strange-quark mass. There is good agreement between

data sets obtained using different non-perturbative renormalization procedures and, in fact,

also with earlier quenched calculations. On the other hand, the data still show considerable

dependence on the lattice spacing, so that it is clear that simulations on finer lattices are

needed for a systematic continuum extrapolation. In a different approach, the strange-

quark mass can be extracted from the e+e− annihilation cross section and/or hadronic

τ -decay data using QCD sum rules. These calculations have reached a certain degree of

maturity and yield results that are in reasonable agreement with lattice determinations;

see ref. [47] for a recent summary and further references. In this paper we use

ms(2GeV) = (100 ± 20)MeV, (2.24)

which corresponds to ms = (137 ± 27)MeV at 1 GeV.
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3. Twist-3 distributions

In this section we define all the twist-3 DAs of the kaon and derive models for them to next-

to-leading order in conformal expansion, which fulfil the QCD equations of motion. We

also work out the leading-order scale-dependence of the corresponding hadronic parameters.

Numerical values for the parameters and the corresponding models are given in section 5.

To twist-3 accuracy, there are two two-particle DAs defined as

〈0|q̄(z)iγ5s(−z)|K(P )〉 =
fKm2

K

ms + mq

∫ 1

0
du ei(2u−1)pz φp

3;K(u), (3.1)

〈0|q̄(z)σαβγ5s(−z)|K(P )〉 = −
i

3

fKm2
K

ms + mq
(Pαzβ − Pβzα)

∫ 1

0
du ei(2u−1)pz φσ

3;K(u). (3.2)

In addition, there is also one three-particle DA:

〈0|q̄(z)σµνγ5gGαβ(vz)s(−z)|K(P )〉 = (3.3)

= i f3K

(
pαpµg⊥νβ − pαpνg

⊥
µβ − (α ↔ β)

) ∫
Dα e−ipz(α2−α1+vα3)Φ3;K(α1, α2, α3) + · · · ,

where the integration measure is defined as

∫
Dα =

∫ 1

0
dα1 dα2 dα3 δ(1 − α1 − α2 − α3) (3.4)

and the dots stand for Lorentz structures of twist 5 and higher.

To next-to-leading order in conformal spin, Φ3;K is given by

Φ3;K(α) = 360α1α2α
2
3

{
1 + λ3K(α1 − α2) + ω3K

1

2
(7α3 − 3)

}
. (3.5)

The three parameters f3K , λ3K , and ω3K can be defined in terms of matrix elements of

local twist-3 operators as follows:

〈0|q̄σzξγ5gGzξs|K〉 = 2if3K(pz)2,

〈0|q̄σzξγ5[iDz , gGzξ]s −
3

7
i∂z q̄σzξγ5gGzξs|K〉 = 2if3K(pz)3

3

28
ωK3,

〈0|q̄i
←
Dz σzξγ5gGzξs − q̄σzξγ5gGzξi

→
Dz s|K〉 = 2if3K(pz)3

1

14
λK3. (3.6)

Numerical values for these parameters can be obtained from QCD sum rules and will be

discussed in section 5.

The operators in (3.6) renormalize multiplicatively in the chiral limit, with one-loop

anomalous dimensions [48]

γ
(0)
3;f = 2CA +

14

3
CF =

110

9
,

γ
(0)
3;ω =

20

3
CA +

7

3
CF =

208

9
,

γ
(0)
3;λ =

5

3
CA +

47

6
CF =

139

9
. (3.7)
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For a massive strange quark, the operators in (3.6) mix with twist-2 ones. Using the

light-ray-operator technique of ref. [18], this mixing can be expressed in compact form as

O3(z, vz, 0)µ
2

= O3(z, vz, 0)µ
2
0 − ims

CF αs

2π
ln

µ2

µ2
0

1

v

∫ 1

0
dt

[
O2(z, vz) − 2tO2(z, tvz)

]
, (3.8)

where

O3(z, vz, 0)µ
2

= [q̄(z)σzνγ5gGzν(vz)s(0)]µ
2

(3.9)

and

O2(az, bz)µ
2

= [q̄(az)γzγ5s(bz)]µ
2
; (3.10)

µ2 stands for the normalization point. Sandwiching (3.8) between the K state and the

vacuum, and expanding in powers of pz, one can easily derive the mixing for local operators

with an arbitrary number of derivatives. We find that f3K mixes with fKms and with

fKmsa
K
1 , whereas λ3K and ω3K mix in addition with fKmsa

K
2 . The corresponding LO

renormalization-group-improved expressions read

f3K(µ2) = L55/(9β0)f3K(µ2
0) +

2

19

(
L4/(β0) − L55/(9β0)

)
fKms(µ

2
0)

+
6

65

(
L55/(9β0) − L68/(9β0)

)
fK [msa

K
1 ](µ2

0),

[f3Kω3K ](µ2) = L104/(9β0)[f3Kω3K ](µ2
0) +

1

170

(
L4/(β0) − L104/(9β0)

)
fKms(µ

2
0)

+
1

10

(
L68/(9β0) − L104/(9β0)

)
fK[msa

K
1 ](µ2

0)

+
2

15

(
L86/(9β0) − L104/(9β0)

)
fK[msa

K
2 ](µ2

0),

[f3Kλ3K ](µ2) = L139/(18β0)[f3Kλ3K ](µ2
0) −

14

67

(
L4/(β0) − L139/(18β0)

)
fKms(µ

2
0)

+
14

5

(
L68/(9β0) − L139/(18β0)

)
fK [msa

K
1 ](µ2

0)

−
4

11

(
L86/(9β0) − L139/(18β0)

)
fK [msa

K
2 ](µ2

0), (3.11)

where L is the leading-log scaling factor: L = αs(µ
2)/αs(µ

2
0).

The two-particle twist-3 DAs (3.1) and (3.2) are not independent, but related to the

three-particle DA Φ3;K by EOM [17, 22]. The EOM relations contain terms that depend

on quark masses and can conveniently be expressed in terms of two dimensionless param-

eters ρK
± :

ρK
+ =

(ms + mq)
2

m2
K

, ρK
− =

m2
s − m2

q

m2
K

; (3.12)

numerically ρK
+ ' ρK

− . The rationale for introducing two parameters is that ρK
− changes

sign when switching from K mesons to K̄ mesons, i.e. ρK̄
+ = ρK

+ , but ρK̄
− = −ρK

− . In the

analysis of twist-3 DAs given in ref. [22], only terms in ρK
+ have been included. Here we

complete these studies by taking into account also the terms in ρK
− .
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From the non-local operator identities (A.3) and (A.4), one obtains the following rela-

tions for moments of the DAs, dropping the index K:

M
φp

3
n = δn0 +

n − 1

n + 1
M

φp
3

n−2 + 2(n − 1)M
ϕ

(1)
3

n−2 +
2(n − 1)(n − 2)

n + 1
M

ϕ
(2)
3

n−3

− ρ+
n − 1

n + 1
Mφ2

n−2 + ρ−Mφ2
n−1 ,

M
φσ

3
n = δn0 +

n − 1

n + 3
M

φσ
3

n−2 +
6(n − 1)

n + 3
M

ϕ
(1)
3

n−2 +
6n

n + 3
M

ϕ
(2)
3

n−1

− ρ+
3

n + 3
Mφ2

n + ρ−
3

n + 3
Mφ2

n−1 , (3.13)

where we use the notation

Mφ
n =

∫ 1

0
du (2u − 1)nφ(u)

and introduce the auxiliary functions

ϕ
(1)
3 (u) =

∫ u

0
dα1

∫ ū

0
dα2

2

1 − α1 − α2
Φ3(α) , (3.14)

ϕ
(2)
3 (u) =

∫ u

0
dα1

∫ ū

0
dα2

2

(1 − α1 − α2)2
(α1 − α2 − (2u − 1))Φ3(α) . (3.15)

The normalization is chosen in such a way that

M
φp

3
0 =

1∫

0

duφp
3(u) = 1, M

φσ
3

0 =

1∫

0

duφσ
3 (u) = 1 − ρ+. (3.16)

Except for the new terms in ρ−, these moment relations agree with those obtained in

refs. [17, 22].

The relations (3.13) can be solved exactly: separating the contributions of quark-an-

tiquark-gluon operators and the terms in ρ±,

φp
3(u) = 1 + φp

3,g(u) + ρ+ φp
3,+(u) + ρ− φp

3,−(u) ,

φσ
3 (u) = 6uū + φσ

3,g(u) + ρ+ φσ
3,+(u) + ρ− φσ

3,−(u) , (3.17)

we obtain the integral representations (cf. ref. [49])

φp
3,g(u) =

1

4

∫ u

0

dv

v̄

[
(2v − 1) (ϕ

(1)
3 )

′′
− 2 (ϕ

(1)
3 )

′
(v) + (ϕ

(2)
3 )

′′
(v)

]

−
1

4

∫ 1

u

dv

v

[
(2v − 1) (ϕ

(1)
3 )

′′
(v) − 2 (ϕ

(1)
3 )

′
(v) + (ϕ

(2)
3 )

′′
(v)

]
, (3.18)

φp
3,+(u) =

1

4

∫ u

0

dv

v̄
φ′

2(v) −
1

4

∫ 1

u

dv

v
φ′

2(v) , (3.19)

φp
3,−(u) =

1

4

∫ u

0

dv

v̄

[
2φ2(v) − φ′

2(v)
]
−

1

4

∫ 1

u

dv

v

[
2φ2(v) + φ′

2(v)
]
, (3.20)

where primes denote the derivatives in v: φ′(v) = (d/dv)φ(v) etc.
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For the second twist-3 DA the solutions of the moment relations read, in the same

notation:

φσ
3,g(u) = −

3

2
uū

{∫ u

0
dv

(
1

v̄2
+

2

v̄

)(
(ϕ

(1)
3 )

′
(v) + (2v − 1) (ϕ

(2)
3 )

′
(v)

)
(3.21)

−

∫ 1

u
dv

(
1

v2
+

2

v

)(
(ϕ

(1)
3 )

′
(v) + (2v − 1) (ϕ

(2)
3 )

′
(v)

)}
, (3.22)

φσ
3,+(u) = −

3

2
uū

(∫ u

0
dv

1

v̄2
φ2(v) +

∫ 1

u
dv

1

v2
φ2(v)

)
,

φσ
3,−(u) =

3

2
uū

{∫ u

0
dv

(
1

v̄2
+

2

v̄

)
φ2(v) −

∫ 1

u
dv

(
1

v2
+

2

v

)
φ2(v)

}
. (3.23)

We stress that the relations (3.18) to (3.23) are valid in full QCD and involve no

approximation whatsoever. One consequence of these relations is that quark-mass correc-

tions to φp,σ
3 contain logarithmic end-point singularities. In particular for the asymptotic

leading-twist DA φ2;K(u) = 6u(1 − u) we obtain

φp
3;K(u)|no gluons, asymptotic φ2;K

= 1 + ρK
+

3

2
(2 + ln uū) + ρK

−

3

2

(
1 − 2u + ln

u

ū

)
. (3.24)

To NLO in conformal spin we obtain, using the truncated conformal expansions (2.12) for

φ2;K and (3.5) for Φ3;K :

φp
3;K(u) = 1 + 3ρK

+ (1 + 6aK
2 ) − 9ρK

−aK
1 + C

1/2
1 (2u − 1)

[
27

2
ρK
+aK

1 − ρK
−

(
3

2
+ 27aK

2

)]

+C
1/2
2 (2u − 1)

(
30η3K + 15ρK

+ aK
2 − 3ρK

−aK
1

)
+ C

1/2
3 (2u − 1)

(
10η3Kλ3K −

9

2
ρK
−aK

2

)

− 3η3Kω3KC
1/2
4 (2u − 1) +

3

2
(ρK

+ + ρK
− )(1 − 3aK

1 + 6aK
2 ) ln u

+
3

2
(ρK

+ − ρK
− )(1 + 3aK

1 + 6aK
2 ) ln ū, (3.25)

φσ
3;K(u) = 6uū

[
1 +

3

2
ρK
+ + 15ρK

+ aK
2 −

15

2
ρK
−aK

1 +

(
3ρK

+ aK
1 −

15

2
ρK
−aK

2

)
C

3/2
1 (2u − 1)

+

(
5η3K −

1

2
η3Kω3K +

3

2
ρK
+aK

2

)
C

3/2
2 (2u − 1) + η3Kλ3KC

3/2
3 (2u − 1)

]

+ 9uū(ρK
+ + ρK

− )(1 − 3aK
1 + 6aK

2 ) ln u + 9uū(ρK
+ − ρK

− )(1 + 3aK
1 + 6aK

2 ) ln ū , (3.26)

where, to simplify notations, we have introduced the parameter

η3K =
f3K

fK

mq + ms

m2
K

. (3.27)

These expressions are our final results for the two-particle twist-3 DAs and supersede those

given in refs. [17, 22]. The terms multiplying lnu and ln ū are the first three terms in the

conformal expansion of φ′
2;K(0) and φ′

2;K(1), respectively. Numerical values for the hadronic

parameters are given in table 3. The leading-order scale-dependence follows from (3.11)

and the scale dependence of the quark masses in ρK
± and η3K .
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We note in passing that the EOM relations

u

2

{
φp

3;π(u) +
1

6
(φσ

3;π(u))′
}

no gluons

=
1

6
φσ

3;π(u)

∣∣∣∣
no gluons

,

1 − u

2

{
φp

3;π(u) −
1

6
(φσ

3;π(u))′
}

no gluons

=
1

6
φσ

3;π(u)

∣∣∣∣
no gluons

,

are no longer fulfilled for φp,σ
3;K , but violated by mass corrections in ρK

± .

4. Twist-4 distributions

In this section we derive models for the two- and three-particle twist-4 DAs to NLO in

the conformal expansion. There are four K-meson three-particle DAs of twist 4, defined

as [17, 22]3

〈0|q̄(z)γµγ5gGαβ(vz)s(−z)|K(P )〉 =

= pµ(pαzβ − pβzα)
1

pz
fKΦ4;K(v, pz) + (pβg⊥αµ − pαg⊥βµ)fKΨ4;K(v, pz) + · · · , (4.1)

〈0|q̄(z)γµigG̃αβ(vz)s(−z)|K(P )〉 =

= pµ(pαzβ − pβzα)
1

pz
fKΦ̃4;K(v, pz) + (pβg⊥αµ − pαg⊥βµ)fKΨ̃4;K(v, pz) + · · · , (4.2)

with the short-hand notation

F(v, pz) =

∫
Dαe−ipz(α2−α1+vα3)F(α).

The integration measure Dα is defined in (3.4), and the dots denote terms of twist 5 and

higher. For massless quarks and, more generally, for two equal-mass quarks, G-parity

implies that the DAs Φ and Ψ are antisymmetric under the interchange of the quark

momenta, α1 ↔ α2, whereas Φ̃ and Ψ̃ are symmetric [17, 22]. Note that unlike twist-2

and twist-3 DAs, which are dimensionless, the twist-4 DAs have mass dimension 2 (GeV2).

The corresponding contributions to hard exclusive processes are suppressed by two powers

of the hard scale with respect to leading twist.

The distribution amplitudes Φ4;K and Φ̃4;K correspond to the light-cone projection

γzGzp, which picks up the s = +1/2 components of both quark and antiquark field and

the s = 0 component of the gluon field. The conformal expansion reads:

Φ4;K(α) = 120α1α2α3[φ
K
0 + φK

1 (α1 − α2) + φK
2 (3α3 − 1) + · · ·],

Φ̃4;K(α) = 120α1α2α3[φ̃
K
0 + φ̃K

1 (α1 − α2) + φ̃K
2 (3α3 − 1) + · · ·]. (4.3)

G-parity implies that, for the π meson, φπ
0 = φπ

2 = φ̃π
1 = 0, whereas φK

0 , φK
2 and φ̃K

1 are

O(ms − mq).

In turn, the DAs Ψ4;K and Ψ̃4;K correspond to the light-cone projection γ⊥Gz⊥, which

is a mixture of different quark-spin states with sq = +1/2, sq̄ = −1/2 and sq = −1/2, sq̄ =

3In the notation of ref. [22], Φ4;K = m2
KA‖, Ψ4;K = m2

KA⊥, eΦ4;K = m2
KV‖ and eΨ4;K = m2

KV⊥.
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+1/2, respectively. In both cases s = +1 for the gluon. We separate the different quark-

spin projections by introducing the auxiliary amplitudes Ψ↑↓ and Ψ↓↑, defined as

〈0|q̄(z)igG̃αβ(vz)γzγµγps(−z)|K(P )〉 = fK

(
pβg⊥αµ − pαg⊥βµ

)
Ψ↑↓(v, pz),

〈0|q̄(z)igG̃αβ(vz)γpγµγzs(−z)|K(P )〉 = fK

(
pβg⊥αµ − pαg⊥βµ

)
Ψ↓↑(v, pz). (4.4)

The original distributions Ψ4;K and Ψ̃4;K are given by

Ψ̃(α) = −
1

2

[
Ψ↑↓(α) + Ψ↓↑(α)

]
, Ψ(α) =

1

2

[
Ψ↑↓(α) − Ψ↓↑(α)

]
. (4.5)

Ψ↑↓ and Ψ↓↑ have a regular expansion in terms of conformal polynomials, to wit:

Ψ↑↓(α) = 60α2α
2
3

[
ψ↑↓

0 + ψ↑↓
1 (α3 − 3α1) + ψ↑↓

2

(
α3 −

3

2
α2

)]
,

Ψ↓↑(α) = 60α1α
2
3

[
ψ↓↑

0 + ψ↓↑
1 (α3 − 3α2) + ψ↓↑

2

(
α3 −

3

2
α1

)]
. (4.6)

For the π meson, thanks to G-parity,

Ψ↑↓
4;π(α1, α2) = Ψ↓↑

4;π(α2, α1), (4.7)

so that ψ↑↓
i ≡ ψ↓↑

i .4 For K, we write

ψ↑↓
i = ψK

i + θK
i , ψ↓↑

i = ψK
i − θK

i , (4.8)

where the θi correspond to SU(3)-breaking corrections that also violate G-parity. From

(4.5), the following representations can readily be derived:

Ψ̃4;K(α) = −30α2
3

{
ψK

0 (1 − α3) + ψK
1

[
α3(1 − α3) − 6α1α2

]
(4.9)

+ψK
2

[
α3(1 − α3) −

3

2
(α2

1 + α2
2)

]
− (α1 − α2)

[
θK
0 + α3θ

K
1 +

1

2
(5α3 − 3)θK

2

]}
,

Ψ4;K(α) = 30α2
3

{
θK
0 (1 − α3) + θK

1

[
α3(1 − α3) − 6α1α2

]
(4.10)

+θK
2

[
α3(1 − α3) −

3

2
(α2

1 + α2
2)

]
− (α1 − α2)

[
ψK

0 + α3ψ
K
1 +

1

2
(5α3 − 3)ψK

2

]}
.

In addition, we introduce one more three-particle DA Ξ4(α) [21]:

〈
0 |q̄(z)γµγ5gDαGαβ(vz)s(−z)|K+(p)

〉
= ifKpµpβ

∫
Dα e−ipz(α2−α1+vα3) Ξ4;K(α).

(4.11)

The Lorentz structure pµpβ is the only one relevant at twist 4. Because of the EOM,

DαGA
αβ = −g

∑
q q̄tAγβq, where the summation goes over all light flavors, Ξ4;K(α) can be

viewed as describing either a quark-antiquark-gluon or a specific four-quark component of

4This implies, in particular, that only one of the DAs Ψ and eΨ is dynamically independent.
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the pion, with the quark-antiquark pair in a color-octet state and at the same space-time

point. The conformal expansion of Ξ4;K(α) starts with J = 4 and reads

Ξ4;K(α) = 840α1α2α
3
3

[
ΞK

0 + · · ·
]
, (4.12)

where ΞK
0 has mass dimension 2. The dots stand for terms with higher conformal spin

J = 5, 6, . . ., which are beyond our accuracy. This DA was not considered in refs. [17, 22]

because ΞK
0 = O(ms − mq) and vanishes for mesons built of quark and antiquark with

equal mass.

The expressions in eqs. (4.3), (4.9), (4.10), (4.11) represent the most general para-

metrization of the twist-4 DAs to NLO in the conformal-spin expansion and involve 13

non-perturbative parameters. Not all of them are independent, though. In the following,

we shall establish their mutual relations and also express the expansion coefficients in terms

of matrix elements of local operators.

The asymptotic three-particle DAs correspond to contributions of the lowest conformal

spin J = js + jq̄ + jg = 3. The parameters φK
0 , φ̃K

0 , ψK
0 and θK

0 describing these DAs can

be expressed in terms of local matrix elements as

〈0|q̄γαgG̃µαs|K(P )〉 = iPµfKδ2
K ,

〈0|q̄γαγ5igGµαs|K(P )〉 = iPµfKm2
Kκ4K . (4.13)

These are the only two local twist-4 operators of dimension 5. Note that the second matrix

element vanishes for equal-mass quarks, because of G-parity. It also vanishes in the chiral

limit mq,ms → 0 because of the factor m2
K . Moreover, in this limit κ4K can be calculated

exactly to leading order in ms [9]:

κ4K = −
1

8
+ O(ms); (4.14)

numerical estimates of the corrections can be obtained from QCD sum rules and will be

discussed below.

Taking the local limit of eqs. (4.1), (4.2), one obtains

ψK
0 = φ̃K

0 = −
1

3
δ2
K , φK

0 = −θK
0 =

1

3
m2

Kκ4K . (4.15)

What about the scale-dependence of these parameters? Like f3K , δ2
K renormalizes multi-

plicatively for massless quarks, but mixes with operators of lower twist for ms 6= 0. At the

operator level, neglecting O(m2
s) corrections, the mixing is given by

(q̄γαgG̃µαs)µ
2

= (q̄γαgG̃µαs)µ
2
0

(
1 −

8

9

αs

π
ln

µ2

µ2
0

)
−

1

9

αs

π
ln

µ2

µ2
0

ms [∂µ(q̄iγ5s)]
µ2

0 . (4.16)

Taking matrix elements and resumming the logarithms, we find

[δ2
K ](µ2) = L32/(9β0)[δ2

K ](µ2
0) +

1

8

(
1 − L32/(9β0)

)
m2

K , (4.17)

with, as before, L = αs(µ
2)/αs(µ

2
0).
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The scale dependence of κ4K can most easily be derived by observing that this param-

eter is related to aK
1 and quark masses by the equations of motion [9]:

κ4K = −
1

8

ms − mq

ms + mq
−

9

40
aK

1 +
m2

s − m2
q

2m2
K

. (4.18)

Taking into account the known scale dependence of aK
1 and ms,q, one obtains

κ4K(µ2) = κ4K(µ2
0) −

9

40

(
L32/(9β0) − 1

)
aK

1 (µ2
0) +

(
L8/β0 − 1

) [m2
s − m2

q](µ
2
0)

2m2
K

. (4.19)

To NLO in conformal spin, the discussion becomes more involved. As explained in

ref. [17], for massless quarks the corresponding contributions can be expressed in terms of

matrix elements of the three existing G-parity-even local quark-antiquark-gluon operators

of twist-4. These three operators are not independent, however, but related by the QCD

equations of motion. One is left with one new non-perturbative parameter only, call it

ω4K ,5 which can be defined as

〈0|q̄[iDµ, igG̃νξ ]γξs −
4

9
i∂µq̄igG̃νξγξs|K(P )〉 =

= fKδ2
Kω4K

(
PµPν −

1

4
m2

Kgµν

)
+ O(twist 5). (4.20)

The scale dependence of ω4K , for massless quarks, is given by

[δ2
Kω4K ](µ2) = L10/β0 [δ2

Kω4K ](µ2
0) .

For massive quarks, a distinction must be made between G-parity-conserving and G-pari-

ty-breaking contributions. G-parity-conserving corrections do not involve new operators,

and the difference to the massless case is mainly due to corrections proportional to the

meson mass. This case is described in detail in refs. [50, 22]. Here we just quote the results

obtained in ref. [22]:

φK
1 =

21

8
δ2
Kω4K −

9

20
m2

KaK
2 , φ̃K

2 =
21

8
δ2
Kω4K ,

ψK
1 =

7

4
δ2
Kω4K −

3

20
m2

KaK
2 , ψK

2 =
7

2
δ2
Kω4K +

3

20
m2

KaK
2 . (4.21)

The G-parity-breaking contributions, on the other hand, involve a different set of local

operators and in particular

q̄γzγ5DξgGξzs = −g2
∑

ψ=u,d,s

(q̄γzγ5t
as)(ψ̄γzt

aψ)

which determines the normalization and the leading conformal spin contribution to the DA

Ξ4;K(α) defined in eq. (4.11). Hence, a complete treatment of G-parity-breaking corrections

to twist-4 DAs requires also the inclusion of Ξ4;K.

5In the notation of ref. [17] ω4 = (8/21)ε.
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It is beyond the scope of this paper to work out the corresponding relations between

the matrix elements of local operators and expansion coefficients. For this reason, and

also because QCD sum-rule estimates of matrix elements of large mass dimension are not

very reliable, we adopt a different approach and estimate G-parity-breaking corrections of

spin J = 4 using the renormalon model of ref. [21]. The general idea of this technique is

to estimate matrix elements of “genuine” twist-4 operators by the quadratically divergent

contributions that appear when the matrix elements are defined using a hard UV cut-off,

see ref. [21] for details and further references. In this way, three-particle twist-4 DAs can

be expressed in terms of the leading-twist DA φ2:

Ψren
4;K(α1, α2, α3) =

δ2
K

6

[
φ2;K(α1)

1 − α1
−

φ2;K(ᾱ2)

1 − α2

]
,

Φren
4;K(α1, α2, α3) =

δ2
K

3

[
α2φ2;K(α1)

(1 − α1)2
−

α1φ2;K(ᾱ2)

(1 − α2)2

]
,

Ψ̃ren
4;K(α1, α2, α3) =

δ2
K

6

[
φ2;K(α1)

1 − α1
+

φ2;K(ᾱ2)

1 − α2

]
,

Φ̃ren
4;K(α1, α2, α3) = −

δ2
K

3

[
α2φ2;K(α1)

(1 − α1)2
+

α1φ2;K(ᾱ2)

(1 − α2)2

]
,

Ξren
2;K(α1, α2, α3) = −

2δ2
K

3

[
α2 φ2;K(α1)

1 − α1
−

α1 φ2;K(ᾱ2)

1 − α2

]
, (4.22)

where, in difference to [21], we do not assume that φ2(u) is symmetric under the exchange

u ↔ 1 − u.

The expressions in (4.22) do not rely on conformal expansion and contain the contri-

butions of all conformal partial waves. Projecting onto the contributions with the lowest

spin J = 3, 4, we obtain

φK
0 = 0 φK

1 =
7

12
δ2
K φK

2 = −
7

20
aK

1 δ2
K ,

φ̃K
0 = −

1

3
δ2
K , φ̃K

1 = −
7

4
aK

1 δ2
K , φ̃K

2 =
7

12
δ2
K ,

ψK
0 = −

1

3
δ2
K , ψK

1 =
7

18
δ2
K , ψK

2 =
7

9
δ2
K ,

θK
0 = 0, θK

1 =
7

10
aK

1 δ2
K , θK

2 = −
7

5
aK

1 δ2
K . (4.23)

It follows that in the renormalon model

ω4K = ω4π =
2

9
, (4.24)

which is in good agreement with direct QCD sum-rule calculations [17]. We also find

ΞK
0 =

1

5
aK

1 δ2
K . (4.25)

Note that in the renormalon model θK
0 = 0. This is due to the fact that the contribution in

κ4K in eq. (4.15) is obtained as the matrix element of the operator (4.13) which vanishes
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by the EOM (up to a total derivative), see eq. (4.18). Therefore, against appearances,

this contribution has to be interpreted as “kinematic” power correction induced by the

non-vanishing K-meson mass rather than a “genuine” twist-4 effect.

We are now in the position to derive expressions for the two-particle DAs of twist 4.

They are defined as

〈0|q̄(x)[x,−x]γµγ5s(−x)|K(P )〉 = ifKPµ

∫ 1

0
du eiξPx

(
φ2;K(u) +

1

4
x2φ4;K(u)

)

+
i

2
fK

1

Px
xµ

∫ 1

0
du eiξPxψ4;K(u), (4.26)

which is the extension of eq. (2.6) to twist-4 accuracy.6 From the operator relations (A.1)

and (A.2), we obtain

ψK;4(u) = m2
K{2φp

3;K(u) − φ2;K(u)} +
d

du

∫ u

0
dα1

∫ ū

0
dα2

2(Φ4;K(α) − 2Ψ4;K(α))

1 − α1 − α2
, (4.27)

d2φ4;K(u)

du2
= 12ψ4;K(u) − 12m2

Kφ2;K(u) − 2
d

du

[
(2u − 1)(m2

Kφ2;K(u) + ψ4;K(u))
]

+
d2

du2

∫ u

0
dα1

∫ ū

0
dα2

4(2Ψ4;K(α) − Φ4;K(α))

(1 − α1 − α2)2
(α1 − α2 − (2u − 1))

+ 4
ms − mq

ms + mq
m2

K

dφp
3;K(u)

du
(4.28)

with the boundary condition φ4;K(0) = φ4;K(1) = 0.

We solve this relations splitting the result in “genuine” twist-4 contributions ψT4
4;K and

Wandzura-Wilczek-type mass corrections ψWW
4;K as

ψ4;K(u) = ψT4
4;K(u) + ψWW

4;K (u) (4.29)

with

ψT4
4;K(u) =

20

3
δ2
KC

1/2
2 (2u − 1) + 5

{
5θK

1 − θK
2

}
C

1/2
3 (2u − 1) , (4.30)

ψWW
4;K (u) = m2

K

{
1 + 6ρK

+ (1 + 6aK
2 ) − 18ρK

− aK
1

}
C

1/2
0 (2u − 1)

+ m2
K

{
−12κ4K −

9

5
aK

1 + 27ρK
+ aK

1 − 3ρK
− (1 + 18aK

2 )

}
C

1/2
1 (2u − 1)

+

{
m2

K

(
1 +

18

7
aK

2 + 30ρK
+ aK

2 − 6ρK
−aK

1

)
+ 60

f3K

fK
(ms + mq)

}
C

1/2
2 (2u − 1)

+

{
m2

K

(
9

5
aK

1 +
16

3
κ4K − 9ρK

−aK
2

)
+ 20

f3K

fK
(ms + mq)λ3K

}
C

1/2
3 (2u − 1)

+

{
−

9

28
m2

KaK
2 − 6

f3K

fK
(ms + mq)ω3K

}
C

1/2
4 (2u − 1) (4.31)

+ 6mq(ms + mq)(1 + 3aK
1 + 6aK

2 ) ln ū + 6ms(ms + mq)(1 − 3aK
1 + 6aK

2 ) ln u ,

where ξ = 2u − 1, see eq. (2.8). ψWW
4;K vanishes for mK → 0 and ms,q → 0.

6ψ4;K and φ4;K are related to the DAs defined in ref. [22] by φ4;K = m2
KgK and ψ4;K = m2

KAK .
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The complete expression for

φ4;K(u) = φT4
4;K(u) + φWW

4;K (u) (4.32)

is rather lengthy. We find for the “genuine” twist-4 part:

φT4
4;K(u) =

200

3
δ2
Ku2ū2 + 20u2ū2ξ

{
4θK

1 − 5θK
2

}

+ 21δ2
Kω4K

{
uū(2 + 13uū) +

[
2u3(6u2 − 15u + 10) ln u

]
+ [u ↔ ū]

}

+ 40φK
2

{
uūξ(2 − 3uū) −

[
2u3(u − 2) ln u

]
+ [u ↔ ū]

}
, (4.33)

and for the mass-corrections, neglecting numerically small terms of order m2
s:

φWW
4;K (u) =

16

3
m2

Kκ4K

{
uūξ(1 − 2uū) +

[
5(u − 2)u3 ln u

]
− [u ↔ ū]

}

+ 4
f3K

fK
(ms + mq)uū

{
30

(
1 − ξ

ms − mq

ms + mq

)

+ 10λ3K

(
ξ [1 − uū] −

ms − mq

ms + mq
[1 − 5uū]

)

−ω3K

(
3 − 21uū + 28u2ū2 + 3ξ

ms − mq

ms + mq
[1 − 7uū]

)}

−
36

5
m2

KaK
2

{
1

4
uū(4 − 9uū + 110u2ū2) + [u3(10 − 15u + 6u2) ln u] + [u ↔ ū]

}

+ 4m2
K uū (1 + 3uū)

(
1 +

9

5
aK

1 ξ

)
. (4.34)

The DAs for K̄ mesons are obtained by replacing u by 1−u. Note that ψ4;K has logarithmic

end-point singularities for finite quark mass, whereas φ4;K has no such singularities, so that

one can safely neglect the O(m2
s) terms.

The expressions given above provide a self-consistent model of the twist-4 DAs which

includes the first three terms of the conformal expansion.7 An estimate of the contribution

of higher orders can be obtained using the renormalon model. In this case, the “genuine”

twist-4 contributions to the two-particle DAs given in eqs. (4.29) and (4.32) have to be

replaced by

φT4,ren
4;K (u) =

8

3
δ2
K

∫ 1

0
dv φ2;K(v)

{
1

v2

[
u2 + u + (v − u) ln

(
1 −

u

v

)]
θ(v − u)

+
1

v̄2

[
ū2 + ū + (u − v) ln

(
1 −

ū

v̄

)]
θ(u − v)

}
,

ψT4,ren
4;K (u) =

δ2
K

3

d2

du2

∫ 1

0
dv φ2;K(v)

{(u

v

)2
θ(v − u) +

( ū

v̄

)2

θ(u − v)

}
(4.35)

and used in combination with the complete renormalon-model expressions for the three-

particle DAs given in eq. (4.22). As explained in ref. [21], the renormalon model does not

7One shortcoming of the model is that G-parity-breaking meson mass corrections of spin J = 4 are

missing and we only include the “genuine” G-parity-breaking twist-4 corrections estimated in the renormalon

model. Numerically, both effects may be of the same order.
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take into account the damping of higher conformal-spin contributions by the increasing

anomalous dimensions and, therefore, provides an upper bound for their contribution.

The effect of these corrections is, most importantly, to significantly enhance the end-point

behaviour of higher-twist DAs in some cases, which can be important in phenomenological

applications.

5. Models for distribution amplitudes

In this section we compile the numerical estimates of all necessary parameters and present

explicit models of the twist-3 and -4 two-particle distribution amplitudes that we introduced

in sections 3 and 4. The important point is that these DAs are related to three-particle

ones by exact QCD equations of motion and have to be used together; this guarantees

the consistency of the approximation. Our approximation thus introduces a minimum

number of non-perturbative parameters, which are defined as matrix elements of certain

local operators between the vacuum and the meson state, and which we estimate using

QCD sum rules. More sophisticated models can be constructed in a systematic way by

adding contributions of higher conformal partial waves when estimates of the relevant

non-perturbative matrix elements will become available.

Our approach involves the implicit assumption that the conformal partial wave expan-

sion is well convergent. This can be justified rigorously at large scales, since the anomalous

dimensions of all involved operators increase logarithmically with the conformal spin J , but

is non-trivial at relatively low scales of order µ ∼ (1–2)GeV which we choose as reference

scale. An upper bound for the contribution of higher partial waves can be obtained from

the renormalon model.

Since orthogonal polynomials of high orders are rapidly oscillating functions, a trun-

cated expansion in conformal partial waves is, almost necessarily, oscillatory as well. Such

a behaviour is clearly unphysical, but this does not constitute a real problem since physical

observables are given by convolution integrals of distribution amplitudes with smooth co-

efficient functions. A classical example for this feature is the γγ∗-meson form factor, which

is governed by the quantity ∫
du

1

u
φ(u) ∼

∑
ai,

where the coefficients ai are exactly the “reduced matrix elements” in the conformal expan-

sion. The oscillating terms are averaged over and strongly suppressed. Stated otherwise:

models of distribution amplitudes should generally be understood as distributions (in the

mathematical sense).

We give all relevant numerical input parameters for our model DAs in table 3, at

the scale µ = 1GeV, which is appropriate for QCD sum-rule results, and, using the LO

and NLO scaling relations given in section 3 and 4, at the scale µ = 2GeV, in order to

facilitate the comparison with future lattice determinations of these quantities. The mixing

of K-meson parameters with operators of lower twist depending on ms is numerically small.

The parameters related to twist-2 matrix elements have been determined using various

methods; see the discussion in section 2. Matrix elements of twist-3 and 4 operators for the
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K µ = 1 GeV µ = 2 GeV π µ = 1 GeV µ = 2 GeV Remarks

ms 137 ± 27 100 ± 20 mq 5.6 ± 1.6 4.1 ± 1.1 in units of MeV; see section 2

aK
1 0.06 ± 0.03 0.05 ± 0.02 aπ

1 0 0 taken from ref. [10]; G-odd

aK
2 0.25 ± 0.15 0.17 ± 0.10 aπ

2 0.25 ± 0.15 0.17 ± 0.10 SU(3) breaking small;

average over various refs.

f3K 0.45 ± 0.15 0.33 ± 0.11 f3π 0.45 ± 0.15 0.31 ± 0.10 in units of 10−2 GeV2

ω3K −1.2 ± 0.7 −0.9 ± 0.5 ω3π −1.5 ± 0.7 −1.1 ± 0.5

λ3K 1.6 ± 0.4 1.45 ± 0.35 λ3π 0 0 G-odd

δ2
K 0.20 ± 0.06 0.17 ± 0.05 δ2

π 0.18 ± 0.06 0.14 ± 0.05 in units of GeV2

κ4K −0.09± 0.02 −0.10± 0.02 κ4π 0 0 taken from ref. [11]; G-odd

ω4K 0.2 ± 0.1 0.13 ± 0.07 ω4π 0.2 ± 0.1 0.13 ± 0.07 taken from ref. [17];

SU(3) breaking not incl.

Table 3: Hadronic parameters for the K DAs. We also give the corresponding parameters for the

π, which are a by-product of our calculations. All parameters have been calculated in this paper at

µ = 1 GeV, unless stated otherwise. The evolution between 1 and 2 GeV is done at NLO accuracy

for mq,s and aπ,K
1,2 , and at LO accuracy for the other parameters. The twist-4 parameters θK

i , φK
i

etc. are given by eq. (4.23), based on the renormalon model.

0. 0.2 0.4 0.6 0.8 1.

0.25

0.5

0.75

1.

1.25

1.5

1.75

2.

φ3
p

u 0. 0.2 0.4 0.6 0.8 1.

0.25

0.5

0.75

1.

1.25

1.5

1.75

2.

φ3
σ

u

Figure 1: Left panel: φp
3 as a function of u for the central value of the hadronic parameters, for

µ = 1 GeV. Red (solid) line: φp
3;K , green (long dashed): φσ

3;π, blue (short dashed): asymptotic DA.

Right panel: same for φσ
3 .

π meson were calculated a long time ago from QCD sum rules [51, 52, 17]. In this paper, we

perform a complete reanalysis of these sum rules and also include SU(3)-breaking effects rel-

evant for the K meson. The corresponding sum rules and plots are given in the appendices.

One important result is that we cannot confirm the sum rule for f3π derived in ref. [52] and

that our numerical value is considerably larger than that found in this paper. On the other

hand, our central value for δ2
π is similar to the one obtained in ref. [51], see also ref. [37].

Finally, in figure 1 we plot the twist-3 and -4 two-particle DAs for the π meson, assum-

ing massless quarks, and for the K meson, together with the corresponding asymptotic DAs.

The figures show that quark-mass corrections significantly modify the end-point behaviour

of φp
3, where they induce a logarithmic end-point divergency, even if the contributions of
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0. 0.2 0.4 0.6 0.8 1.

0.2

0.4

0.6

0.8 4;πφ

u 0. 0.2 0.4 0.6 0.8 1.

0.2

0.4

0.6

0.8

1.

1.2 φ4;K

u

Figure 2: Left panel: φ4;π as a function of u for the central value of the hadronic parameters, for

µ = 1 GeV. Red (solid) line: φ4;π in conformal expansion, blue (dashed): φ4;π using the renormalon

model φT4,ren
4;π for the genuine twist-4 corrections. Right panel: same for φ4;K .

0. 0.2 0.4 0.6 0.8 1.

−0.5

0.

0.5

1.

1.5
ψ4;π

u
0. 0.2 0.4 0.6 0.8 1.

−0.5

0.

0.5

1.

1.5

2.

2.5 ψ
4;K

u

Figure 3: Same as figure 2 for ψ4.

gluonic operators are neglected. This is not a problem because, as mentioned above, the

DAs themselves need not be finite, it is only their convolution with perturbative scattering

amplitudes that is meaningful. In figures 2 and 3 we show the twist-4 two-particle DAs

φ4 and ψ4, also for the π (left panels) and the K (right panels). The solid (red) curve in

figure 2 is obtained from eq. (4.32) using the conformal expansion (4.33) to NLO in the

conformal spin, whereas the dashed (blue) curve includes the higher-spin contributions to

the genuine twist-4 corrections as given by the renormalon model (4.35). The mass cor-

rections φWW
4;π vanish for the pion. It is clear that the higher-order contributions induced

by (4.35) modify both the end-point behaviour of φ4;π and the size of the DA away from

the end-points. For the K, the absolute difference between both curves at, say, u = 1
2 ,

is very nearly the same as for π, but the relative difference is much reduced because of

large SU(3)-breaking effects induced by the mass-dependent contribution φWW
4;K . Also note

that the asymmetry of the curves induced by the non-vanishing value of aK
1 is not very

pronounced, which is due to the smallness of that parameter as compared to aK
0 = 1 and

aK
2 . In figure 3 we plot ψ4, with the same meaning of the curves as in figure 2. Also here

it is obvious that the renormalon model modifies the end-point behaviour of the DA, in

particular for ψ4;K , where it changes the sign of the logarithmic divergence at u = 0.
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6. Summary and conclusions

In this paper we have studied the twist-3 and -4 two- and three-particle distribution am-

plitudes of K-mesons in QCD and expressed them in a model-independent way by a min-

imal number of non-perturbative parameters. The work presented here is an extension of

refs. [17, 22, 21] and completes the analysis of SU(3)-breaking corrections by also includ-

ing G-parity-breaking corrections in ms − mq. Our approach consists of two components.

One is the use of the QCD equations of motion, which allow dynamically dependent DAs

to be expressed in terms of independent ones. The other ingredient is conformal expan-

sion, which makes it possible to separate transverse and longitudinal variables in the wave

functions, the former ones being governed by renormalization-group equations, the latter

ones being described in terms of irreducible representations of the corresponding symmetry

group. We have derived expressions for all twist-3 and -4 two- and three-particle distribu-

tion amplitudes to next-to-leading order in the conformal expansion, including both chiral

corrections O(ms +mq) and G-parity-breaking corrections O(ms −mq); the corresponding

formulas are given in sections 3 and 4. We have also generalized the renormalon model of

ref. [21] to describe SU(3)-breaking contributions to high-order conformal partial waves.

We have done a complete reanalysis of the numerical values of the relevant higher-

twist hadronic parameters from QCD sum rules. Our sum rules can be compared, in

the chiral limit, with existing calculations for the π [51, 52]. We confirm the sum rule

for the twist-4 matrix element δ2
π quoted in ref. [51], but obtain different results for the

twist-3 matrix elements given in ref. [52], which lead to a 50% increase in the numerical

value of the coupling f3π. Whenever possible, we have aimed at determining these matrix

elements from more than one sum rule; we find mutually consistent results, which provides

a consistency check of the approach. We have also studied the scale-dependence of all

parameters to leading-logarithmic, or, if possible, next-to-leading-logarithmic accuracy,

taking into account the mixing with operators depending on the strange-quark mass ms.

Our final numerical results, at the scales 1 and 2GeV, are collected in table 3.

We hope that our results will contribute to a better understanding of SU(3)-breaking

effects in hard exclusive processes and in particular in the decays of B and Bs mesons into

final states containing K mesons.
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A. Non-local operator identities

For completeness, we quote the following non-local operator identities from ref. [50]:

∂

∂xµ
q̄(x)γµγ5s(−x) = − i

∫ 1

−1
dv vq̄(x)xαgGαµ(vx)γµγ5s(−x)

+(mq − ms)q̄(x)iγ5s(−x), (A.1)
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∂µ{q̄(x)γµγ5s(−x)} = − i

∫ 1

−1
dv q̄(x)xαgGαµ(vx)γµγ5s(−x)

+ (ms + mq)q̄(x)iγ5s(−x), (A.2)

∂µq̄(x)σµνγ5s(−x) = −i
∂

∂xν
q̄(x)γ5s(−x) +

∫ 1

−1
dv vq̄(x)xρgGρν(vx)γ5s(−x)

− i

∫ 1

−1
dv q̄(x)xρgGρµ(vx)σµνγ5s(−x)

+(ms − mq)q̄(x)γνγ5s(−x), (A.3)

∂

∂xµ
q̄(x)σµνγ5s(−x) = −i∂ν q̄(x)γ5s(−x) +

∫ 1

−1
dv q̄(x)xρgGρν(vx)γ5s(−x)

− i

∫ 1

−1
dv vq̄(x)xρgGρµ(vx)σµνγ5s(−x)

− (ms + mq)q̄(x)γνγ5s(−x). (A.4)

Here ∂µ is the total derivative defined as

∂µ {q̄(x)Γs(−x)} ≡
∂

∂yµ
{q̄(x + y)[x + y,−x + y]Γs(−x + y)}

∣∣∣∣
y→0

.

By taking matrix elements of the above relations between the vacuum and the meson

state, one obtains exact integral representations for those DAs that are not dynamically

independent.

B. Sum rules for twist-2 matrix elements

In this appendix we list and evaluate the QCD sum rules for twist-2 matrix elements

of the K. The sum rule for fK, including SU(3)-breaking corrections, was calculated

in refs. [53, 10], that for aK
1 in refs. [8, 10], and that for aK

2 in ref. [7], apart from the

perturbative terms in m2
s and the radiative corrections to the quark condensate, which are

new. The sum rules read:

f2
Ke−m2

K
/M2

=
1

4π2

s0∫

m2
s

ds e−s/M2 (s − m2
s)

2(s + 2m2
s)

s3
+

αs

π

M2

4π2

(
1 − e−s0/M2

)

+
ms〈s̄s〉

M2

(
1 +

m2
s

3M2
+

13

9

αs

π

)
+

1

12M2

〈αs

π
G2

〉 (
1 +

1

3

m2
s

M2

)

+
4

3

αs

π

ms〈q̄q〉

M2
+

16παs

9M4
〈q̄q〉〈s̄s〉 +

16παs

81M4

(
〈q̄q〉2 + 〈s̄s〉2

)
, (B.1)

aK
1 f2

Ke−m2
K

/M2
=

5

4π2
m4

s

s0∫

m2
s

ds e−s/M2 (s − m2
s)

2

s4

+
5m2

s

18M4

〈αs

π
G2

〉 (
−

1

2
+ γE − Ei

(
−

s0

M2

)
+ ln

m2
s

M2
+

M2

s0

(
M2

s0
− 1

)
e−s0/M2

)
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〈q̄q〉 = (−0.24 ± 0.01)3 GeV3 〈s̄s〉 = (1 − δ3) 〈q̄q〉

〈q̄σgGq〉 = m2
0 〈q̄q〉 〈s̄σgGs〉 = (1 − δ5)〈q̄σgGq〉

〈αs

π
G2

〉
= (0.012 ± 0.006)GeV4

m2
0 = (0.8 ± 0.1)GeV2, δ3 = 0.2 ± 0.2, δ5 = 0.2 ± 0.2

ms(2GeV) = (100 ± 20)MeV ←→ ms(1GeV) = (137 ± 27)MeV

αs(mZ) = 0.1187 ± 0.002 ←→ αs(1GeV) = 0.53+0.06
−0.05

Table 4: Input parameters for sum rules at the renormalization scale µ = 1 GeV. The value of ms

is obtained from unquenched lattice calculations with Nf = 2 flavours as summarized in ref. [45],

which agrees with the results from QCD sum-rule calculations [47]. αs(mZ) is the PDG average [3].

−
5

3

ms〈s̄s〉

M2

{
1 +

αs

π

[
−

124

27
+

8

9

(
1 − γE + ln

M2

µ2
+

M2

s0
e−s0/M2

+ Ei
(
−

s0

M2

))]}

−
5

3

m3
s〈s̄s〉

M4
−

20

27

αs

π

ms〈q̄q〉

M2
+

5

9

ms〈s̄σgGs〉

M4
+

80παs

81M4

(
〈q̄q〉2 − 〈s̄s〉2

)
, (B.2)

aK
2 f2

Ke−m2
K

/M2
=

7

4π2
m4

s

s0∫

m2
s

ds e−s/M2 (s − m2
s)

2(2m2
s − s)

s5
+

7

72π2

αs

π
M2(1 − e−s0/M2

) +
7

36M2

〈αs

π
G2

〉

+
7

3

ms〈s̄s〉

M2

{
1 +

αs

π

[
−

184

27
+

25

18

(
1 − γE + ln

M2

µ2
+

M2

s0
e−s0/M2

+ Ei
(
−

s0

M2

))]}

−
49

27

αs

π

ms〈q̄q〉

M2
−

35

18

ms〈s̄σgGs〉

M4
+

224παs

81M4

(
〈q̄q〉2 + 〈s̄s〉2

)
+

112παs

81M4
〈q̄q〉〈s̄s〉. (B.3)

We evaluate the sum rules using the input given in table 4. The results for fK and aK
2 are

shown in figure 4; fK depends rather sensitively on the choice of s0. In order to reproduce

the experimental result fK = 160MeV, one has to choose s0 = 1.1GeV2. This is the value

we will use also for all other sum rules for K matrix elements. For aK
2 , we then find

aK
2 (1GeV) = 0.30 ± 0.15, (B.4)

which is slightly larger than the result obtained in ref. [7] and agrees with that obtained

in ref. [8]. For aK
1 , we obtain the same result as refs. [10, 11]:

aK
1 (1GeV) = 0.06 ± 0.03. (B.5)

C. Sum rules for twist-3 matrix elements

In this appendix we estimate the parameters of the twist-3 distribution amplitudes f3K ,

λ3K and ω3K from QCD sum rules. Our approach is similar to that of ref. [52], where f3π
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Figure 4: Left panel: fK as function of the Borel parameter M2 for s0 = 1.1 GeV2. Solid line:

central values of input parameters, dashed lines: variation of fK within the allowed range of input

parameters. Figure taken from ref. [10]. Right panel: same for aK
2 at the scale µ = 1 GeV. The

results for aK
2 are new.

and ω3π have been determined, and based on the calculation of the correlation function of

a non-local light-ray operator, which enters the definition of the three-particle distribution

amplitude (3.3), with the corresponding local operator:

ΠD = i

∫
d4y e−ipy〈0|T q̄(z)iσµzγ5gGµz(vz)s(0)s̄(y)iσνzγ5gGνz(y)q(y)|0〉

≡ (pz)4
∫

Dαe−ipz(α2+vα3) πD(α) . (C.1)

We also study the correlation function of that operator with the pseudoscalar current:8

ΠND = i

∫
d4y e−ipy〈0|T q̄(z)σµzγ5gGµz(vz)s(0)s̄(y)γ5q(y)|0〉

≡ (pz)2
∫

Dαe−ipz(α2+vα3) π
(1)
ND(α) ; (C.2)

for brevity, we do not show the Wilson lines in the non-local operators. Our calculation

goes beyond that done in ref. [52] by including SU(3)-breaking corrections, and by also

studying sum rules based on the non-diagonal correlation function, which allows a non-

trivial consistency check of the results.

Somewhat imprecisely, we will refer to ΠD and ΠND as “diagonal” and “non-diagonal”

correlation functions, respectively. The hadronic representation of the non-diagonal cor-

relation function ΠND only contains pseudoscalar JP = 0− contributions, whereas the

diagonal correlation function ΠD also contains contributions of states with higher spin,

JP = 2− and JP = 1+. This is not a disadvantage, since such states all have considerably

higher masses than the K meson, and can effectively be thought of as parts of the con-

tinuum contribution. For reasons that will become clear below, we have also calculated a

8Note that the currents in ΠND contain no factors i, in contrast to ΠD. This is so as to obtain a positive

spectral density.
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correlation function similar to (C.1), but with operators of opposite parity:

Π̄D = i

∫
d4y e−ipy〈0|T q̄(z)σµzgGµz(vz)s(0)s̄(y)σνzgGνz(y)q(y)|0〉

≡ (pz)4
∫

Dαe−ipz(α2+vα3) π̄D(α) . (C.3)

For the diagonal correlation function we find, using factorization approximation for the

four-quark condensates and dropping terms that vanish after Borel transformation:

πD(α) =
αs

π3
α1α2α

2
3 p2 ln

µ2

−p2
−

2

3

αs

π

ms〈s̄s〉

p2
α2α

2
3δ(α1) −

2

3

αs

π

mq〈q̄q〉

p2
α1α

2
3δ(α2)

+
αs

π

ms〈s̄σgGs〉

p4

(
−

7

72
α2

3 +
1

4
α2α3 +

1

9
i(pz)α2α

2
3

)
δ(α1)

+
αs

π

mq〈q̄σgGq〉

p4

(
−

7

72
α2

3 +
1

4
α1α3 −

1

9
i(pz)α1α

2
3

)
δ(α2)

+
α2

s〈s̄s〉
2

p4

(
44

243
α2

3 +
2

9
α2α3 −

32

243
i(pz)α2α

2
3

)
δ(α1)

+
α2

s〈q̄q〉
2

p4

(
44

243
α2

3 +
2

9
α1α3 +

32

243
i(pz)α1α

2
3

)
δ(α2)

+
32

27

α2
s〈s̄s〉〈q̄q〉

p4

(
α1α3 δ(α2) + α2α3 δ(α1)

)
. (C.4)

To this accuracy, the expressions for πD and π̄D are almost the same, the only difference

being that in π̄D the last term in (C.4), the contribution of 〈q̄q〉〈s̄s〉, comes with a minus

sign. In the chiral limit, we can compare the above result with that obtained in ref. [52]:

we find agreement for the perturbative contribution, but a different answer for the contri-

bution of the four-quark condensates. The leading-order contribution O(αs) of the gluon

condensate as well as that of the dimension-6 triple-gluon condensate 〈g3fG3〉 both van-

ish. We also have calculated the contribution of the gluon condensate in the local limit,

e−ipz(α2+vα3) → 1, and find

ΠD|〈αs
π

G2〉 = Π̄D

∣∣
〈αs

π
G2〉

= −
89

5184

αs

π

〈αs

π
G2

〉 (pz)4

p2
, (C.5)

which differs from the result obtained in ref. [52]. In particular, we do not reproduce the

logarithmic term quoted in [52].

For the non-diagonal correlation function we find

πND(α) =
αs

2π3
α1α2α3

(
1

1 − α1
+

1

1 − α2

)
p2 ln

µ2

−p2

+
1

12

〈αs

π
G2

〉 α1α2δ(α3)

α1m2
q + α2m2

s − α1α2p2

+
αs

3π

1

p2

[
mq〈q̄q〉α

2
1δ(α2) + ms〈s̄s〉α

2
2δ(α1)

]

+
2αs

3π

1

p2

[
α3 + α2

3

(
ln

µ2

−p2
− ln(ᾱ3α3) − 1

)][
ms〈q̄q〉δ(α2) + mq〈s̄s〉δ(α1)

]
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+

[
16

27
παs〈s̄s〉

2 +
1

6
ms〈s̄σgGs〉

]
1

p4
δ(α1)δ(α3)

+

[
16

27
παs〈q̄q〉

2 +
1

6
mq〈q̄σgGq〉

]
1

p4
δ(α2)δ(α3)

+
16παs

9p4
〈q̄q〉〈s̄s〉δ(α1)δ(α2). (C.6)

The sum rules for the couplings f3K , λ3K and ω3K are derived by expanding the

correlation functions in powers of (pz):

ΠD = (pz)4
{
Π

(0)
D + i(pz)

[
Π

(λ)
D + (2v − 1)Π

(ω)
D

]
+ O((pz)2)

}
,

ΠND = (pz)2
{
Π

(0)
ND + i(pz)

[
Π

(λ)
ND + (2v − 1)Π

(ω)
ND

]
+ O((pz)2)

}
. (C.7)

Comparing these expressions with the corresponding expansion of the K contribution to

the correlation functions expressed in terms of the DA (3.5), one obtains

4f2
3Ke−m2

K
/M2

= B
[
Π

(0)
D

]
(M2) ,

1

7
f2
3Kλ3Ke−m2

K
/M2

= B

[
Π

(λ)
D +

1

2
Π

(0)
D

]
(M2) ,

−
3

14
f2
3Kω3Ke−m2

K
/M2

= B

[
Π

(ω)
D +

3

14
Π

(0)
D

]
(M2) , (C.8)

and similarly

2f3K
fKm2

K

ms + mq
e−m2

K
/M2

= B
[
Π

(0)
ND

]
(M2) ,

1

14
f3Kλ3K

fKm2
K

ms + mq
e−m2

K
/M2

= B

[
Π

(λ)
ND +

1

2
Π

(0)
ND

]
(M2) ,

−
3

28
ω3Kf3K

fKm2
K

ms + mq
e−m2

K
/M2

= B

[
Π

(ω)
ND +

3

14
Π

(0)
ND

]
(M2) , (C.9)

from the diagonal and non-diagonal correlation functions, respectively. Here and below

B[. . .](M2) stands for the Borel transformation with respect to p2; M2 is the Borel param-

eter.

From ΠD, we obtain the following sum rule for f3K :

4 f2
3K

∣∣
D

e−m2
K

/M2
=

αs

360π3

∫ s0

0
dsse−s/M2

+
αs

18π
(ms〈s̄s〉 + mq〈q̄q〉)

+
89

5184

αs

π

〈αs

π
G2

〉
+

αs

108π

1

M2
(ms〈s̄σgGs〉 + mq〈q̄σgGq〉)

+
71

729

α2
s

M2

(
〈q̄q〉2 + 〈s̄s〉2

)
+

32

81

α2
s

M2
〈q̄q〉〈s̄s〉 , (C.10)

where the subscript D indicates that this sum rule is derived from the correlation function

ΠD. The last term on the right-hand side comes from the factorisation of the four-quark

condensate (q̄σµνtAq)(q̄σµνt
Aq). In ref. [52], the authors have argued that this term, which
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induces a large power correction in their sum rule for f3π, is unreliable because of a po-

tential breakdown of the factorisation approximation for that particular condensate; they

suggested to determine f3π from a sum rule derived from the sum of the correlation func-

tions ΠD+Π̄D instead, where these large contributions cancel. Indeed, the Dirac structures

σµν and iσµνγ5 are not independent, but related by iσµνγ5 = −1
2 εµνρσσρσ, which induces

the relation

Π̄D = i

∫
d4y e−ipy〈0|T q̄(0)iσµzγ5gGνz(0)s(0)s̄(y)iσµzγ5gGνz(y)q(y)|0〉

− i

∫
d4y e−ipy〈0|T q̄(0)iσµzγ5gGνz(0)s(0)s̄(y)iσνzγ5gGµz(y)q(y)|0〉 .

Π̄D receives no contributions from 0− states because their contributions to the two cor-

relation functions on the right-hand side are equal and cancel in the difference; the same

applies to 1+ states, so that the lowest resonance contributing to Π̄D is 1−. These states

can safely be included in the continuum so that it is possible to extract f3K from the sum

of correlation functions ΠD + Π̄D. On the other hand, our sum rule (C.10), derived from

ΠD only, with the correct coefficients for gluon and four-quark condensates, is actually not

very sensitive to the term in 〈q̄q〉〈s̄s〉, but dominated by the gluon condensate. As there is

no strong theoretical argument in favour or disfavour of either diagonal sum rule, the one

based on ΠD and the one based on ΠD +Π̄D, we decide to use both. We also determine f3K

from a third sum rule based on the non-diagonal correlation function ΠND; the difference

between these three results will be interpreted as theoretical uncertainty.

Explicitly, we obtain, in addition to (C.10), the following sum rules for f3K , with the

index indicating the underlying correlation function:

4 f2
3K

∣∣
D+D̄

e−m2
K

/M2
=

αs

180π3

∫ s0

0
dsse−s/M2

+
αs

9π
(ms〈s̄s〉 + mq〈q̄q〉)

+
89

2592

αs

π

〈αs

π
G2

〉
+

αs

54π

1

M2
(ms〈s̄σgGs〉 + mq〈q̄σgGq〉)

+
142

729

α2
s

M2

(
〈q̄q〉2 + 〈s̄s〉2

)
, (C.11)

2f3K |ND
fKm2

K

ms + mq
e−m2

K
/M2

=
αs

72π3

∫ s0

0
dsse−s/M2

+
1

12

〈αs

π
G2

〉
−

αs

9π
(mq〈q̄q〉 + ms〈s̄s〉)

−
2

9

αs

π
(ms〈q̄q〉 + mq〈s̄s〉)

(
8

3
+ γE − ln

M2

µ2
+

∫ ∞

s0

ds

s
e−s/M2

)

+
1

6M2
(ms〈s̄σgGs〉 + mq〈q̄σgGq〉)

+
16

27

παs

M2
(〈q̄q〉2 + 〈s̄s〉2) +

16

9

παs

M2
〈q̄q〉〈s̄s〉 . (C.12)

The sum rules for f3π are obtained by taking the chiral limit of the above expressions.

As for ω3K , we have not calculated the gluon-condensate contribution to the diagonal

sum rule, which is expected to be dominant, so we cannot use the diagonal sum rule and
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only consider the non-diagonal one:

2(f3Kω3K)|ND
fKm2

K

ms + mq
e−m2

K
/M2

= −
αs

60π3

∫ s0

0
dsse−s/M2

+
5

27

αs

π
(mq〈q̄q〉 + ms〈s̄s〉)

−
2

3

αs

π
(ms〈q̄q〉 + mq〈s̄s〉)

(
8

3
+ γE − ln

M2

µ2
+

∫ ∞

s0

ds

s
e−s/M2

)

−
1

3

〈αs

π
G2

〉
+

2

3M2
(ms〈s̄σgGs〉 + mq〈q̄σgGq〉)

−
64

27

παs

M2
(〈q̄q〉2 + 〈s̄s〉2) +

256

27

παs

M2
〈q̄q〉〈s̄s〉 . (C.13)

In evaluating this sum rule, we replace f3K by the expression obtained from (C.12).

As for λ3K , the gluon-condensate contribution is suppressed by a factor m2
s − m2

q by

virtue of G-parity and can safely be neglected in the diagonal sum rule. We did calculate

this contribution for the non-diagonal sum rule, though, where indeed it gives only a small

contribution. On the other hand, the 〈q̄q〉〈s̄s〉 contribution is also absent because of G-

parity, so that the two diagonal sum rules for f2
3Kλ3K

∣∣
D

and f2
3Kλ3K

∣∣
D+D̄

differ by a global

factor 2. As the values of f2
3K

∣∣
D

and f2
3K

∣∣
D+D̄

also differ by a factor of approximately 2,

this theoretical uncertainty cancels to a large extent. The sum rules read:

4 (f2
3Kλ3K)

∣∣
D

e−m2
K

/M2
= −

14

45

αs

π
(ms〈s̄s〉 − mq〈q̄q〉)

+
35

512

αs

π

1

M2
(ms〈s̄σgGs〉 − mq〈q̄σgGq〉) +

7

9

α2
s

M2

(
〈q̄q〉2 − 〈s̄s〉2

)
, (C.14)

4 (f2
3Kλ3K)

∣∣
D+D̄

e−m2
K

/M2
= −

28

45

αs

π
(ms〈s̄s〉 − mq〈q̄q〉)

+
35

216

αs

π

1

M2
(ms〈s̄σgGs〉 − mq〈q̄σgGq〉) +

14

9

α2
s

M2

(
〈q̄q〉2 − 〈s̄s〉2

)
, (C.15)

2 (f3Kλ3K)|ND

fKm2
K

ms + mq
e−m2

K
/M2

=
7

6

αs

π
(ms〈s̄s〉 − mq〈q̄q〉)

−
7

9

αs

π
(ms〈q̄q〉 − mq〈s̄s〉)

(
8

3
+ γE − ln

M2

µ2
+

∫ ∞

s0

ds

s
e−s/M2

)

−
7

6M2

〈αs

π
G2

〉
(m2

s − m2
q)

(
1 + γE − ln

M2

µ2
− M2

∫ ∞

s0

ds

s2
e−s/M2

)

+
7

3M2
(mq〈q̄σgGq〉 − ms〈s̄σgGs〉) +

224

27

παs

M2
(〈q̄q〉2 − 〈s̄s〉2) . (C.16)

Again, when evaluating these sum rules, we replace f3K by the corresponding expressions

obtained from (C.10), (C.11), and (C.12).

The numerical results from all these sum rules are shown in figures 5 to 7. As for

f3π and f3K , all three sum rules yield very similar results, which is a strong indication

for the consistency of the approach. The diagonal sum rules are very stable in M2, the

non-diagonal ones less so. Taking into account the uncertainties of the input parameters
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Figure 5: Left panel: f3π as a function of the Borel parameter, calculated from the non-diagonal

sum rule (C.12) (red, solid line), the pure-parity diagonal sum rule (C.10) (green, long dashes) and

the mixed-parity diagonal sum rule (C.11) (blue, short dashes); s0 = 0.8 GeV2. Right panel: same

for f3K ; s0 = 1.1 GeV2.
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Figure 6: Left panel: ω3π as a function of the Borel parameter from the non-diagonal sum

rule (C.13); s0 = 0.8 GeV2. Right panel: same for ω3K ; s0 = 1.1 GeV2. The results from di-

agonal sum rules are not shown because the gluon-condensate contribution is unknown.
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Figure 7: λ3K as a function of the Borel parameter, calculated from the non-diagonal sum

rule (C.16) (red, solid line), the pure-parity diagonal sum rule (C.14) (green, long dashes) and

the mixed-parity diagonal sum rule (C.15) (blue, short dashes); s0 = 1.1 GeV2; λ3π = 0 by virtue

of G-parity.
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as given in table 4 and the difference in the results from the different sum rules, we obtain

the estimates

f3π(1GeV) = (0.0045 ± 0.0015)GeV2, f3K(1GeV) = (0.0045 ± 0.0015)GeV2. (C.17)

The effect of SU(3) breaking is very small,

f3K/f3π = 0.98 ± 0.03 , (C.18)

as all sum rules are dominated by the contribution of the gluon condensate. Note that our

value for f3π is about 50% larger than the one obtained in ref. [52], which is due to, as we

believe, the incorrect results for the contributions of the gluon and four-quark condensate

contributions obtained in this paper. As for ω3, as explained above, we only evaluate the

non-diagonal sum rule. We find that the sum rules are less stable in M2, as with f3, and

that now the effect of SU(3) breaking is more prominent. Our final estimate is

ω3π(1GeV) = −1.5 ± 0.7 , ω3K(1GeV) = −1.2 ± 0.7 , (C.19)

where the error reflects in particular the uncertainty of the value of the gluon condensate.

Our result is to be compared with that of ref. [52], ω3π ≈ −3. Finally, λ3K can be

determined from three sum rules, as the gluon-condensate contribution is suppressed by

a factor m2
s. All three sum rules yield perfectly consistent values, despite the fact that

the two diagonal sum rules (C.14) and (C.15) differ by an overall factor of 2, which, as

expected, is largely cancelled by the different values of f2
3K |D and f2

3K |D+D̄. We obtain

λ3K(1GeV) = 1.6 ± 0.4; (C.20)

the error is smaller than for ω3K because the gluon condensate is suppressed. This result

is new.

D. Sum rules for twist-4 matrix elements

The aim of this section is to estimate the decay constant δ2
K that determines the normal-

ization of twist-4 distribution amplitudes. To this end we define the currents

JA
µ = q̄ gG̃µαγαs , JV

µ = q̄ gG̃µαγαγ5s , (D.1)

with quantum numbers JP = 1+ and 1−, respectively, and calculate the correlation func-

tions

ΠA,V
µν = i

∫
d4x eipx 〈0|TJA,V

µ (x)(JA,V
ν )†(0)|0〉 = pµpν ΠA,V

0 (p2) − gµν ΠA,V
1 (p2) , (D.2)

taking into account contributions of operators with dimension up to eight. Note that the

relative sign between fK and δ2
K can be fixed from the non-diagonal correlation function

of JA
µ and the axial vector current. This calculation was done in ref. [51] and will not be

repeated here; the result is that δ2
K is positive.
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Similar correlation functions have been considered in the past, mainly in connection

with searches for exotic quark-antiquark-gluon mesons [54]. We obtain

ΠA,V
0 =

αs

160π3
p4 ln

µ2

−p2
+

1

72

〈αs

π
G2

〉
ln

µ2

−p2

+
αs

6π
[mq〈q̄q〉 + ms〈s̄s〉] ln

µ2

−p2
∓

2αs

9π
[ms〈q̄q〉 + mq〈s̄s〉] ln

µ2

−p2

∓
8παs

9p2
〈q̄q〉〈s̄s〉 + 0 · 〈g3fG3〉

+
5

108

αs

π

1

p2
[mq〈q̄σgGq〉 + ms〈s̄σgGs〉]

±
[1

9
ln

µ2

−p2
+

2

27

]αs

π

1

p2
[ms〈q̄σgGq〉 + mq〈s̄σgGs〉]

−
25παs

324p4
m2

0[〈q̄q〉
2 + 〈s̄s〉2] ±

143παs

162p4
m2

0〈q̄q〉〈s̄s〉

+
π

18p4

〈αs

π
G2

〉
[mq〈q̄q〉 + ms〈s̄s〉] , (D.3)

ΠA,V
1 =

αs

240π3
p6 ln

µ2

−p2
−

1

36

〈αs

π
G2

〉
p2 ln

µ2

−p2

+
αs

6π
[mq〈q̄q〉 + ms〈s̄s〉]p

2 ln
µ2

−p2
∓

αs

18π
[ms〈q̄q〉 + mq〈s̄s〉]p

2 ln
µ2

−p2

∓
8παs

9
〈q̄q〉〈s̄s〉 −

1

192π2
· 〈g3fG3〉

−
19

144

αs

π
[mq〈q̄σgGq〉 + ms〈s̄σgGs〉] ln

µ2

−p2

±
19

144

αs

π
[ms〈q̄σgGq〉 + mq〈s̄σgGs〉] ln

µ2

−p2

+
25παs

162p2
m2

0[〈q̄q〉
2 + 〈s̄s〉2] ±

181παs

162p2
m2

0〈q̄q〉〈s̄s〉

+
π

18p2

〈αs

π
G2

〉
[mq〈q̄q〉 + ms〈s̄s〉] ∓

π

6p2

〈αs

π
G2

〉
[ms〈q̄q〉 + mq〈s̄s〉] . (D.4)

In both cases the upper sign refers to the axial and the lower sign to the vector correlation

function, respectively; ΠA
0 has been calculated, in the chiral limit, in ref. [51]. The quark

mass corrections and the expression for ΠA
1 are new.

In this work we follow the procedure proposed in ref. [51] and write the sum rule

directly for the correlation function ΠA
0 :

f2
Kδ4

Ke−m2
K

/M2
= B[ΠA

0 ](M2) . (D.5)

The results for δ2
π and δ2

K are shown in figure 8. We find

δ2
π = (0.18 ± 0.06)GeV2, δ2

K = (0.20 ± 0.06)GeV2 (D.6)

and

δ2
K/δ2

π = 1.10 ± 0.05 , (D.7)

which can be compared to the estimate (fKδ2
K)/(fπδ2

π) = 1.07+0.14
−0.13 obtained in ref. [23].
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Figure 8: Left panel: δ2
π as a function of the Borel parameter from the sum rule (D.5); s0 =

0.8 GeV2. Right panel: the same for δ2
K ; s0 = 1.1 GeV2.
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