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Abstract

Electroweak precision measurements can provide indirect information about the possible scale
of supersymmetry already at the present level of accuracy. We update the present-day sensitivities
of precision data using mt = 172.7 ± 2.9 GeV for the experimental value of the top-quark mass,
within the constrained minimal supersymmetric extension of the Standard Model (CMSSM), in
which there are three independent soft supersymmetry-breaking parameters m1/2,m0 and A0. In
addition to MW and sin2 θeff , the analysis is based on (g−2)µ, BR(b → sγ) and the lightest MSSM
Higgs boson mass, Mh. Assuming initially that the lightest supersymmetric particle (LSP) is a
neutralino, we display the CMSSM results as functions of m1/2, fixing m0 so as to obtain the cold
dark matter density allowed by WMAP and other cosmological data for specific values of A0, tan β
and µ > 0. For a sample value of tan β we analyze how the global χ2 function would change
following a possible future evolution of the experimental central value of mt and its error. In a
second step, we extend the analysis to other constrained versions of the MSSM: the NUHM in
which the soft supersymmetry-breaking contributions to the Higgs masses are independent and the
Higgs mixing parameter µ and the pseudoscalar Higgs mass MA become additional free parameters
compared to the CMSSM, a VCMSSM in which the bilinear soft supersymmetry breaking parameter
B0 = A0−m0, and the GDM in which the LSP is the gravitino. In all scenarios we find indications
for relatively light soft supersymmetry-breaking masses, offering good prospects for the LHC and
the ILC, and in some cases also for the Tevatron.
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1 Introduction

We have recently analyzed the indications provided by current experimental data concerning

the possible scale of supersymmetry [1,2] within the framework of the minimal supersymmet-

ric extension of the Standard Model (MSSM) [3, 4], assuming that the soft supersymmetry-

breaking scalar masses m0, gaugino masses m1/2 and tri-linear parameters A0 were each con-

strained to be universal at the input GUT scale, with the gravitino heavy and the lightest

supersymmetric particle (LSP) being the lightest neutralino χ̃0
1, a framework often referred

to as the constrained MSSM (CMSSM). However, this is not the only possible scenario for su-

persymmetric phenomenology. For example, the soft supersymmetry-breaking scalar masses

m0 might not be universal, in particular those of the MSSM Higgs bosons, a framework

we term the NUHM [5, 6]. Alternatively, one may postulate supplementary relations for

the soft tri- and bilinear supersymmetry-breaking parameters A0, B0 such as those inspired

by specific supergravity scenarios, a framework we term the VCMSSM [7]. Additionally,

if one assumes universality between m0 and the gravitino mass, as in minimal supergravity

(mSUGRA), the gravitino might be the LSP and constitute the dark matter [8], a framework

known as the GDM [9–11].

It is well known that predicting the masses of supersymmetric particles using precision

low-energy data is more difficult than it was for the top quark or even the Higgs boson.

This is because the Standard Model (SM) is renormalizable, so decoupling theorems imply

that many low-energy observables are insensitive to heavy sparticles [12]. On the other

hand, supersymmetry may provide an important contribution to loop effects that are rare or

forbidden within the Standard Model. In fact, we found previously [1] that present data on

the electroweak precision observables MW and sin2 θeff , as well as the loop induced quantities

(g − 2)µ and BR(b → sγ) (see Ref. [13] for a review), may already be providing interesting

indirect information on the scale of supersymmetry breaking, at least within the context of

the CMSSM with a neutralino LSP. In that framework, the range of m0 is very restricted by

the cold dark matter density Ωχh2 determined by WMAP and other observations, for any set

of assumed values of tan β, m1/2 and the trilinear soft supersymmetry-breaking parameter

A0 [14,15]. We fixed m0 so as to satisfy this density constraint, 0.094 < ΩCDMh2 < 0.129 [16],

and then analyzed the indirect information as a function of m1/2 for tanβ = 10, 50. This

was done for various discrete values of A0 and as a scan in the (m1/2, A0) plane.

Within the CMSSM and using the (then) preferred range mt = 178.0± 4.3 GeV [17], we

found previously [1, 2] a preference for low values of m1/2, particularly for tan β = 10, that

exhibited also a moderate sensitivity to A0. Our first step in this paper is to update our
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previous analysis, taking into account the newer preferred range mt = 172.7± 2.9 GeV [18],

and providing a vade mecum for understanding the implications of any further evolution in

the preferred range and experimental error of mt. The new experimental value of mt reduces

substantially the mass expected for the lightest MSSM Higgs boson, Mh, for any given values

of m1/2, m0, tanβ and A0, strengthening the constraints on m1/2. We therefore improve our

analysis by incorporating the full likelihood information provided by the final results of the

LEP search for a Standard Model-like Higgs boson [19, 20].

Other recent analyses [21] in the framework of the CMSSM differ from our analysis by

the omission of certain observables such as MW , sin2 θeff or Mh, or in their treatment of the

95% C.L. exclusion bound for Mh. The other analyses find a preference for somewhat larger

tan β, mostly due to the fact that MW and sin2 θeff are either ignored or treated differently.

The main purpose of the present paper is to analyze the sensitivity of the preference for

a low value of m1/2 to some of the restrictive assumptions we introduced into the analysis,

exploring the ranges of parameters that would be preferred in alternative NUHM, VCMSSM

and GDM scenarios.

The NUHM has two additional parameters as compared to the CMSSM, namely the de-

grees of non-universality of the soft supersymmetry-breaking scalar masses for the two Higgs

doublets [6]. They can be traded for two quantities measurable at low energies, such as the

Higgs mixing parameter µ and the CP-odd Higgs boson mass, MA. We explore here the

possible sensitivities to these parameters within the NUHM. It would take prohibitive effort

to analyze systematically all this multi-dimensional parameter space. Therefore, we focus

here on analyzing a limited number of NUHM scenarios, corresponding to two-dimensional

subspaces of parameters that generalize specific favoured CMSSM scenarios, with the idea of

exploring whether the dependences on the additional NUHM variables are capable of mod-

ifying significantly the CMSSM preference for relatively small values of m1/2 and exploring

possible preferences for the values of other model parameters.

On the other hand, in very constrained variants of the MSSM (VCMSSM) in which one

postulates a relation between the tri- and bilinear soft supersymmetry-breaking parameters:

A0 = B0+m0,
1 motivated by simple supergravity, the dimensionality of the model parameter

space is reduced compared with that in the CMSSM. The supersymmetric vacuum conditions

then fix the ratio of MSSM Higgs vacuum expectation values tanβ as a function of m1/2, m0

and A0 [7]. We study the cases A0/m0 = 0, 0.75, 3 −
√

3 and 2, which are compatible with

1Our notation for the A0 and B0 parameters follows that which is standard in supergravity models (see
e.g. Ref. [3]), namely the coupling in the scalar potential is given by A0 g(3)+B0 g(2) for the tri- and bi-linear
superpotential terms g(3) and g(2), respectively. This differs from the sign convention used in many publicly
available codes, see e.g. Ref. [22].
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neutralino dark matter for extended ranges of m1/2, and we discuss the preferred ranges of

m1/2 and tanβ in each case.

In general, yet another relevant parameter, namely the gravitino mass, must be taken

into account, leading to the possibility that the LSP is the gravitino, in which case it would

provide dark matter, the GDM scenario. In order to simplify the analysis of GDM in a

motivated manner, we restrict our attention to scenarios inspired by minimal supergravity

(mSUGRA), in which the gravitino mass is constrained to equal m0 at the input GUT scale,

and the trilinear and bilinear soft supersymmetry-breaking parameters are again related by

A0 = B0 + m0. In the cases we analyze in this paper, namely A0/m0 = 0, 3/4, 3−
√

3, 2, the

regions 2 of the (m1/2, m0) plane allowed by cosmological constraints then take the form of

wedges located at smaller values of m0 than those allowed in CMSSM scenarios [9, 10]. We

scan here some of the GDM wedges allowed by cosmology, exploring whether the new ranges

of m0 may lead to preferences for different values of m1/2.

We have performed χ2 fits in all scenarios, and our main results are as follows. Within

the CMSSM, we find that the new, lower value of mt and new treatment of the constraints

from the LEP Higgs search do not change greatly the values of m1/2 that were preferred

previously [1, 2]. For example, the 90% C.L. upper bound on m1/2 that we obtain for

tan β = 10 is shifted slightly upwards by about 50 GeV. The minimum value of χ2 for

the global fit is increased, however, primarily because of the increased impact of the LEP

Mh constraint on the CMSSM parameter space. The tension between Mh and the precision

electroweak observables would become severe for mt < 170 GeV. The minimum values of

χ2 for tan β = 10 and 50 are now very similar. We find that the minimum χ2 values remain

approximately the same also for the intermediate values tanβ = 20 and tanβ = 35. On the

other hand, the upper limit on m1/2 could be increased by as much as about 20% by possible

future changes in the preferred central value of mt and likely reductions in its error (assuming

that the experimental results and theoretical predictions for the precision observables are

otherwise unchanged), but remains relatively small, in general.

Within the NUHM, we find that the minimal χ2 values are smaller than those for CMSSM

points with the same value of m1/2, and that χ2 is relatively insensitive to MA but may

decrease or increase as µ is varied. The preference for small m1/2 is preserved in at least the

sparse NUHM sample studied here. However, we do find that m0 may differ significantly

from its preferred range in the CMSSM. Likewise, significantly different values of µ and MA

are also possible. In general, within the NUHM scenarios studied, the prospects for observing

2The case A0 = 3 −
√

3 is motivated by the simplest Polonyi model of Planck-scale supersymmetry
breaking [23].
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sparticles at the LHC or the ILC are similar to those in the CMSSM case, except that in

some cases the τ̃1 may be rather heavier than the χ̃0
1.

In most of the VCMSSM scenarios with neutralino dark matter (NDM), looking along

the coannihilation strip compatible with WMAP and other cosmological data, we find that

the preference for small m1/2 noted previously within the CMSSM framework is repeated

(offering good detection prospects for the LHC and the ILC), and becomes a preference for

medium values of tan β. In addition, there is a tendency for tan β to increase with m1/2.

On the other hand, for A0/m0 = 0 we find larger values of m1/2 at the minimum χ2 (which

is significantly larger than for larger values of A0/m0), and smaller values of tan β which

are rather constant with respect to m1/2. When A0/m0 = 2, we also observe that there

are WMAP-compatible VCMSSM models at m1/2 ∼ 140 GeV and m0 ∼ 600 GeV [24] with

tan β ∼ 37 that have even lower χ2. These occur in the light Higgs funnel, when 2mχ̃0

1
≈ Mh,

and offer some prospects for detection at the Tevatron.

The preference for small m1/2 and a medium range of tan β is also maintained within

the VCMSSM with the supplementary mSUGRA relation m3/2 = m0 when the dark matter

is composed of gravitinos (GDM) and the next-to-lightest supersymmetric particle (NLSP)

is the τ̃1. In this scenario, the global χ2 that is somewhat smaller than along the WMAP

strips in the VCMSSM with neutralino dark matter. The prospects for sparticle detection at

the LHC and ILC are rather similar to those in the previous VCMSSM NDM scenarios, but

the light Higgs funnel disappears, reducing the prospects for the Tevatron. We recall that

the NLSP is metastable in such GDM scenarios, suggesting that novel detection strategies

should be explored at the LHC and the ILC [25].

2 Current experimental data

In this Section we review briefly the experimental data set that has been used for the fits.

We focus on parameter points that yield the correct value of the cold dark matter density,

0.094 < ΩCDMh2 < 0.129 [16], which is, however, not included in the fit itself. The data

set furthermore comprises the following observables: the mass of the W boson, MW , the

effective leptonic weak mixing angle, sin2 θeff , the anomalous magnetic moment of the muon,

(g − 2)µ, the radiative B-decay branching ratio BR(b → sγ), and the lightest MSSM Higgs

boson mass, Mh. A detailed description of the first four observables can be found in [1, 13].

We limit ourselves here to recalling the current precision of the experimental results and

the theoretical predictions. The experimental values of these obervables have not changed

significantly compared to [1, 13], and neither have the theoretical calulations. As already
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commented, due to the new, lower experimental value of mt, it is necessary to include the

most complete experimental information about Mh into the fit. Accordingly, we give below

details about the inclusion of Mh and the evaluation of the corresponding χ2 values obtained

from the direct searches for a Standard Model (SM) Higgs boson at LEP [19].

In the following, we refer to the theoretical uncertainties from unknown higher-order

corrections as ‘intrinsic’ theoretical uncertainties and to the uncertainties induced by the

experimental errors of the input parameters as ‘parametric’ theoretical uncertainties. We do

not discuss here the theoretical uncertainties in the renormalization-group running between

the high-scale input parameters and the weak scale: see Ref. [26] for a recent discussion in the

context of calculations of the cold dark matter density. At present, these uncertainties are less

important than the experimental and theoretical uncertainties in the precision observables.

Assuming that the five observables listed above are uncorrelated, a χ2 fit has been per-

formed with

χ2 ≡
4
∑

n=1

(

Rexp
n − Rtheo

n

σn

)2

+ χ2
Mh

. (1)

Here Rexp
n denotes the experimental central value of the nth observable (MW , sin2 θeff ,

(g − 2)µ and BR(b → sγ)), Rtheo
n is the corresponding CMSSM prediction and σn denotes

the combined error, as specified below. χ2
Mh

denotes the χ2 contribution coming from the

lightest MSSM Higgs boson mass as described below.

2.1 The W boson mass

The W boson mass can be evaluated from

M2
W

(

1 − M2
W

M2
Z

)

=
πα√
2GF

(1 + ∆r) , (2)

where α is the fine structure constant and GF the Fermi constant. The radiative corrections

are summarized in the quantity ∆r [27]. The prediction for MW within the Standard Model

(SM) or the MSSM is obtained by evaluating ∆r in these models and solving (2) in an

iterative way.

We include the complete one-loop result in the MSSM [28,29] as well as higher-order QCD

corrections of SM type that are of O(ααs) [30, 31] and O(αα2
s) [32, 33]. Furthermore, we

incorporate supersymmetric corrections of O(ααs) [34] and of O(α2
t ) [35,36] to the quantity

∆ρ.3

3A re-evaluation of MW is currently under way [37]. Preliminary results show good agreement with the
values used here.
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The remaining intrinsic theoretical uncertainty in the prediction for MW within the

MSSM is still significantly larger than in the SM. It has been estimated as [36]

∆M intr,current
W

<∼ 9 MeV , (3)

depending on the mass scale of the supersymmetric particles. The parametric uncertainties

are dominated by the experimental error of the top-quark mass and the hadronic contribu-

tion to the shift in the fine structure constant. Their current errors induce the following

parametric uncertainties [13, 38]

δmcurrent
t = 2.9 GeV ⇒ ∆Mpara,mt,current

W ≈ 17.5 MeV, (4)

δ(∆αcurrent
had ) = 36 × 10−5 ⇒ ∆Mpara,∆αhad,current

W ≈ 6.5 MeV . (5)

The present experimental value of MW is [39, 40]

M exp,current
W = 80.410 ± 0.032 GeV. (6)

The experimental and theoretical errors for MW are added in quadrature in our analysis.

2.2 The effective leptonic weak mixing angle

The effective leptonic weak mixing angle at the Z boson peak can be written as

sin2 θeff =
1

4

(

1 − Re
veff

aeff

)

, (7)

where veff and aeff denote the effective vector and axial couplings of the Z boson to charged

leptons. Our theoretical prediction for sin2 θeff contains the same class of higher-order cor-

rections as described in Sect. 2.1.

In the MSSM, the remaining intrinsic theoretical uncertainty in the prediction for sin2 θeff

has been estimated as [36]

∆ sin2 θintr,current
eff

<∼ 7 × 10−5, (8)

depending on the supersymmetry mass scale. The current experimental errors of mt and

∆αhad induce the following parametric uncertainties

δmcurrent
t = 2.9 GeV ⇒ ∆ sin2 θpara,mt,current

eff ≈ 10 × 10−5, (9)

δ(∆αcurrent
had ) = 36 × 10−5 ⇒ ∆ sin2 θpara,∆αhad,current

eff ≈ 13 × 10−5. (10)

The experimental value is [39, 40]

sin2 θexp,current
eff = 0.23153 ± 0.00016 . (11)

The experimental and theoretical errors for sin2 θeff are added in quadrature in our analysis.
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2.3 The anomalous magnetic moment of the muon

The SM prediction for the anomalous magnetic moment of the muon (see [41,42] for reviews)

depends on the evaluation of QED contributions (see [43] for a recent update), the hadronic

vacuum polarization and light-by-light (LBL) contributions. The former have been evaluated

in [44–47] and the latter in [48–51]. The evaluations of the hadronic vacuum polarization

contributions using e+e− and τ decay data give somewhat different results. In view of the

additional uncertainties associated with the isospin transformation from τ decay, we use here

the latest estimate based on e+e− data [52]:

atheo
µ = (11 659 182.8± 6.3had ± 3.5LBL ± 0.3QED+EW) × 10−10, (12)

where the source of each error is labelled. We note that new e+e− data sets have recently

been published in [53–55], but not yet used in an updated estimate of (g−2)µ. Their inclusion

is not expected to alter substantially the estimate given in (12).

The result for the SM prediction is to be compared with the final result of the Brookhaven

(g − 2)µ experiment E821 [56, 57], namely:

aexp
µ = (11 659 208.0± 5.8) × 10−10, (13)

leading to an estimated discrepancy

aexp
µ − atheo

µ = (25.2 ± 9.2) × 10−10, (14)

equivalent to a 2.7 σ effect. While it would be premature to regard this deviation as a

firm evidence for new physics, it does indicate a preference for a non-zero supersymmetric

contribution.

Concerning the MSSM contribution, the complete one-loop result was evaluated a decade

ago [58]. It indicates that variants of the MSSM with µ < 0 are already very challenged by

the present data on aµ, whether one uses either the e+e− or τ decay data, so we restict our

attention in this paper to models with µ > 0. In addition to the full one-loop contributions,

the leading QED two-loop corrections have also been evaluated [59]. Further corrections at

the two-loop level have been obtained recently [60,61], leading to corrections to the one-loop

result that are ∼ 10%. These corrections are taken into account in our analysis according to

the approximate formulae given in [60, 61].

2.4 The decay b → sγ

Since this decay occurs at the loop level in the SM, the MSSM contribution might a priori be

of similar magnitude. A recent theoretical estimate of the SM contribution to the branching
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ratio is [62]

BR(b → sγ) = (3.70 ± 0.46) × 10−4, (15)

where the calculations have been carried out completely to NLO in the MS renormalization

scheme [63–65], and the error is dominated by higher-order QCD uncertainties. We record,

however, that the error estimate for BR(b → sγ) is still under debate, see also Refs. [66, 67].

For comparison, the present experimental value estimated by the Heavy Flavour Aver-

aging Group (HFAG) is [68]

BR(b → sγ) = (3.39+0.30
−0.27) × 10−4, (16)

where the error includes an uncertainty due to the decay spectrum, as well as the statistical

error. The good agreement between (16) and the SM calculation (15) imposes important

constraints on the MSSM.

Our numerical results have been derived with the BR(b → sγ) evaluation provided in

Ref. [69], which has been checked against other approaches [64, 65, 70, 71]. For the current

theoretical uncertainty of the MSSM prediction for BR(b → sγ) we use the value in (15).

We add the theory and experimental errors in quadrature.

We have not included the decay Bs → µ+µ− in our fit, in the absence of an experimental

likelihood function and a suitable estimate of the theoretical error. However, it is known

that the present experimental upper limit: BR(Bs → µ+µ−) < 2 × 10−7 [72] may become

important for tan β > 40 in the MSSM [73, 74]. We mention below some specific instances

where the decay Bs → µ+µ− may already constrain the parameter space studied [75], and

note that [1] gives a detailed analysis of its possible future significance.

2.5 The lightest MSSM Higgs boson mass

The mass of the lightest CP-even MSSM Higgs boson can be predicted in terms of the other

CMSSM parameters. At the tree level, the two CP-even Higgs boson masses are obtained as

functions of MZ , the CP-odd Higgs boson mass MA, and tan β. For the theoretical prediction

of Mh we employ the Feynman-diagrammatic method, using the code FeynHiggs [76, 77],

which includes all numerically relevant known higher-order corrections. The status of the

incorporated results can be summarized as follows. For the one-loop part, the complete

result within the MSSM is known [78–80]. Computation of the two-loop effects is quite

advanced: see Ref. [81] and references therein. These include the strong corrections at

O(αtαs) and Yukawa corrections at O(α2
t ) to the dominant one-loop O(αt) term, and the

strong corrections from the bottom/sbottom sector at O(αbαs). In the case of the b/b̃ sector
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corrections, an all-order resummation of the tanβ -enhanced terms, O(αb(αs tanβ)n), is also

known [82, 83]. Most recently, the O(αtαb) and O(α2
b) corrections have been derived [84] 4.

The current intrinsic error of Mh due to unknown higher-order corrections has been estimated

to be [13, 81, 86, 87]

∆M intr,current
h = 3 GeV . (17)

We show in Fig. 1 the predictions for Mh in the CMSSM for tanβ = 10 (left) and tan β = 50

(right) along the strips allowed by WMAP and other cosmological data [14]. We note that

the predicted values of Mh depend significantly on A0. Also shown in Fig. 1 is the present

95% C.L. exclusion limit for a SM-like Higgs boson is 114.4 GeV [19] and a hypothetical

LHC measurement at Mh = 116.4 ± 0.2 GeV.

It should be noted that, for the unconstrained MSSM with small values of MA and values

of tanβ that are not too small, a significant suppression of the hZZ coupling can occur in

the MSSM compared to the SM value, in which case the experimental lower bound on Mh

may be more than 20 GeV below the SM value [20]. However, we have checked that within

the CMSSM and the other models studied in this paper, the hZZ coupling is always very

close to the SM value. Accordingly, the bounds from the SM Higgs search at LEP [19] can

be taken over directly (see e.g. Refs. [88, 89]). It is clear that low values of m1/2, especially

for tan β = 10, are challenged by the LEP exclusion bounds. This is essentially because

the leading supersymmetric radiative corrections to Mh are proportional to m4
t ln(m1/2/mt),

so that a reduction in mt must be compensated by an increase in m1/2 for the same value

of Mh.

In our previous analysis, we simply applied a cut-off on Mh, considering only parameter

choices for which FeynHiggs gave Mh > 113.0 GeV. However, now that the Mh constraint

assumes greater importance, here we use more completely the likelihood information avail-

able from LEP. Accordingly, we evaluate as follows the Mh contribution to the overall χ2

function 5. Our starting points are the CLs(Mh) values provided by the final LEP results

on the SM Higgs boson search, see Fig. 9 in [19] 6. We obtain by inversion from CLs(Mh)

the corresponding value of χ̃2(Mh) determined from [90]

1

2
erfc(

√

1

2
χ̃2(Mh)) ≡ CLs(Mh) , (18)

and note the fact that CLs(Mh = 116.4 GeV) = 0.5 implies that χ̃2(116.4 GeV) = 0 as is

4A two-loop effective potential calculation has been presented in [85], but no public code based on this
result is currently available.

5We thank P. Bechtle and K. Desch for detailed discussions and explanations.
6We thank A. Read for providing us with the CLs values.
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Figure 1: The CMSSM predictions for Mh as functions of m1/2 with (a) tan β = 10 and
(b) tanβ = 50 for various A0. A hypothetical LHC measurement is shown, namely Mh =
116.4 ± 0.2 GeV, as well as the present 95% C.L. exclusion limit of 114.4 GeV.

appropriate for a one-sided limit. Correspondingly we set χ̃2(Mh > 116.4 GeV) = 0. The

theory uncertainty is included by convolving the likelihood function associated with χ̃2(Mh)

and a Gaussian function, Φ̃(x), normalized to unity and centred around Mh, whose width is

1.5 GeV:

χ2(Mh) = −2 log
(
∫

∞

−∞

e−χ̃2(x)/2 Φ̃(Mh − x) dx
)

. (19)

In this way, a theoretical uncertainty of up to 3 GeV is assigned for ∼ 95% of all Mh values

corresponding to one parameter point. The final χ2
Mh

is then obtained as

χ2
Mh

= χ2(Mh) − χ2(116.4 GeV) for Mh ≤ 116.4 GeV , (20)

χ2
Mh

= 0 for Mh > 116.4 GeV , (21)

and is then combined with the corresponding quantities for the other observables we consider,

see eq. (1).

3 Updated CMSSM analysis

As already mentioned, in our previous analysis of the CMSSM [1] we used the range mt =

178.0 ± 4.3 GeV that was then preferred by direct measurements [17]. The preferred range

evolved subsequently to 172.7 ± 2.9 GeV [18]. In view of this past evolution and possible
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future developments, in this Section we first analyze the current situation in some detail,

emphasizing some new aspects related to the lower value of mt, and then provide a guide to

possible future developments.

The effects of the lower mt value are threefold. First, it drives the SM prediction of

MW and sin2 θeff slightly further away from the current experimental value (whereas (g −
2)µ and BR(b → sγ) are little affected). This increases the favoured magnitude of the

supersymmetric contributions, i.e., it effectively lowers the preferred supersymmetric mass

scale. Secondly, the predicted value of the lightest Higgs boson mass in the MSSM is lowered

by the new mt value, see, e.g., Ref. [91] and Fig. 1. The effects on the electroweak precision

observables of the downward shift in Mh are minimal, but the LEP Higgs bounds [19, 20]

now impose a more important constraint on the MSSM parameter space, notably on m1/2.

In our previous analysis, we rejected all parameter points for which FeynHiggs yielded

Mh < 113 GeV. The best fit values in Ref. [1] corresponded to relatively small values of Mh,

a feature that is even more pronounced for the new mt value. Thirdly, the focus-point region

of the CMSSM parameter space now appears at considerably lower m0 than previously,

increasing its importance for the χ2 analysis.

In view of all these effects, we now update our previous analysis of the phenomenological

constraints on the supersymmetric mass scale m1/2 in the CMSSM using the new, lower

value 7 of mt and including a χ2 contribution from Mh, evaluated as discussed in the previous

Section. As in Ref. [1] we use the experimental information on the cold dark matter density

from WMAP and other observations to reduce the dimensionality of the CMSSM parameter

space. In the parameter region considered in our analysis we find an acceptable dark matter

relic density along coannihilation strips, in the Higgs funnel region and in the focus-point

region. We comment below on the behaviours of the χ2 function in each of these regions.

As seen in the first panel of Fig. 2, which displays the behaviour of the χ2 function out to

the tips of typical WMAP coannihilation strips, the qualitative feature observed in Ref. [1]

of a pronounced minimum in χ2 at m1/2 for tanβ = 10 is also present for the new value of

mt. However, the χ2 curve now depends more strongly on the value of A0, corresponding to

its strong impact on Mh, as seen in Fig. 1. Values of A0/m1/2 < −1 are disfavoured at the

90% C.L., essentially because of their lower Mh values, but A0/m1/2 = 2 and 1 give equally

good fits and descriptions of the data. The old best fit point in Ref. [1] had A0/m1/2 = −1,

but there all A0/m1/2 gave a similarly good description of the experimental data. The

minimum χ2 value is slightly below 3. This is somewhat higher than the result in Ref. [1],

but still represents a good overall fit to the experimental data. The rise in the minimum

7See also Ref. [2], where a lower bound of Mh > 111.4 GeV has been used.
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value of χ2, compared to Ref. [1], is essentially a consequence of the lower experimental

central value of mt, and the consequent greater impact of the LEP constraint on Mh [19,20].

In the cases of the observables MW and sin2 θeff , a smaller value of mt induces a preference

for a smaller value of m1/2, but the opposite is true for the Higgs mass bound. The rise in the

minimum value of χ2 reflects the correspondingly increased tension between the electroweak

precision observables and the Mh constraint.

A breakdown of the contributions to χ2 from the different observables can be found for

some example points in Table 1. The best-fit points for tanβ = 10 and 50 are shown in

the first and third lines, respectively. The second line shows a point near the tip of the

WMAP coannihilation strip for tan β = 10, the fourth line shows a point at the tip of the

rapid-annihilation Higgs funnel for tanβ = 50. The fifth till the seventh row show points

in the focus point region (see below) for tan β = 50 with low, intermediate and high m1/2.

It is instructive to compare the contributions to χ2 at the best-fit points with those at the

coannihilation, Higgs funnel and focus points. One can see that, for large m1/2 values in

all the different regions, (g − 2)µ always gives the dominant contribution. However, with

the new lower experimental value of mt also MW and sin2 θeff give substantial contributions,

adding up to more than 50% of the (g − 2)µ contribution at the coannihilation and Higgs

funnel points. On the other hand, Mh and BR(b → sγ) make negligible contributions to

χ2 at these points. As seen from the last lines of the Table, the situation may be different

in the focus-point region for low m1/2: the first example given yields a reasonably good

description of MW , sin2 θeff and even (g − 2)µ, while the largest contribution to χ2 arises

from BR(b → sγ) 8. This smoothly changes to the behavior for large m1/2 as described

above also in the focus-point region, as can be seen from the last two rows in Tab. 1.

The remaining panels of Fig. 2 update our previous analyses [1] of the χ2 functions for

various sparticle masses within the CMSSM, namely the lightest neutralino χ̃0
1, the second-

lightest neutralino χ̃0
2 and the (almost degenerate) lighter chargino χ̃±

1 , the lightest slepton

which is the lighter stau τ̃1, the lighter stop squark t̃1, and the gluino g̃. Reflecting the

behaviour of the global χ2 function in the first panel of Fig. 2, the changes in the optimal

values of the sparticle masses are not large. The 90% C.L. upper bounds on the particle

masses are nearly unchanged compared to the results for mt = 178.0 ± 4.3 GeV given in

Ref. [1].

The corresponding results for WMAP strips in the coannihilation, Higgs funnel and focus-

8We note that, particularly in view of the current uncertainties on mt and mb and the corresponding
uncertainties in MA, the upper limit on the BR(Bs → µ+µ−) currently imposes a weaker constraint on the
CMSSM parameter space than does b → sγ, even for tanβ = 50 [74].
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tanβ m1/2 m0 A0 comment χ2
tot MW sin2 θeff (g − 2)µ b → sγ Mh

10 320 90 320 best fit 2.55 1.01 0.12 0.63 0.23 0.52

10 880 270 1760 bad fit 9.71 2.29 1.28 6.14 0.01 0

50 570 390 -570 best fit 2.79 1.44 0.31 0.08 0.91 0.04

50 1910 1500 -1910 bad fit 9.61 2.21 1.11 6.29 0.01 0

50 250 1320 -250 focus 7.34 0.89 0.15 1.69 3.76 0.84

50 330 1640 -330 focus 6.06 1.24 0.28 3.21 1.33 0

50 800 2970 -800 focus 8.73 1.92 0.72 6.05 0.04 0

Table 1: Breakdown of χ2 contributions from the different precision observables to χ2
tot for

some example points. All masses are in GeV. The first and third rows are the best fits for
tan β = 10 and 50, the second row is representative of the coannihilation strip, the fourth
row is representative of the Higgs funnel region, and the last three rows are representatives
of the focus point-region.

point regions for the case tanβ = 50 are shown in Fig. 3. The spread of points with identical

values of A0 at large m1/2 is due to the broadening and bifurcation of the WMAP strip in

the Higgs funnel region, and the higher set of χ2 curves originate in the focus-point region,

as discussed in more detail below. We see in panel (a) that the minimum value of χ2 for

the fit with mt = 172.7 ± 2.9 GeV is larger by about a unit than in our previous analysis

with mt = 178.0 ± 4.3 GeV. Because of the rise in χ2 for the tanβ = 10 case, however, the

minimum values of χ2 are now very similar for the two values of tanβ shown here. The dip

in the χ2 function for tan β = 50 is somewhat steeper than in the previous analysis, since

the high values of m1/2 are slightly more disfavoured due to their MW and sin2 θeff values.

The best fit values of m1/2 are very similar to their previous values. The preferred values

of the sparticle masses are shown in the remaining panels of Fig. 3. Due to the somewhat

steeper χ2 behavior, the preferred ranges have slightly lower masses than in Ref. [1].

We now return to one novel feature as compared to Ref. [1], namely the appearance of a

group of points with moderately high χ2 that have relatively small m1/2 ∼ 200 GeV. These

points have relatively large values of m0, as reflected in the relatively large values of mτ̃1

and mt̃1 seen in panels (d) and (e) of Fig. 3. These points are located in the focus-point

region of the (m1/2, m0) plane [92], where the LSP has a larger Higgsino content, whose

enhanced annihilation rate brings the relic density down into the range allowed by WMAP.
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Figure 2: The combined likelihood function χ2 for the electroweak observables MW , sin2 θeff ,
(g−2)µ, BR(b → sγ), and Mh evaluated in the CMSSM for tan β = 10, mt = 172.7±2.9 GeV
and various discrete values of A0, with m0 then chosen to yield the central value of the relic
neutralino density indicated by WMAP and other observations. We display the χ2 function
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Figure 3: As in Fig. 2, but now for tan β = 50.
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By comparison with our previous analysis, the focus-point region appears at considerably

lower values of m0, because of the reduction in the central value of mt. This focus-point strip

extends to larger values of m0 and hence m1/2 that are not shown. The least-disfavoured

focus points have a ∆χ2 of at least 3.3 (see the discussion of Table 1 above), and most of

them are excluded at the 90% C.L.

Taken at face value, the preferred ranges for the sparticle masses shown in Figs. 2 and 3

are quite encouraging for both the LHC and the ILC. The gluino and squarks lie comfortably

within the early LHC discovery range, and several electroweakly-interacting sparticles would

be accessible to ILC(500) (the ILC running at
√

s = 500 GeV). The best-fit CMSSM point

is quite similar to the benchmark point SPS1a [93] (which is close to point B of Ref. [94])

which has been shown to offer good experimental prospects for both the LHC and ILC [95].

The prospects for sparticle detection are also quite good in the least-disfavoured part of the

focus-point region for tan β = 50 shown in Figs. 3, with the exception of the relatively heavy

squarks.

As indicated in Tab. 1 above, the minimum values of χ2 are 2.5 for tanβ = 10 and 2.8 for

tan β = 50, found for m1/2 ∼ 320, 570 GeV and A0 = +m1/2,−m1/2, respectively, revealing

no preference for either large or small tanβ 9. We display in Fig. 4 the χ2 functions for two

intermediate values of tanβ = 20, 35, for the cases A0 = 0,±m1/2. The minima of χ2 are 2.2

and 2.5, respectively, which are not significantly different from the values when tanβ = 10, 50.

Thus, this analysis reveals no preference for intermediate values of tanβ, either. The χ2

minima are found for A0 = 0,−m1/2, respectively. They appear when m1/2 ∼ 400, 500 GeV,

values intermediate between the locations of the minima for tan β = 10, 50, demonstrating

the general stability of this analysis.

In view of the possible future evolution of both the central value of mt and its experimental

uncertainty δmt, we have analyzed the behaviour of the global χ2 function for 166 GeV <

mt < 179 GeV and 1.5 GeV < δmt < 3.0 GeV for the case of tanβ = 10 (assuming that the

experimental results and theoretical predictions for the precision observables are otherwise

unchanged), as seen in the left panel of Fig. 5. We see that the minimum value of χ2 is

almost independent of the uncertainty δmt, but increases noticeably as the assumed central

value of mt decreases. This effect is not strong when mt decreases from 178.0 GeV to

172.7 GeV, but does become significant for mt < 170 GeV. This effect is not independent

of the known preference of the ensemble of precision electroweak data for mt ∼ 175 GeV

within the SM [39,40], to which the observables MW and sin2 θeff used here make important

9In our previous analysis, we found a slight preference for tan β = 10 over tanβ = 50. This preference
has now been counterbalanced by the increased pressure exerted by the Higgs mass constraint.
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Figure 4: The χ2 functions for tan β = 20, 35 and A0 = 0,±m1/2.
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90% C.L. upper limit for m1/2 on mt and its experimental error δmt, keeping the experimental
values and theoretical predictions for the other precision observables unchanged.

contributions. On the other hand, as already commented, within the CMSSM there is the

additional effect that the best fit values of m1/2 for very low mt result in Mh values that

are excluded by the LEP Higgs searches [19, 20] and have a very large χ2
Mh

, resulting in an

increase of the lowest possible χ2 value for a given top-quark mass value. This effect also
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mt m1/2 m0 A0 Mh χ2
tot MW sin2 θeff (g − 2)µ b → sγ Mh

168 270 80 270 111.5 10.10 1.79 0.14 0.01 0.60 7.57

168 370 100 370 113.5 8.81 3.43 1.02 1.56 0.06 2.73

168 530 140 530 115.3 10.32 4.11 1.63 3.98 0.00 0.60

168 800 210 800 116.9 13.09 4.87 2.45 5.77 0.00 0.00

168 200 80 400 111.1 17.69 0.57 0.06 1.86 6.72 8.49

168 300 100 600 114.1 7.11 2.90 0.68 0.50 1.19 1.83

168 520 160 1040 117.2 10.07 4.20 1.71 4.08 0.08 0.00

168 820 250 1640 118.8 13.70 5.08 2.66 5.95 0.01 0.00

173 190 70 190 111.1 17.20 0.03 0.36 4.56 3.78 8.49

173 270 80 270 114.2 2.72 0.29 0.05 0.01 0.68 1.70

173 330 90 330 115.8 2.24 0.91 0.08 0.80 0.19 0.27

173 370 100 370 116.6 2.95 1.12 0.18 1.56 0.08 0.00

173 530 140 530 118.8 6.02 1.54 0.49 3.98 0.00 0.00

173 800 210 800 120.7 8.80 2.04 0.99 5.77 0.00 0.00

173 170 80 340 112.1 25.10 0.02 0.40 6.21 12.57 5.91

173 200 80 400 113.7 12.12 0.00 0.70 1.85 7.15 2.41

173 300 100 600 117.2 2.70 0.82 0.06 0.50 1.31 0.00

173 520 160 1040 120.8 6.32 1.61 0.54 4.08 0.09 0.00

173 820 250 1640 122.9 9.27 2.18 1.13 5.95 0.01 0.00

178 210 60 0 112.5 10.68 0.34 1.43 3.25 0.70 4.93

178 240 60 0 113.8 5.38 0.41 1.52 0.76 0.27 2.41

178 330 80 0 116.7 0.76 0.01 0.17 0.58 0.00 0.00

178 450 110 0 119.0 2.89 0.11 0.00 2.76 0.02 0.00

178 600 140 0 120.9 4.75 0.22 0.02 4.48 0.03 0.00

178 800 190 0 122.4 6.19 0.36 0.13 5.67 0.02 0.00

178 190 70 190 113.6 13.26 0.43 1.51 4.56 4.03 2.73

178 270 80 270 117.1 1.53 0.08 0.68 0.01 0.77 0.00

178 330 90 330 119.0 1.14 0.02 0.10 0.80 0.23 0.00

178 370 100 370 119.9 1.76 0.06 0.03 1.56 0.10 0.00

178 530 140 530 122.4 4.20 0.20 0.01 3.98 0.00 0.00

178 800 210 800 124.7 6.35 0.41 0.17 5.77 0.00 0.00

Table 2: Breakdown of χ2 contributions from the different precision observables to χ2
tot for

some example points with mt = 168, 173, 178 GeV, δmt = 2.5 GeV and tan β = 10. All
masses shown are in GeV. The fifth column shows the Mh value for the corresponding point,
and the last column shows the χ2 contribution of this Mh value. The values of A0 were
selected so as to minimize χ2

tot for the corresponding value of m1/2.
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increases the value of m1/2 where the χ2 function is minimized. This is analyzed in more

detail in Table 2, where we show the breakdown of the different contributions to χ2 for

mt = 168, 173, 178 GeV for δmt = 2.5 GeV and tan β = 10. The A0 values are chosen so

as to minimize χ2
tot for each choice of m1/2. For mt = 168 GeV, χ2

tot exhibits only a shallow

and relatively high minimum, and Mh and BR(b → sγ) give the largest contribution for

low m1/2, shifting smoothly to large contributions from MW , sin2 θeff and (g − 2)µ for larger

m1/2. For mt = 173 GeV, a more pronounced minimum of χ2
tot appears for relatively small

m1/2 values. For lower m1/2, again Mh and BR(b → sγ) give large contributions, whereas for

higher values this shifts again to MW , sin2 θeff and (g−2)µ, after passing through a minimum

with a very good fit quality where no single contribution exceeds unity. The same trend, just

slightly more pronounced, can be observed for mt = 178 GeV. Finally, in the right panel of

Fig. 5 we demonstrate that the 90% C.L. upper limit on m1/2 shows only a small variation,

less than 10% for mt in the preferred range above 170 GeV 10. Finally we note that the

upper limit on m1/2 is essentially independent of δmt
11.

It is striking that the preference noted earlier for relatively low values of m1/2 remains al-

most unaltered after the change in mt and the change in the treatment of the LEP lower limit

on Mh. There seems to be little chance at present of evading the preference for small m1/2

hinted by the present measurements of MW , sin2 θeff , BR(b → sγ) and (g−2)µ, at least within

the CMSSM framework. It should be noted that the preference for a relatively low SUSY

scale is correlated with the top mass value lying in the interval 170 GeV <∼ mt
<∼ 180 GeV.

4 NUHM Analysis

In the NUHM, one may parametrize the soft supersymmetry-breaking contributions to the

squared masses of the two Higgs multiplets, m2
1,2, as follows:

m2
i = m2

0(1 + δi) , (22)

where m2
0 is the (supposedly) universal soft supersymmetry-breaking squared mass for the

squarks and sleptons. As already mentioned, the increase of the dimensionality of the NUHM

parameter space compared to the CMSSM, due to the appearance of the two new parameters

δ1,2, makes a systematic survey quite involved. Here, as illustrations of what may happen

in the NUHM, we analyze some specific parameter planes that generalize certain specific

10The plot has been obtained by putting a smooth polynomial through the otherwise slightly irregular
points.

11Note added: this analysis demonstrates, in particular, that incorporating the latest global fit value
mt = 172.5± 2.3 GeV [96] would have a negligible effect on our χ2 analysis.
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CMSSM points. We note that certain combinations of input parameter choices lead to soft

SUSY-breaking Higgs mass squares which are negative at the GUT scale. When either

m2
1 + µ2 < 0 or m2

2 + µ2 < 0, the point is excluded, so as to ensure vacuum stability at the

GUT scale [6].

Since it is the value of m1/2 that affects most importantly the masses of the sparticles that

might be observable at the LHC or ILC, our primary objective is to investigate whether the

introduction of extra NUHM parameters affects significantly the preference for small m1/2

found previously within the CMSSM: see Figs. 6 and 7. After satisfying ourselves on this

point, we subsequently explore the possible dependences on MA and µ: see Fig. 8. In order

to present our results we use parameter planes with generic points that do not necessarily

satisfy the CDM constraint. Exhibiting full parameter planes rather than just the regions

where the neutralino relic density respects the WMAP limits (we indicate these strips in

the plots) provides a better understanding of the dependences of the χ2 function on the

different NUHM variables. It also provides a context for understanding the branchings of

the χ2 function visible in Fig. 9, which are due to the bifurcations of the WMAP strips in

the parameter planes. We also note that, in NUHM models with a light gravitino where the

CDM constraint does not apply, generic regions of these parameter planes may be consistent

with cosmology.

In view of our primary objective, Fig. 6 shows two examples of (m1/2, m0) planes for fixed

values of µ, MA, A0 and tan β (top row) and two examples of (m1/2, µ) planes for fixed values

of m0, MA, A0 and tanβ (bottom row). In both the two top panels, the left boundaries of the

shaded regions are provided by the LEP lower limit on the chargino mass, the upper bounds

on m1/2 are provided by the GUT stability constraint, and the lower edges of the shaded

regions are provided by the stau LSP constraint. The colour codings are as follows. In each

panel, the best fit NUHM point that respects the WMAP constraints on the relic neutralino

density is marked by a (blue) plus sign, and the (blue) cross indicates the CMSSM values of

(m1/2, m0) [or (m1/2, µ)] for the chosen values of the other parameters. The green (medium

grey) regions have ∆χ2 < 1 relative to the minimum when the WMAP/CDM constraint is

not employed. Hence, some points in this region may have a lower χ2 than our best fit point

when the CDM constraint is employed.

In all four panels of Fig. 6, our best CDM fit, denoted by the plus sign, is within 1 sigma

of the overall minimum χ2, and hence lies within the green region. The yellow (light grey)

regions have ∆χ2 < 3.84, and the black points have larger values of ∆χ2 relative to the

absolute minimum. Traversing the regions with ∆χ2 < 1, 3.84, there are thin, darker shaded

strips where the relic neutralino density lies within the range favoured by WMAP. That is,
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in these regions, χ2 is within 1 or 3.84 of the minimum χ2 when the WMAP/CDM bound

is included. The blue cross must always lie within these regions. Our sampling procedure

causes these WMAP strips to appear intermittent. In the top right panel of Fig. 6, we

note two vertical tramlines, which are due to rapid annihilation via the direct-channel A

pole. Since MA is fixed in each of these panels, there is always a value of m1/2 such that

2mχ̃0

1
≈ MA, in principle even for tanβ = 10. We note that the analogous tramlines are

invisible in panel (a), because they have a ∆χ2 > 4 and thus would be located in the black

shaded region.

In the lower two panels, large values of µ are excluded due to the GUT constraint, large

values of m1/2 are excluded by the stau LSP constraint, and low values of µ and m1/2 are

exuded by the chargino mass limit. In the lower left panel, large values of m1/2 are excluded

because the τ̃1 becomes the LSP, whereas in the right panel our computation was limited

to m1/2 < 1000 GeV, thus producing the right-hand boundary. Within the regions allowed

by these constraints, the same colour codings are used. In the lower right panel, one sees

clearly the effect of the pseudoscalar funnel at m1/2 ≈ 680 GeV. In the lower left panel, this

possibility is excluded by the GUT stability constraint.

The planes in Fig. 6 have been defined such that the CMSSM points marked by (blue)

crosses in the different panels of Fig. 6 lie at the minima of the CMSSM χ2 functions shown

in Figs. 2 and 3. They enable us to study whether the CMSSM preference for relatively

small m1/2 may be perturbed by generalizing to the larger NUHM parameter space. In each

case, we see that the CMSSM point lies close to the best NUHM fit, whose χ2 is lower by

just 0.00, 0.02, 0.72 and 0.08, respectively. We also note that the ranges of m1/2 favoured at

this level are quite close to the CMSSM values. Thus, in these cases, the introduction of two

extra parameters in the NUHM does not modify the preference for relatively small values of

m1/2 observed previously in the CMSSM. In the top left panel for tanβ = 10, we see that

the preferred range of m0 is also very close to the CMSSM value. On the other hand, we

see in the top right panel that rather larger values of m0 would be allowed for tanβ = 50 at

the ∆χ2 < 1 level. This is due to the insensitivity of the annihilation cross section to m0 in

the funnel due to rapid annihilation via the pseudoscalar Higgs boson A. We also see in the

bottom two panels that quite wide ranges of µ would be allowed for either value of tanβ 12.

Fig. 7 displays four analogous NUHM planes, specified this time by values of µ, MA and

A0 in the top row and m0, MA, A0 in the bottom row that do not correspond to minima of

the χ2 function for the CMSSM with the corresponding values of tanβ. These examples

12In all panels of Fig. 6, the assumed values of MA are sufficiently large that Bs → µ+µ− currently does
not impose any useful constraint [75].
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Figure 6: Sample NUHM scenarios shown in the (m1/2, m0) plane (top row) and
(m1/2, µ) plane (bottom row). The CMSSM points shown in the left (right) column cor-
respond to the best fit points for tan β = 10 (50). The other parameters are given in the
plots. The green [medium grey] (yellow [light grey]) regions have ∆χ2 < 1(3.84), whilst the
black regions have larger ∆χ2. The strips where the neutralino relic density respects the
WMAP limits have darker shadings. The blue plus sign marks the best-fit NUHM point that
respects the relic density bounds, and the CMSSM point is marked with a blue cross.
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Figure 7: Additional sample NUHM scenarios shown in the (m1/2, m0) plane (top row) and
(m1/2, µ) plane (bottom row). The colour coding is the same as in Fig. 6.
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were studied in detail in [6], and enable us to explore whether there may be good NUHM fits

that are not closely related to the best CMSSM fits. In the top panels, the left boundaries

are due to the chargino constraint, and the bottom boundaries are due to the stau LSP

constraint. In the left panel, the right boundary is due to GUT stability, but in the right

panel it is due to a sampling limit. In the bottom left panel the GUT, stau and chargino

constraints operate similarly as in Fig. 6, and the tail at low µ and large m1/2 is truncated

by the GUT stability constraint. In the bottom right panel, the top boundary is due to

GUT stability, the bottom boundary to the stau, and the boundary at large m1/2 is another

sampling limitation 13. Within the allowed regions of Fig. 7, the colour codings are the same

as in Fig. 6. The best fit CDM point lies within the ∆χ2 < 1 green regions in the top left

and bottom right panels, whereas in the upper right panel the best fit point has ∆χ2 slightly

larger than 1, and its ∆χ2 is even greater in the bottom left panel.

In the (m1/2, m0) planes shown in the top row, we see that the ranges of m1/2 favoured at

the ∆χ2 < 1 level are again limited to values close to the best-fit CDM values. The range of

m0 for a given ∆χ2 is somewhat restricted for tan β = 10 (top left), but is again considerably

larger for tan β = 50 (top right). As for the (m1/2, µ) planes in the bottom row, we see in

the left panel for tan β = 10 that the range of m1/2 is again restricted at the ∆χ2 < 1 level,

whereas the range of µ is almost completely unrestricted. A similar conclusion holds in the

bottom right panel for tan β = 50, though here the range of m1/2 is somewhat broader 14.

Having established that the CMSSM preference for small values of m1/2 is generally

preserved in the NUHM, whereas different values of m0 and µ are not necessarily disfavoured,

we now study further the sensitivity to µ and MA via the four examples of (µ, MA) planes

shown in Fig. 8. In each case, we have made specific choices of A0, tan β, m1/2 and m0. In

the two panels on the left, these correspond to the best CMSSM fit along the corresponding

WMAP strip. The examples on the right were studied in [6]. In each case, we restrict our

attention to the regions of the plane that have no vacuum instability below the GUT scale.

This constraint provides the near-vertical right-hand edges of the coloured regions, whereas

the other boundaries are due to various phenomenological constraints. The near-vertical

boundaries at small µ in the top panels are due to the LEP chargino exclusion, and those

in the bottom panels are due to the stau LSP constraint. The boundary at low MA in the

top left panel is also due to the stau LSP constraint, whereas that in the top right panel is

again the GUT stability constraint.

13We note that, in this example, the CMSSM point is excluded by the stau LSP constraint.
14In all panels of Fig. 7, the assumed values of MA are again sufficiently large that Bs → µ+µ− currently

does not impose any useful constraint [75].

24



0 500 1000 1500 2000
µ [GeV]

200

400

600

800

1000

M
A
 [G

eV
]

NUHM, χ2
min = 1.19

∆χ2
 < 3.84 (no CDM bound)

∆χ2
 < 1 (no CDM bound)

∆χ2
 < 3.84 (CDM bound)

∆χ2
 < 1 (CDM bound)

best fit (CDM bound)

CMSSM point

m1/2 = 300, m0 = 100, A0 = 600, tanβ = 10

0 500 1000 1500 2000
µ [GeV]

200

400

600

800

1000

M
A
 [G

eV
]

NUHM, χ2
min = 5.12

∆χ2
 < 3.84 (no CDM bound)

∆χ2
 < 1 (no CDM bound)

∆χ2
 < 3.84 (CDM bound)

∆χ2
 < 1 (CDM bound)

best fit (CDM bound)

CMSSM point

m1/2 = 500, m0 = 300, A0 = 0, tanβ = 10

0 500 1000 1500 2000
µ [GeV]

200

400

600

800

1000

M
A
 [G

eV
]

NUHM, χ2
min = 1.17

∆χ2
 < 3.84 (no CDM bound)

∆χ2
 < 1 (no CDM bound)

∆χ2
 < 3.84 (CDM bound)

∆χ2
 < 1 (CDM bound)

best fit (CDM bound)

CMSSM point

m1/2 = 580, m0 = 390

A0 = -580, tanβ = 50

0 500 1000 1500 2000
µ [GeV]

200

400

600

800

1000

M
A
 [G

eV
]

NUHM, χ2
min = 1.49

∆χ2
 < 3.84 (no CDM bound)

∆χ2
 < 1 (no CDM bound)

∆χ2
 < 3.84 (CDM bound)

∆χ2
 < 1 (CDM bound)

best fit (CDM bound)

CMSSM point

m1/2 = 500, m0 = 300

A0 = 0, tanβ = 50

Figure 8: Sample NUHM (µ, MA) planes for different choices of (m1/2, m0, A0, tanβ): (a)
(300 GeV, 100 GeV, 600 GeV, 10), (b) (500 GeV, 300 GeV, 0, 10), (c) (580 GeV, 390 GeV,
−580 GeV, 50), and (d) (500 GeV, 300 GeV, 0, 50). The colour coding is as in Fig. 6.

25



Within the allowed regions of Fig. 8, the colour codings are the same as in Fig. 6. We see

that in the top left panel the WMAP strip runs parallel to the lower boundary defined by

the stau LSP constraint. The best fit NUHM point has χ2 = 1.19, which is somewhat less

than two units smaller than for the CMSSM point. This is hardly significant, and suggests

that the absolute minimum of the NUHM χ2 lies at a similar value of m1/2. As seen from

the location and shape of the green region with ∆χ2 < 1, the fit is relatively insensitive to

the magnitudes of µ and MA, as long as they are roughly proportional, but small values

of µ/MA are disfavoured. In contrast, for the larger value of m1/2 shown in the top right

panel of Fig. 8, we see that low values of µ are preferred. However, the minimum value of

χ2 = 5.12 in the NUHM is not much lower than in the CMSSM, even though it occurs for

significantly smaller values of both µ and MA
15.

Turning now to the bottom left panel of Fig. 8 for tanβ = 50 and A0 = 580 GeV, with

m1/2 and m0 again chosen so as to minimize χ2 (i.e., to reproduce the corresponding best-fit

point), we note several features familiar from the two previous panels. The WMAP strip

clings close to the left boundary of the allowed region, apart from an intermittent funnel

straddling the MA = 2mχ̃0

1
line. The minimum of χ2 = 1.13 for the NUHM is somewhat

smaller than for the CMSSM. The ∆χ2 < 1 NUHM region is a lobe extending away from the

origin at small µ and MA. Similar features are seen in the bottom right panel for tanβ = 50

and A0 = 0, except that the ∆χ2 < 1 lobe extends up to rather larger values of µ and MA
16.

These examples show that, although the absolute values of µ and MA are typically

relatively unconstrained in the NUHM 17, their values tend to be correlated, often with

a restricted range for their ratio: MA/µ ∼ 1.4,≤ 1,∼ 2 at the ∆χ2 < 1 level in the first

three panels of Fig. 8. On the other hand, the correlation in the fourth panel takes the form

MA ∼ 1
2
(µ − 400 GeV).

To conclude this Section, we make some remarks about the preferred masses of sparticles

and their possible detectability within the NUHM framework, in the light of the above χ2

analysis. Since the ranges of m1/2 favoured within the CMSSM are also favoured in the

NUHM, one should expect that the LHC prospects for detecting the gluino and several other

sparticles may also be quite good in the NUHM. On the other hand, the greater uncertainties

15We recall that, in this case, the NUHM WMAP strip has two near-horizontal branches straddling the
MA = 2mχ̃0

1

contour, with the upper branch heading to large MA at small µ, features not seen clearly in
this panel because of the coarse parameter sampling.

16We note, however, that the lower ranges of MA <∼ 300 GeV in the two bottom panels of Fig. 8 are likely
to be excluded by the current upper limit on BR(Bs → µ+µ−) [75], once the experimental likelihood is made
available and combined with the corresponding theoretical errors.

17The prospects for an indirect determination of MA and µ using future Higgs-sector measurements have
been discussed in [97].
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in m0, µ and MA suggest that the prospects for sparticle studies at the ILC may be more

variable within the NUHM. These remarks are borne out by Figs. 9 and 10, which display

χ2 functions for various sparticle masses in a selection of NUHM scenarios. Fig. 9 presents

masses in the four NUHM scenarios shown in Fig. 6, in which the CMSSM points correspond

to the best-fit points from Sect. 3, and Fig. 10 presents masses in two of the scenarios shown

in Fig. 8.

In each panel of Fig. 9, we display the χ2 functions for the masses of the χ̃0
1, χ̃0

2/χ̃
±

1 , τ̃1, t̃1

and g̃, for NUHM parameters along the WMAP strips in the corresponding panels of Fig. 6.

Since there are several branches of the WMAP strips in some cases, the χ2 functions are

sometimes multivalued. In the top left panel of Fig. 9, we see well-defined preferred values

for the sparticle masses, with the gluino and stop masses falling comfortably within reach

of the LHC, and the χ̃0
1, τ̃1 and possibly also the χ̃0

2 and χ̃±

1 within reach of the ILC(500).

When ∆χ2 ∼ 4.5, new branches of the χ2 function appear, corresponding to a branching of

the WMAP strip around a rapid-annihilation funnel when MA = 559 GeV ∼ 2mχ̃0

1
. This

funnel is not visible in Fig. 6, but would appear in the black-spotted region of large ∆χ2.

The ILC(1000) would have a good chance to see even the lighter stop. Turning to the top

right panel of Fig. 9, we see that the branching due to the rapid-annihilation funnel appears

at much lower ∆χ2, reflecting the closeness of the funnel to the best-fit point in the top right

panel of Fig. 6. In this case, whereas the g̃ should be observable at the LHC, the t̃1 might

well be problematic 18. The χ̃0
1 would be kinematically accessible at the ILC(500), but the

τ̃1 might well be too heavy: the rises in the branches of its χ2 function at larger masses

reflect the extension of the WMAP strip to large m0 that is seen in the corresponding panel

of Fig. 6. In this particular scenario, the χ̃0
2 and χ̃±

1 would probably not be observable at the

ILC(500). The ILC(1000) on the other hand, would have a high potential to detect them.

The bottom left panel of Fig. 9 has the most canonical χ2 functions: the gluino and stop

would very probably lie within reach of the LHC and the τ̃1 within reach of the ILC(500),

whereas the χ̃0
2 and χ̃±

1 might be more problematic. Again the ILC(1000) offers much better

opportunities here, possibly even for the lighter stop. Finally, the prospective observabilities

in the bottom right scenario would be rather similar to those in the top right scenario: we

again see that, as one moves away from the coannihilation strip, the τ̃1 may become much

heavier than the χ̃0
1, and too heavy to observe at the ILC(500). The ILC(1000) should, on

the other hand, offers very good prospects.

Fig. 10 presents a similar analysis of sparticle masses of the two favoured scenarios in

Fig. 8, namely in the two left-hand panels. In these cases, we show the variations of the χ2

18We recall that it is thought to be observable at the LHC if it weighs less than about 1 TeV.
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Figure 9: The likelihood χ2 along the WMAP strips in the sample NUHM scenarios shown
in Fig. 6, as a function of the masses of the χ̃0

1, χ̃0
2/χ̃

±

1 , τ̃1, t̃1 and g̃. The branchings in the
χ2 curves reflect the corresponding branchings in the WMAP strips in Fig. 6.
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functions for the different masses as one follows the WMAP strip to larger values of MA. In

the left panel of Fig. 10, we display the masses of the χ̃0
2 and χ̃±

1 (which are nearly equal)

in black, the mass of the χ̃0
3 in pink, the masses of the χ̃0

4 and χ̃±

2 (which are nearly equal)

in red, the mass of the t̃1 in yellow (with black border), and MA in blue. In each case,

the + sign of the same colour represents the best fit in the CMSSM for the same values of

m1/2, m0, A0 and tan β. The fact that the minima of the NUHM lie somewhat below the

CMSSM points reflect the fact that the NUHM offers a slightly better fit, but the difference

is not significant. In this case, the preferred masses of the χ̃0
2 and χ̃±

1 are almost identical

to the best-fit CMSSM values, and the same would be true for the χ̃0
1 and g̃, which are not

shown. The masses of the χ̃0
3, t̃1 and A are also very similar to their CMSSM values, but the

χ̃0
4 and χ̃±

2 may be significantly heavier. In addition to the above sparticle masses, the right

panel also includes the mass of the τ̃1 in orange. In this case, whereas the masses of the χ̃0
1

(not shown), χ̃0
2/χ̃

±

1 and g̃ (not shown) preferred in the NUHM are similar to their values

at the best-fit CMSSM point, this is not true for the other sparticles shown. The A boson

may be considerably lighter, the χ̃0
3, χ̃0

4 and the χ̃±

2 may be either lighter or heavier, and the

τ̃1 and t̃1 might be significantly heavier for points along the Higgs funnel visible in Fig. 8.

Thus, in this case the prospects for detecting some sparticles at the LHC or ILC may differ

substantially in the NUHM from the CMSSM.

To summarize: these examples demonstrate that, although the preferred value of the

overall sparticle mass scale set by m1/2 may be quite similar in the NUHM to its CMSSM

value, the masses of some sparticles in the NUHM may differ significantly from the corre-

sponding CMSSM values.

5 VCMSSM Analysis

As an alternative to the above NUHM generalization of the CMSSM, we now examine par-

ticular CMSSM models with the additional constraint B0 = A0 −m0 motivated by minimal

supergravity models, namely the VCMSSM framework introduced earlier. We still assume

that the gravitino is too heavy to be the LSP. The extra constraint reduces the dimen-

sionality of the VCMSSM parameter space, as compared with the CMSSM, facilitating its

exploration. In the CMSSM case, the electroweak vacuum conditions can be used to fix |µ|
and MA as functions of m1/2, m0 and A0 for a large range of fixed values of tanβ. On the

other hand, in the VCMSSM case the expression for B0 in terms of A0 and m0 effectively

yields a relation between |µ| and MA that is satisfied typically for only one value of tanβ,

for any fixed set of m1/2, m0 and A0 values [7, 98].
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Figure 10: The likelihood χ2 along the WMAP strips in the sample NUHM scenarios shown
in the left panels of Fig. 8, as a function of the masses of the χ̃0

2/χ̃
±

1 (black), χ̃0
3 (pink),

χ̃0
4/χ̃

±

2 (red), τ̃1 (orange) [omitted from the left panel], τ̃1 (yellow with black border) and A
boson (blue). The branchings in the χ2 curves in the right panel reflect the corresponding
branchings in the WMAP strips in the bottom left panel of Fig. 8. The crosses indicate the
corresponding best fit points in the CMSSM.

As already mentioned, motivated by (g − 2)µ and (to a lesser extent) BR(b → sγ), we

restrict our attention here to the case µ > 0. As is well known, other phenomenological

constraints tend to favour tanβ >∼ 5, see e.g. Refs. [91, 99]. This condition is generally

obeyed along the WMAP coannihilation strip for neutralino dark matter in the VCMSSM if

one assumes A0 ≥ 0, in which case the resultant value of tanβ tends to increase with m1/2

and m0 along the WMAP strip. We have studied the choices A0/m0 = 0, 0.75, 3−
√

3 and 2.

In this Section we restrict our attention to these cases, and in the next Section we compare

the VCMSSM results with the corresponding gravitino dark matter scenarios.

Since in the CMSSM the value of χ2 tends first to decrease and then to increase with

m1/2, but does not vary strongly with tanβ, we would expect the χ2 function to exhibit

a similar dependence on m1/2 also in the VCMSSM scenario. This effect is indeed seen in

the first panel of Fig. 11: there are well-defined local minima at m1/2 ∼ 400 to 600 GeV,

as A0/m0 varies from 0 to 2. However, for the latter value of A0/m0, we notice some
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isolated (red) points with m1/2 ∼ 140 GeV and much lower χ2 ∼ 2.19 At these points,

which barely survive the LEP chargino limit, rapid annihilation through a direct-channel

light-Higgs pole brings the neutralino relic density down into the WMAP range [24]. The

remaining panels of Fig. 11 display the χ2 functions for the masses of the χ̃0
1, τ̃1, χ̃

0
2, χ̃

±

1 , t̃1

and g̃. Their qualitative features are similar to those shown earlier for the CMSSM, with

the addition of the exceptional low-mass rapid-annihilation points. In these VCMSSM NDM

scenarios, the LHC has good prospects for the g̃ and t̃1 and the ILC(500) has good prospects

for the χ̃0
1 and τ̃1, whereas the prospects for the χ̃0

2 and χ̃±

1 would be dimmer, except at the

isolated rapid-annihilation points. The ILC(1000), on the other hand, would have a good

chance to detect the χ̃0
2 and the χ̃±

1 , depending somewhat on A0/m0. These points might

also be accessible to the Tevatron, in particular via searches for gluinos.

We find no analogous focus-point regions in the VCMSSM. When A0/m0 is large, the

RGE evolution of µ does not reduce it, even when m0 is very large 20. For smaller A0/m0,

the value of tan β fixed by the electroweak vacuum conditions in the VCMSSM becomes

small: tan β < 5 when m0 is large. In this case, as in the CMSSM, the focus-point region is

not reached.

In order to understand better the variation of χ2 with m1/2 in Fig. 11, and in particular to

understand its relatively low value at the rapid light-Higgs annihilation points with m1/2 ∼
140 GeV [24], we display separately in Fig. 12 the dependences of (a) MW , (b) sin2 θeff , (c)

BR(b → sγ), (d) (g−2)µ and (e) Mh on m1/2 for the case A0/m0 = 2 21. Along the VCMSSM

WMAP strip, we see that MW prefers a very low value of m1/2, with the rapid-annihilation

points slightly disfavoured, whereas sin2 θeff prefers a range of somewhat larger values of

m1/2, with the rapid-annihilation points slightly favoured. However, we then see that both

BR(b → sγ) and (g − 2)µ independently strongly disfavour m1/2 ∼ 200 GeV, whereas the

rapid-annihilation points fit these measurements very well. The same tendency is observed

for Mh.

These behaviours can be understood by referring to panel (f) of Fig. 12, where the regions

disfavoured by b → sγ and favoured by (g − 2)µ are shaded green and pink (darker and

lighter grey), respectively. The shaded (g − 2)µ region represents a 2-σ deviatation based

on (14), while the dashed lines represent the region favoured at the 1-σ level. The LEP

Higgs constraint is a diagonal (red) dot-dashed line, while the near-vertical black dashed line

19Similar points appear in the CMSSM, but at values of A0/m1/2 much larger than those considered in [1]
and here.

20This is true also in the CMSSM.
21The values of tanβ in the VCMSSM are too small for Bs → µ+µ− currently to make any significant

contribution to the χ2 function [75].

31



0 200 400 600 800 1000
m1/2 [GeV]

0

2

4

6

8

10

χ2  (t
od

ay
)

VCMSSM NDM, µ > 0

A0/m0 = 0.00

A0/m0 = 0.75

A0/m0 = 1.27

A0/m0 = 2.00

0 200 400 600 800 1000
mχ~0

1
 [GeV]

0

2

4

6

8

10

χ2  (t
od

ay
)

VCMSSM NDM, µ > 0

A0/m0 = 0.00

A0/m0 = 0.75

A0/m0 = 1.27

A0/m0 = 2.00

0 200 400 600 800 1000
mχ~0

2
, mχ~+

1
 [GeV]

0

2

4

6

8

10

χ2  (t
od

ay
)

VCMSSM NDM, µ > 0

A0/m0 = 0.00

A0/m0 = 0.75

A0/m0 = 1.27

A0/m0 = 2.00

0 200 400 600 800 1000
mτ~1

 [GeV]

0

2

4

6

8

10

χ2  (t
od

ay
)

VCMSSM NDM, µ > 0

A0/m0 = 0.00

A0/m0 = 0.75

A0/m0 = 1.27

A0/m0 = 2.00

0 200 400 600 800 1000 1200 1400 1600 1800 2000
mt~1

 [GeV]

0

2

4

6

8

10

χ2  (t
od

ay
)

VCMSSM NDM, µ > 0

A0/m0 = 0.00

A0/m0 = 0.75

A0/m0 = 1.27

A0/m0 = 2.00

0 200 400 600 800 1000 1200 1400 1600 1800 2000
mg~ [GeV]

0

2

4

6

8

10

χ2  (t
od

ay
)

VCMSSM NDM, µ > 0

A0/m0 = 0.00

A0/m0 = 0.75

A0/m0 = 1.27

A0/m0 = 2.00
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Note the NDM points at low m1/2 ∼ 140 GeV that simultaneously fit very well BR(b → sγ)
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vacuum conditions.
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shows the LEP constraint on the chargino mass. The pale (blue) shaded strip is favoured

by WMAP for NDM. Below this strip, there is a red shaded region in which the LSP is the

τ̃1 and therefore excluded. Below the τ̃1 LSP region, the gravitino is the LSP [9]. In the

unshaded portion of the GDM region, the next-to-lightest supersymmetric particle (NLSP)

will decay into a gravitino with unacceptable effects on the abundances of the light elements

and is excluded by BBN [9, 10, 100, 101]. The pale (yellow) shaded wedge is favoured for

gravitino dark matter as this region is allowed by BBN constraints. Finally, the black dotted

curves labeled 20, 25, 30 and 35 correspond to the values of tan β required by the VCMSSM

vacuum conditions. We see that the rapid-annihilation tail of the WMAP strip rises at low

m1/2 into a region allowed by b → sγ, favoured by (g − 2)µ and tolerated by Mh. It is

the synchronized non-monotonic behaviour of these last three observables that explains the

similar non-monotonic behaviour of χ2 along the NDM WMAP strip in Fig. 11 and the low

value of χ2 for the isolated rapid-annihilation point at m1/2 ∼ 140 GeV [24]. This is in fact

the best overall fit point in this VCMSSM scenario, as seen in Fig. 11.

The preferred ranges of m1/2 seen in Fig. 11 correspond, through the VCMSSM vacuum

conditions, to preferred ranges in tanβ. As seen in Fig. 13, these increase with the chosen

value of A0/m0, as does the correlation with m1/2. For A0/m0 = 0 (top left panel), tan β ∼ 7,

increasing to tanβ ∼ 10, 15, 32 for A0/m0 = 0.75, 3 −
√

3, 3, respectively. In the last case,

descending the VCMSSM WMAP strip to lower m1/2, whereas we see that χ2 exceeds 10

for m1/2 < 350 GeV, we see again the isolated dark (red) rapid-annihilation points with

m1/2 ∼ 140 GeV [24], which have relatively large tanβ ∼ 37.

We conclude that the extra constraint imposed in the VCMSSM modifies but does not

remove the preference found within the CMSSM for small m1/2. Within the VCMSSM

with neutralino dark matter, the minimum of χ2 usually occurs along the generic WMAP

coannihilation strip at m1/2 ∼ 500 GeV. However, when A0/m0 = 2, we find lower values

of χ2 in the rapid light-Higgs annihilation region with m1/2 ∼ 140 GeV. The preferred

value of tanβ varies between ∼ 7 and ∼ 32 on the generic WMAP strip, depending on the

value of A0/m0, but tan β ∼ 37 in the light Higgs-pole annihilation region for A0/m0 = 2.

These points offer prospects for a gluino discovery at the Tevatron: all the other preferred

parameter sets offer good prospects for observing sparticles at the LHC and ILC(500).

6 GDM Analysis

The relation A0 = B0 + m0 is just one of the further conditions on supersymmetry-breaking

parameters that would be imposed in minimal supergravity (mSUGRA) models. The other
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Figure 13: Illustration of the preferred regions in the space of VCMSSM models for (a)
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is the equality between m0 and the gravitino mass. So far, we have implicitly assumed

that the gravitino is sufficiently heavy that the LSP is always the lightest neutralino χ̃0
1

and the cosmological constraints on gravitino decays are unimportant. However, this is not

always the case in mSUGRA models. Indeed, in generic mSUGRA scenarios, as seen in the

bottom right panel of Fig. 12, in addition to a WMAP strip where the χ̃0
1 is the LSP as we

have assumed so far, there is a wedge of parameter space at lower values of m0 (for given

choices of m1/2 and the other parameters), where the gravitino is the LSP. In this case, there

are important astrophysical and cosmological constraints on the decays of the long-lived

NLSP [10,100,101], which is generally the lighter stau τ̃1 in such mSUGRA scenarios 22.

Fig. 14 displays the χ2 function for a sampling of GDM scenarios obtained by applying

the supplementary gravitino mass condition to VCMSSM models for A0/m0 = 0, 0.75, 3−
√

3

and 2, and scanning the GDM wedges at low m0. These wedges are scanned via a series of

points at fixed (small) m0 and increasing m1/2. We note that there is a marginal tendency for

χ2 to increase with increasing m0, though this is not as marked as the tendency to increase

with m1/2, and that the scan lines are more widely separated for the smaller values of A0.

Comparing Figs. 11 and 14, we see that lower χ2 values may be attained in the GDM cases.

The third panel of Fig. 12 and last panel of Fig. 13 illustrate how this comes about in the

case A0/m0 = 2: there is a large contribution to χ2 from b → sγ in the NDM for small

m1/2 that is absent in the GDM, which strongly prefers the combination of smaller m0 and

smaller tanβ found in the GDM models 23.

As seen in Fig. 14, the global minimum of χ2 for all the VCMSSM GDM models with

A0/m0 = 0, 0.75, 3−
√

3 and 2 is at m1/2 ∼ 450 GeV. However, this minimum is not attained

for GDM models with larger m0, as they do not reach the low-m1/2 tip of the GDM wedge

seen, for example, in the last panel of Fig. 15. In general, we see in the different panels of

Fig. 14 that, as in the CMSSM, there are good prospects for observing the g̃ and perhaps

the t̃1 at the LHC, and that the ILC(500) has good prospects for the χ̃0
1 and τ̃1, though these

diminish for larger m0. The ILC(1000), again, offers much better chances also for large m0.

We recall that, in these GDM scenarios, the τ̃1 is the NLSP, and that the χ̃0
1 is heavier. The

τ̃1 decays into the gravitino and a τ , and is metastable with a lifetime that may be measured

in hours, days or weeks. Specialized detection strategies for the LHC were discussed in [25]:

this scenario would offer exciting possibilities near the τ̃1 pair-production threshold at the

ILC.

22There are also non-mSUGRA scenarios in which the NLSP is the χ̃0
1. Such models are subject to similar

astrophysical and cosmological constraints, but we do not consider them here.
23The values of tanβ in these GDM models are also too small for Bs → µ+µ− currently to make any

significant contribution to the χ2 function [75].
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As discussed above, a feature of the class of GDM scenarios discussed here is that the

required value of tanβ increases with m1/2. Therefore, the preference for relatively small

m1/2 discussed above maps into an analogous preference for moderate tan β, as shown in

Fig. 15. The different panels are for the four choices A0/m0 = 0, 0.75, 3 −
√

3 and 2. In

each case, the red point indicates the minimum of the χ2 function, the green points have

∆χ2 < 1 corresponding to the 68 % confidence level, the orange points have ∆χ2 < 3.84

corresponding to the 95 % confidence level, and the black points have larger ∆χ2. We see

that, at the 95 % confidence level

300 GeV <∼ m1/2
<∼ 800 GeV, 15 <∼ tan β <∼ 27 (23)

in this mSUGRA class of GDM models.

7 Conclusions

Precision electroweak data and rare processes have some sensitivity to the loop corrections

that might be induced by supersymmetric particles. As we discussed previously in the con-

text of the CMSSM [1, 2], present data exhibit some preference for a relatively low scale of

soft supersymmetry breaking: m1/2 ∼ 300 . . . 600 GeV. This preference is largely driven by

(g−2)µ, with some support from measurements of MW and sin2 θeff . In this paper we have re-

evaluated this preference, in the light of new measurements of mt and MW , and treating more

completely the information provided by the bound from the LEP direct searches for the Higgs

boson. The preference for m1/2 ∼ 300 . . . 600 GeV is maintained in the CMSSM, and also

in other scenarios that implement different assumptions for soft supersymmetry breaking.

These include the less constrained NUHM models in which the soft supersymmetry-breaking

scalar masses for the two Higgs multiplets are treated as free parameters as well as more con-

strained VCMSSM models in which the soft trilinear and bilinear supersymmetry-breaking

parameters are related. The same preference is also maintained in GDM models motivated

by mSUGRA, where the LSP is the gravitino instead of being a neutralino as assumed in

the other scenarios.

Whilst m1/2 is quite constrained in our analysis, there are NUHM scenarios in which m0

could be considerably larger than the corresponding values in the CMSSM, and significant

variations in µ and MA are also possible. Within the CMSSM and NUHM, we find no

preference for any particular range of tanβ, but the preferred values of m1/2 in the VCMSSM

and GDM scenarios studied here correspond to intermediate values of tan β ∼ 15 to 30.

The ranges of m1/2 that are preferred would correspond to gluinos and other sparticles
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Figure 15: Illustration of the preferred regions in the space of mSUGRA-motivated GDM
models for (a) A0 = 0, (b) A0/m0 = 0.75, (c) A0/m0 = 3−

√
3 and (d) A0/m0 = 2. In each

case, the red points show the χ2 minimum, the green points have ∆χ2 < 1, the orange points
have ∆χ2 < 3.84, and the black points have larger χ2.
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being light enough to be produced readily at the LHC. Many sparticles would also be ob-

servable at the ILC in the preferred CMSSM, VCMSSM and GDM scenarios considered, but

the larger values of m0 allowed in some of the NUHM scenarios would reduce the number

of sparticle species detectable at the ILC, at least when operated at 500 GeV, whereas the

ILC at
√

s = 1000 GeV covers the full range for some sparticle species. There are also

prospects for detecting supersymmetry at the Tevatron in some special VCMSSM models

with neutralino dark matter.

We re-emphasize that our analysis depends in considerable part on the estimate of the

Standard Model contribution to (g − 2)µ based on e+e− annihilation data, that we assume

in this paper. Our conclusions would be weakened if the Standard Model calculation were

to be based on τ decay data. Additional e+e− data are now coming available, and it will

be important to take into account whatever update of the Standard Model contribution

to (g − 2)µ they may provide. However, the measurement of MW is increasing in impor-

tance, particularly in the light of the recent evolution of the preferred value of mt. Future

measurements of MW and mt at the Tevatron will be particularly important in this regard.
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