EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Laboratory for Particle Physics

Departmental Report

CERN/AT 2006-1 (MAS)

OVERVIEW AND STATUS OF THE NEXT EUROPEAN DIPOLE (NED) JOINT RESEARCH ACTIVITY

A. Devred^{1,2}, B. Baudouy¹, D.E. Baynham³, T. Boutboul², S. Canfer³, M. Chorowski⁴, P. Fabbricatore⁵,
S. Farinon⁵, H. Félice¹, P. Fessia², J. Fydrych⁴, V. Granata⁶, M. Greco⁵, J. Greenhalgh³, D. Leroy², P. Loverige³,
M. Matkowski⁴, G. Michalski⁴, F. Michel¹, L.R. Oberli², A. den Ouden⁷, D. Pedrini⁶, S. Pietrowicz⁴,
J. Polinski⁴, V. Previtali², L. Quettier¹, D. Richter², J.M. Rifflet¹, J. Rochford³, F. Rondeaux¹, S. Sanz⁸,
C. Scheuerlein², N. Schwerg^{2,9}, S. Sgobba², M. Sorbi^{6,10}, F. Toral-Fernandez⁸, R. van Weelderen²,
P. Védrine¹ and G. Volpini⁶

The Next European Dipole (NED) Joint Research Activity was launched on 1st January 2004 to promote the development of high performance Nb₃Sn conductors in collaboration with European industry (aiming at a non-copper critical current density of 1500 A/mm² at 4.2 K and 15 T) and to assess the suitability of Nb₃Sn technology to the next generation of accelerator magnets (aiming at an aperture of 88 mm and a conductor peak field of ~ 15 T). It is part of the Coordinated Accelerator Research in Europe (CARE) project, involves eight collaborators and is half-funded by the European Union. After briefly recalling the Activity organization, we report the main progress achieved over the last year, which includes: the manufacturing of a double-bath He II cryostat for heat transfer measurements through Nb₃Sn conductor insulation, detailed quench computations for various NED-like magnet configurations, the award of two industrial subcontracts for Nb₃Sn conductor development, the first results of a cross-calibration program of test facilities for Nb₃Sn wire characterization, detailed investigations of the mechanical properties of heavily cold-drawn Cu/Nb/Sn composite wires and the preliminary assessment of a new insulation system based on polyimide-sized fiber glass tapes. Last, we briefly review the efforts of an ongoing Working Group on magnet design and optimization.

1 CEA/DSM/DAPNIA/SACM, Gif-sur-Yvette, France

2 CERN, Geneva, Switzerland

3 Engineering Department, CCLRC/RAL, Chilton, Didcot, Oxon, UK

4 Institute of Power Engineering and Fluid Mechanics, Wroclaw University of Technology, Wroclaw, Poland

5 INFN-Genova, Genova, Italy

6 INFN-Milan/LASA, Milano, Italy

7 Faculty of Science and Technology, University of Twente, Enschede, The Netherlands

8 Department of Fusion and Elementary Particle Physics, CIEMAT, Madrid, Spain

9 Department of Theoretical Electrical Engineering, Technical University of Berlin, Berlin, Germany

10 Physics Department, Milano University, Milano, Italy

This work was supported in part by the European Community–Research Infrastructure Activity under the FP6 "Structuring the European Research Area" program (CARE, contract number RII3-CT-2003-506395).

Presented at the EUCAS'05 Conference - 11-15 September 2005 - Vienna, Austria

Administrative Secretariat AT Department CERN CH - 1211 Geneva 23

Geneva, Switzerland 20 February 2006

1 Introduction

The Next European Dipole (NED) is a Joint Research Activity (JRA) of the Coordinated Accelerator Research in Europe (CARE) project, funded under the auspices of EU-FP6 Research Infrastructures [1]. CARE attempts the integration of High-Energy-Physics-related accelerator R&D in Europe, with a total budget of 35.1 millions euros and a EU grant of 15.2 millions euros, shared between 22 contractors and ~100 associated institutes and industrial partners. Besides NED, CARE includes three Network Activities (NA): hadron beams (HHH), electron beams (ELAN) and muon beams (BENE), and three other JRA: superconducting radio-frequency (SRF), charge production with photo injector (PHIN) and high-intensity proton pulsed injector (HIPPI). Work has begun on January 1st, 2004 and will extend over 5 years.

The initial NED proposal had three main goals [2]-[3]:

- to foster synergy of efforts among European laboratories involved in high-field accelerator magnet R&D,
- to promote the development of high performance Nb₃Sn wires and cables in collaboration with European industry (aiming at a non-copper critical current density of 1500 A/mm² at 4.2 K and 15 T),
- to get ready for a luminosity upgrade of the Large Hadron Collider (LHC) (foreseen in 2015) [4]-[5], and beyond, for LHC energy upgrade or a super LHC [6], by building a large aperture (88 mm), high field (15-T conductor peak field) dipole magnet model.

Such program would have complemented efforts carried out in the USA within the framework of the US-LHC Accelerator Research Program (LARP) [7] or as part of the base programs at Fermi National Accelerator Laboratory (FNAL) [8] and at Lawrence Berkeley National Laboratory (LBNL) [9]. Unfortunately, the EU-allocation was capped to ~1 million euros (instead to the requested 4 millions), which forced a re-scoping, and, in the end, the detailed design, manufacture and test of the magnet model was left out of the CARE contract.

At present, the NED Activity is articulated around four Work Packages and one Working Group, which (save for the first one) will be detailed in the oncoming sections:

- Management and Communication (M&C),
- Thermal Studies and Quench Protection (TSQP),
- Conductor Development (CD),
- Insulation Development and Implementation (IDI),
- Working Group on Magnet Design and Optimization (WGMDO).

In spite of the limited EU-funding, NED is supported by a very active and very enthusiastic collaboration made up of eight partners: CCRLC/RAL (UK), CEA (France; Coordinator), CERN (international), CIEMAT (Spain), INFN-Genova and INFN-Milan (Italy), Twente University (The Netherlands), and Wroclaw University of Technology (Poland). Detailed updates on the work in progress are regularly posted on the NED web site maintained by Twente University [10].

Since the launching of NED, INFN has approved on 30 November 2004 a research project, called CANDIA (Italian acronym standing for CAvi in Niobio-stagno per DIpoli ad Alto campo or niobiumtin cables for high field dipoles), involving teams from INFN-Frascati (LNF), INFN-Genova and INFN-Milan (LASA). The main goal of CANDIA is the development of a Nb₃Sn conductor according to NED-like specifications, and a call for tender was issued in the Fall of 2005. Of course, close ties will be maintained between CANDIA and NED.

For reference, **Table 1** illustrates the position of NED within the global roadmap of high-field magnet development for large physics instruments, while **Table 2** presents an inventory of accelerator magnet needs for High Energy Physics (HEP) in the mid to long term [5].

2 Thermal Studies and Quench Protection (TSQP) work package

Work Package 2 includes two main Tasks:

- development and operation of a test facility to study and characterize heat transfer to helium through Nb₃Sn conductor insulation and optimization of magnet cooling scheme (involving CEA, CERN and Wroclaw University, under the supervision of CEA),
- quench protection computation (carried out by INFN-Milan).

Technology	Project/Machine	Application	Field	Year
Cu (resistive)	LEP, ESRF Soleil, Diamond	Misc.	up to 2 T	1970's
NbTi, 4,2 K	Tevatron	HEP	4 T	1983
NbTi, 1,9 K	Tore Supra	Fusion	9 T ^{a)}	1988
NbTi, 1,9 K	LHC	HEP	8.33 T	2007
NbTi, 1,9 K	NEUROSPIN [11]	Medical	$11.74 T^{a}$	2008-2009?
Nb ₃ Sn, 4,2 K	ITER/EDA <i>ITER</i>	Fusion	12 T ^{a)}	1995-2000 > 2010?
Nb ₃ Sn	CARE/NED LHC luminosity upgrade ILC interaction regions LHC energy doubler	HEP	14-15 T	2004-2008 2015? mid-2010's? > 2020?
Nb ₃ Sn, 1.8 K	1 GHz NMR	Misc.	23.5 $T^{a)}$	2006-2007?
HTS	LHC energy tripler	MEP	24-25 T	> 2030?

 Table 1. High-field magnet development roadmap for large physics instruments.

^{a)} conductor peak field.

Table 2. Accelerator magnet needs for High Energy Physics [5].

Project	Magnet Type	Implementation/ Quantity	Year	Comment
LHC luminosity upgrade	Large aperture, high performance dipole and/or quadrupole magnets	Interaction Regions/ A few units	2015	Cost is not an issue
International Linear Collider (ILC)	LHC-type quadrupole magnets in a solenoidal field or compact quadrupole magnets	Interaction Regions/ A few units	mid 2010's	Cost is not an issue
LHC energy upgrade or super LHC	High performance dipole and quadrupole magnets	Arcs/A large number	> 2020	Cost is an issue

2.1 Heat-transfer measurement task

2.1.1 Aim of the study

One of the key issues in the operation of a superconducting particle accelerator is the temperature margin of the dipole and quadrupole magnets the most exposed to beam losses and the ability of the cryogenic system to cope with the deposited energies. In the case of LHC, the temperature margins of the superconducting magnet coils operated in superfluid helium is mainly determined by the heat transfer coefficient through the polyimide insulation wrapped around the NbTi-based, Rutherford-type cables [12]. Extensive measurements of this coefficient have been carried out at CEA/Saclay in the 1990's on various types of insulation systems and an optimum solution was chosen for the cables of the LHC arc dipole and quadrupole magnets [13]. Furthermore, the geometry of the cooling channels inside the magnet cold masses as well as the diameters of the pipes connecting the various cryogenic elements were dimensioned to ensure a proper extraction of the energy deposited by beam losses.

Wherever NED-like magnets are implemented, they will be subjected to beam losses, and thereby, to energy depositions, which are likely to be higher than those presently foreseen in the LHC. Furthermore, "wind & react" Nb₃Sn coils call for the use of insulation schemes that are very different from the polyimide wraps applied in LHC magnets (see Section 4) and which have never been thoroughly investigated on the thermal point of view. Hence, the issues of temperature margin and magnet cooling must be reassessed to determine what are the operational limits of this kind of magnets.

2.1.2 Task organization and present status

The efforts on assessing the thermal behavior of NED-like magnets are presently articulated around three sub-tasks:

- re-analysis of existing cold test data from LHC magnet models relying on optimized NbTi conductor insulation systems,
- study and characterization of heat transfer coefficient through Nb₃Sn conductor insulation systems,
- review and modeling of magnet cooling modes to optimize energy extraction.

The LHC magnet test data re-analysis is carried out at CERN and should be completed by early 2006. Its goal is to verify whether or not the high heat-transfer coefficients measured at CEA on dedicated samples are also observed in actual magnets and to assess the suitability of the CEA sample configuration. It is based on a review of quench data and of AC-loss measurement as a function of ramp rate and will be compared to similar work carried out at FNAL on LHC Insertion Region quadrupole magnet models [14].

The effort to measure heat transfer coefficients through Nb₃Sn conductor insulation systems makes up the core of this Task and will be detailed hereafter. The first part of this effort was devoted to the design and manufacturing of a new double-bath, helium II cryostat.

In parallel, CERN has undertaken a review of cooling modes and has come to the preliminary conclusion that the most efficient one remains pressurized superfluid helium as chosen for the LHC.

In addition to more efficient heat removal capabilities, pressurized superfluid helium also offers the side benefit of the critical current enhancement provided by operating the Nb₃Sn conductor at a lower temperature (although not as large as for NbTi, this enhancement is still sizeable). As a result, it is likely that NED-like magnets will have to be operated at 1.9 K. The effort on magnet cooling optimization will be pursued within the framework of an existing collaboration between CERN and Wroclaw University of Technology.

2.1.3 Cryostat design and manufacturing

Measuring heat-transfer coefficient in pressurized superfluid helium environment requires a doublebath cryostat with stringent requirements on temperature control and stabilization. Such facility existed at CEA/Saclay, but was decommissioned in the late 1990's because it had become too problematic to operate. Hence, a new cryostat had to be designed and built. CEA developed the conceptual design and wrote detailed specifications that were handed out to Wroclaw University in June 2004. Figure 1 illustrates the proposed conceptual design. Wroclaw University performed a call for tender in the summer of 2004 and selected Kriosystem in Poland to manufacture the cryostat [15]. Work started at Kriosystem in the fall of 2004 and a Production Readiness Review was held at CEA/Saclay on 29 October 2004. The manufacture of the cryostat and of the enclosed heat exchanger was completed by early Spring 2005 and preliminary reception tests were carried out on Kriosystem's premises the 3rd week of April. After a few modifications and improvements, a second round of reception tests was carried out in Wroclaw on 6-8 July 2005. These tests included thermal and leak tests in liquid helium environment at 4.2 K and were deemed successful. Since then, the cryostat has been transported by road to CEA/Saclay, where it arrived on 20 September 2005. It is now being prepared for tests in superfluid helium and commissioning. The first measurements are expected to take place in early 2006. Figure 2 presents various pictures of the cryostat and of its critical components.

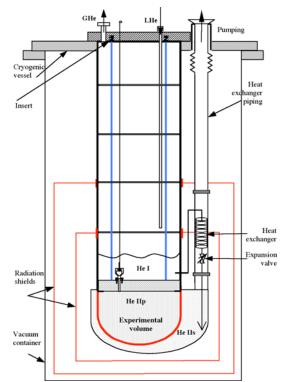
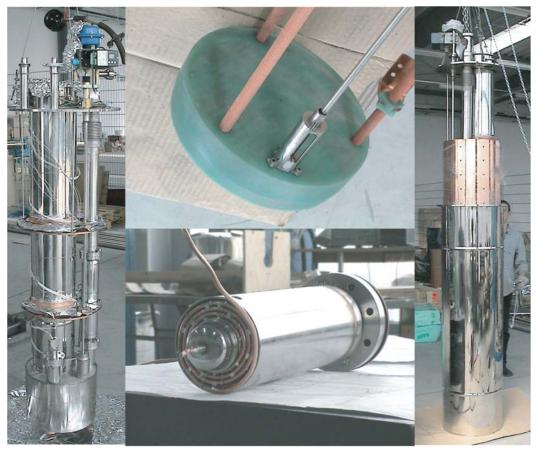
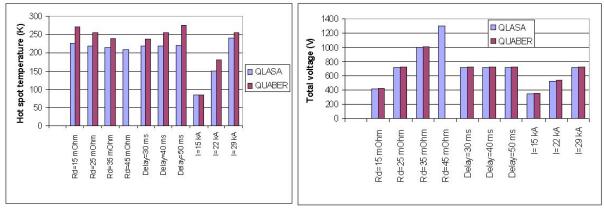




Figure 1. Conceptual design of double-bath cryostat for heat-transfer measurements developed by CEA/Saclay.

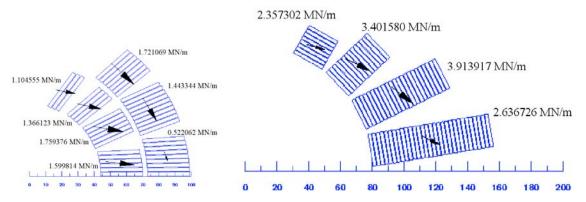
Figure 2. Various pictures of NED cryostat and of its critical components manufactured by Kryosystem in Poland, under the supervision of Wroclaw University of Technology: (a) inner assembly with instrumentation (left), (b) lambda plate (middle top), (c) heat exchanger (middle bottom) and (d) final assembly with thermal shields (right).

Figure 3. Comparison of quench computations carried out at INFN-Milan with QLASA and QUABER codes on 10-m-long, 88-mm-aperture, $(\cos\theta, \text{ layer})$ NED Reference Design V1: (a) hot spot temperature (left) and (b) total coil voltage (right).

2.2 Quench computation task

The magnetic energy stored in NED-like magnets is considerably higher than for NbTi dipole and quadrupole magnets of similar aperture, thereby raising the issue of quench protection. Hence, careful and thorough modeling of the quench behavior is needed to ensure that such magnets can be operated safely. In the case of NED, the aim is to limit hot spot temperature to 300 K and coil voltages to 800 V.

After completing a literature survey of relevant material properties (and having verified that the variability in available data did not dramatically affect salient computation results [3]), INFN-Milan carried out detailed quench studies on the 88-mm-aperture, $\cos\theta$, layer design chosen as Reference Design V1 [see Section 3.1 and Figure 4(a)]. The computations have investigated the influence of various parameters such as:


- magnet length (1, 5 and 10 m),
- operating current (15, 22 and 29 kA),
- value of external dump resistor (15, 25, 35 and 45 m Ω),
- quench detection delay (30, 40 and 50 ms)
- quench protection heater length.

They have been carried out using two independent computer codes:

- QLASA, originally developed at INFN-Milan for solenoids [16], and subsequently adapted to accelerator magnet coil configuration by means of suitable geometric approximations,
- QUABER, a collection of scripts written in MAST and run with the commercial SABER[®] software package [17] that was developed at CERN to study LHC magnet protection [18].

The results of the INFN-Milan study are detailed in Ref. [19] and are illustrated in Figure 3(a) and Figure 3(b), which summarize hot-spot temperature and total coil voltage plots obtained for the 10-mlong case. The QLASA and QUABER computations concur to show that, within the investigated parameter space, the hot-spot temperature always remains below 300 K while the coil voltages can be limited to 800 V by an adequate choice of external dump resistor (which should be no larger than 25 m Ω). The 1-m-long magnet does not require active protection, while the 5-m-long and the 10-long versions do require quench heaters, covering at least 80% of the length of the coil outer layer and being able of quenching it within 40 to 50 ms of their firing. These very encouraging results confirm the suitability of the wire and cable parameters chosen early on in the program and prove that quench protection should be an issue for NED.

To wrap up its effort, INFN-Milan has now undertaken quench computations on the more challenging 160-mm-aperture, $\cos\theta$, slot design shown in **Figure 4**(b).

Figure 4. Conductor and Lorentz force distribution in top right quadrant of two NED preliminary designs developed by CERN: (a) 88-mm-aperture, $\cos\theta$, layer design (chosen as Reference Design V1; left) and (b) 160-mm-aperture, $\cos\theta$, slot design (right) [3].

3 Conductor Development (CD) work package

Work Package 3 makes up the core of the NED Activity and absorbs about 70% of the EU funding allocation. It includes three main Tasks:

- conductor development (under CERN supervision),
- conductor characterization (involving CEA, CERN, INFN-Genova, INFN-Milan and Twente University, under the supervision of Twente University),
- Finite Element (FE) wire model to simulate cabling effects (involving CERN and INFN-Genova, under the supervision of INFN-Genova).

Note that the FE wire model Task is an extension of scope with respect to the CARE contract.

3.1 Conductor development

3.1.1 Preliminary designs and conductor parameters

CERN launched its NED efforts in 2003 by carrying out preliminary magnetic design studies for high field and large bore dipole magnets that were aimed at deriving meaningful Nb₃Sn wire and cable specifications. Two different magnetic configurations were investigated using the ROXIE software package [20]: the conventional $\cos\theta$, layer design and a more innovative $\cos\theta$, slot design, first proposed by J. Pérot at CEA/Saclay in the early 1980's [21]. Three apertures were considered: 88 mm, 130 mm and 160 mm. As an illustration, **Figure 4**(a) shows the 88-mm-aperture layer design, while **Figure 4**(b) shows the 160-mm-aperture slot design.

The preliminary investigations led to the definition of a common wire that can be made into different Rutherford-type cables suitable to the various magnetic designs under consideration. Salient parameters of this wire are summarized in **Table 3**. Furthermore, the 88-mm-aperture, $\cos\theta$, layer design of **Figure 4**(a) has been chosen as Reference Design V1 for NED. Thanks to the cable parameters summarized in **Table 4** (which assume a 10% critical current degradation with respect to virgin wires), it produces a central field of 14.4 T at 28.7 kA, with an inductance of 4.4 mH/m and a stored magnetic energy of 1.8 MJ/m (the conductor peak field is in excess of 15 T). These wire and cable parameters form the basis of NED conductor specifications. Let us stress that the reliance on a large conductor and a large transport current is a deliberate choice that differentiates NED from other programs and is one of the reasons why the quench protection issue is not so critical (see Section 0).

3.1.2 Cable contracts

Following the write up of comprehensive wire and cable specifications and of a detailed technical questionnaire, CERN issued a call for tender in June 2004 and, in November 2004, selected Alstom/MSA, in France [22], and ShapeMetal Innovation (SMI), in the Netherlands [23], to be the main wire and cable contractors. After discussion with CERN, the two companies have established development plans made up of two R&D steps (referred to as STEP1 and STEP2) followed by final production.

	• parameters [s]:
Parameter	Value
Strand diameter	1.250 mm
Effective Filament diameter	$< 50 \ \mu m$
Cu to non-Cu volume ratio	1.25 ± 0.10
Filament twist pitch	30 mm
Non-Cu $J_{\rm C}$ at 15 T and 4.2 K	1500 A/mm ²
Minimum critical current at 4.2 K	1636 A at 12 T 818 A at 15 T
RRR (after full reaction)	> 200
N-value at 15 T and 4.2 K	> 30

Table 3. Selected NED wire parameters [3].

Table 4. Salient parameters of Rutherford-type cable for 88-mm-aperture, $\cos\theta$, layer design chosen as NED Reference Design V1 [3].

Parameter	Value
Cable width	26 mm
Cable mid-thickness at 50 MPa	2.275 mm
Keystone angle	0.22 degrees
Number of strands	40
Critical current at 4.2 K, with field normal to broad face	29440 A at 15 T 58880 A at 12 T
Minimum critical current at 4.2 K of extracted strand	736 A at 15 T 1472 A at 12 T
RRR after reaction	≥ 120
Minimum cable unit length	145 m

For Alstom/MSA, which promotes the "Enhanced Internal Tin (EIT)" process, STEP1 is devoted to a Taguchi-type plan to study the influence of salient parameters on workability and performances, while STEP2 will be devoted to a tuning of critical current density. For SMI, which promotes the "Powder In Tube (PIT)" process, STEP1 is devoted to iterations on an existing, 1-mm-diameter, wire design, which has reached a non-copper critical current density of 2500 A/mm² at 4.2 K and 12 T, while STEP2 will be devoted to a scale-up to larger-size billets. The results of STEP1 are expected in the Fall of 2005, those of STEP2, in the Summer of 2006, while the final cables should be delivered in December 2006.

3.2 Conductor characterization

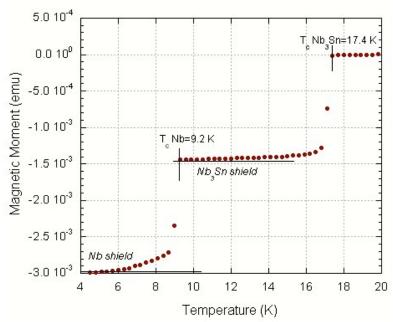
3.2.1 Working Group on Conductor Characterization (WGCC)

NED conductors will be characterized by performing detailed RRR, critical current and magnetization measurements. The critical current measurements are particularly challenging given the unprecedented performances that are expected, *e.g.*: ~1600 A at 4.2 K and 12 T on a 1.25-mm-diameter wire, to be compared to the ~200 A presently achieved on 0.81-mm-diameter ITER wires. A Working Group on Conductor Characterization (WGCC), made up of representatives from CEA, CERN, INFN-Genova and INFN-Milan and chaired by Twente University, has been set up in the spring of 2004 to oversee these measurements. The Working Group is charged with the definition and development of standardized procedures to measure the properties of virgin, deformed and extracted strands and has the responsibility for certification of the measured data

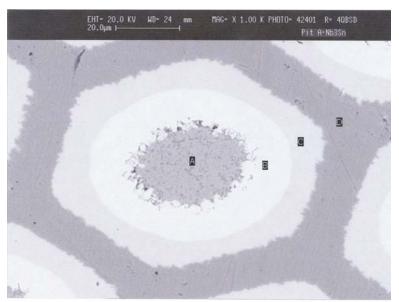
3.2.2 Critical current measurements

Inspired by the VAMAS and ITER/EDA programs, [24], [25], the Working Group has initiated a cross-calibration of the critical-current measurement facilities at CEA, INFN-Milan and Twente University. The cross-calibration program has proven to be more difficult than anticipated. Three rounds of *virgin* test wires have been circulated among the collaborators, including a reference, LHC-type, NbTi wire provided by CERN and two Nb₃Sn wires provided by Twente University: an old PIT wire of large diameter (1.26 mm) produced by the Energy research Center of the Netherlands (ECN), but whose critical current turned out to be somewhat heterogeneous along its length, and a more recent SMI PIT wire, of smaller diameter (1 mm), but of large and homogenous critical current (in excess of 1000 A at 4.2 K and 12 T). The tests on virgin wires were complemented by tests on samples of an old, 0.83-mm-diameter, internal-tin Europa Metalli wire, extracted by INFN-Milan from a Rutherford-type cable, and by tests on samples of the ECN PIT wire rolled down by CERN so as to flatten with a diameter reduction of 0.35 mm along the flattening direction. The tests on *extracted* and *deformed* wires were intended as preparatory investigations of cabling degradation.

The cross-calibration measurements have pointed out a number of problems and discrepancies in sample preparation and instrumentation as well as in measurement procedures, which have been identified, assessed and have been or are being corrected. Two out of the three laboratories involved have now achieved a good convergence on virgin wires (their results for the SMI PIT wire agree within 2%); the dispersion is somewhat larger for the deformed wires (5 to 7% on the rolled ECN PIT wire), but, as already mentioned, this may be due to heterogeneities in the wire itself. The third laboratory is still in the process of upgrading its equipment, but should be ready on time when the first STEP1 wires will become available from the manufacturers. Comprehensive descriptions of the NED cross-calibration program and of the sample mounting and measurement procedures that have been agreed upon are given in Ref. [26].


3.2.3 Magnetization measurements

In parallel to the efforts on critical current measurement, INFN-Genova has carried out a series of magnetization measurements with different types of apparatus to evaluate their respective pertinence:


- a SQUID magnetometer at INFM/Genova (courtesy of C. Ferdeghini),
- a Vibrating Sample Magnetometer (VSM) at INFN-Frascati (courtesy of U. Gambardella),
- an AC-susceptibility magnetometer available in house.

These measurements were carried out either as a function of field, in view of assessing effective filament diameter and the amplitude of flux jumps, or as a function of temperature, to study the nature and size of the various superconducting phases present in the wire.

As an illustration, Figure 5 presents magnetization measurements performed as a function of temperature (in a 10-mT parallel field) with a SQUID magnetometer on a sample of the 1.26-mmdiameter ECN PIT wire mentioned above. The plot clearly shows two transitions: one for a temperature of ~17.4 K, corresponding to Nb₃Sn, and one around 9.2 K, corresponding to pure Nb. The origin of these two transitions can be readily understood when considering the wire structure: it is drawn down from a billet made up from thick-walled niobium tubes, arranged in a pure copper matrix and stuffed with a mixture of NbSn₂, Cu and Sn powders. During heat treatment, the powder mixture reacts with the Nb tubes and precipitate Nb₃Sn layers, which grow from the inner to the outer radii of the tubes. The heat treatment is usually optimized so as to react about $2/3^{rd}$ of the tube walls, thereby leaving a sheath of un-reacted niobium at the tube periphery, as illustrated on the backscatter electron micrograph of a reacted tube displayed in Figure 6. As a result, when cooling down the ECN PIT wire to cryogenic temperatures in a small background magnetic field, a first transition occurs when the Nb₃Sn layers on the inner part of the tubes become superconducting, and a second transition follows when the un-reacted Nb sheaths on the outer part of the tubes, in turn, become superconducting. Furthermore, the amplitudes of the magnetizations measured in these two stages enable one to determine the magnetically-shielded volumes which are associated and, thereby, the outer diameters of the reacted Nb₃Sn layers and of the un-reacted Nb tubes. In our example, we get: 44 µm for the Nb₃Sn layers and 65 µm for the Nb tubes. These values are in good agreement with the physical values that can be estimated from the SEM image of Figure 6.

Figure 5. Magnetization measurements as a function of temperature in a 10-mT parallel field performed on a reacted ECN PIT wire sample with a SQUID magnetometer (courtesy of C. Ferdeghini, INFM-Genova).

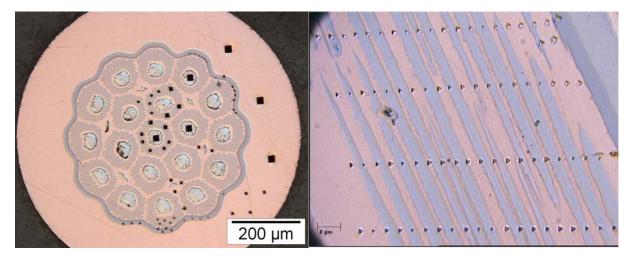


Figure 6. Backscatter electron micrograph of a reacted tube in a ECN PIT wire (courtesy of C. Ferdeghini, INFM-Genova). From the inner to the outer: (A) powder residue (dark grey), (B) layer of reacted Nb₃Sn (white), (C) sheath of un-reacted Nb (light grey) and (D) pure copper matrix (dark grey).

A detailed summary of the preliminary investigations carried out by INFN-Genova can be found in Ref. [27]; Ref. [27] exhibits also experimental evidences that part of the large flux jumps observed on this wire may originate in the un-reacted Nb phase.

3.3 FE wire model

The NED wires will undergo cabling operations to form Rutherford-type cables. During such operation, the wires are inelastically and permanently deformed, which can cause buckling and/or breakage of filaments and/or internal barriers and lead to irreversible degradations of wire properties. Hence, it is crucial when developing new wires to assess their sensitivity to cabling and to optimize their design to limit the risks of cabling degradation.

Figure 7. Examples of matrices of imprints left by hardness measurements on cuts of an old, un-annealed and un-reacted, 19-sub-element, internal-tin wire produced by Alsom/MSA for CEA: (a) micro-hardness measurements performed at CERN on a cross cut (left) and (b) nano-hardness measurement performed at EIAJ on a longitudinal cut (right).

In addition to direct tests on deformed wires, as presently evaluated by the Working Group on Conductor Characterization (see Section 3.2), an effort has been launched by INFN-Genova to build a Finite Element (FE) mechanical model of un-reacted wires aimed at simulating cabling deformations. The model, developed in ANSYS[®] [28], was first applied to an old, 19 sub-element, internal tin wire manufactured by Alstom/MSA for CEA/Saclay [29]. However, it quickly appeared that, to be accurate, one needed a detailed knowledge of the stress-strain curves of the materials making up the wire in the cold work state where they are at the time of cabling. For the FE computations, it was assumed that the stress-strain curves can be described by bilinear functions, which reduced the number of parameters to be determined for each material to only four: Young's modulus, yield strength, ultimate tensile strength and elongation at breakdown.

Determining suitable values of material properties was somewhat arduous. At first, CERN carried out a literature survey but found some inconsistencies and decided to launch several types of measurements on un-annealed and un-reacted samples of the 19-sub-element Alstom/MSA wire. These measurements included: micro-hardness measurements performed at CERN, nano-hardness measurements sub-contracted to Ecole d'Ingénieurs de l'Arc Jurassien (EIAJ, located in Le Locle, Switzerland), tensile tests on wires performed at CERN, tensile tests on wires and single Nb-Ta filaments extracted from the wires sub-contracted to BundesAnstalt für Materialforschung (BAM, located in Berlin, Germany), and RRR measurements performed at CERN (to cross-check the rate of cold work of the high purity copper in the wire). As an illustration, **Figure 7**(a) shows an example of a matrix of imprints left by micro-hardness measurements performed at CERN on a wire cross-cut while **Figure 7**(b) shows an example of a matrix of imprints left by nano-hardness measurements performed at EIAJ on a longitudinal cut of the same wire. The data from the various tests have now been analyzed, cross-checked and compared with available literature data and are summarized in **Table 5**, which presents a best guess on the material properties of the un-annealed and un-reacted,19-subelement, Alstom/MSA wire. These values are ready for implementation in the FE model.

The present plan calls for INFN-Genova to study the behavior of two types of internal tin wires developed by Alstom/MSA: the old, 19-subelement design and the new NED designs. In parallel, CERN will launch a new effort to assess the mechanical properties of un-reacted PIT wires.

Material	Young's Modulus (GPa)	Yield Strength @0.2% (MPa)	Ultimate Tensile Strength (MPa)	Elongation at breakdown (%)
Cu	112	350	385	1.5
Sn	44.3	14.5	14.5	65
Nb (barrier)	103	880	915	3
NbTa (filament)	117	915	980	3
Ta (barrier)	186	1110	1165	3

Table 5. Best guess on material properties of un-annealed and un-reacted,19-sub-element, internal tin wire developed by Alstom/MSA for CEA.

4 Insulation Development and Implementation (IDI) work package

4.1 Aim of the study

At present, most accelerator magnet coil designs call for small bending radii in the coil heads, which cannot be forced upon a reacted Nb₃Sn cable without deleterious degradations. As a result, Nb₃Sn accelerator magnet coils are produced by the so-called "wind & react" process, where coil winding is performed with un-reacted conductors and a heat treatment is applied to the whole coil upon winding completion to precipitate Nb₃Sn [30]. This heat treatment is carried out in a vacuum or in a flow of inert gas such as Argon to prevent oxidation of the OFHC copper stabilizing the conductors. The heat treatment parameters depend on wire design (*e.g.*, internal tin or powder in tube), but the cycle always includes a high-temperature plateau between 650 and 700 °C for a few tens to a few hundreds of hours.

A direct consequence of the application of a heat treatment on the whole coil is that the conductor insulation must be able to sustain the high-temperature plateau. This precludes the polyimide tapes commonly used in NbTi accelerator magnets. The most conventional insulation system for "wind & react" Nb₃Sn coils is to rely on glass or ceramic fiber tapes or braids, which are wrapped or sleeved or woven around the un-reacted conductors prior to winding, and, subsequently, upon heat treatment completion, to transfer the reacted coil from its heat treatment retort to a vacuum-impregnate it with epoxy resin [30].

The reliance on thin fiber tapes, which, as explained in Section 4.3, must be de-sized from all organic components to prevent the formation of carbon residues during the high-temperature cycle, and the inherent difficulties of performing a vacuum impregnation on fragile coils complicate notably the manufacturing process, raise costs and failure risks and limit its potential for industrial applications. As an alternative, CEA/Saclay has been working on an innovative insulation scheme, which relies on a glass fiber tape, pre-impregnated with an inorganic solution of precursors. The pre-impregnation restores the tape mechanical strength while maintaining a suitable flexibility, which enables cable wrapping and conductor winding with little degradation. Furthermore, during heat treatment, the precursors of the pre-impregnation undergo a ceramic-like phase transition, which bonds the turns together and confers a rigid shape to the coil, thereby eliminating the need for a subsequent vacuum-impregnation. If successful, the innovative insulation system would provide an elegant solution to the insulation problem of "wind & react" coils, that both simplifies the manufacturing process and reduces the risks associated with the handling of reacted Nb₃Sn cables.

The aim of Work Package 4 is to pursue the parallel development of the two types of insulation. Consequently, it is articulated around two main Tasks:

- conventional insulation (carried out by CCLRC/RAL),
- innovative insulation (carried out by CEA).

General	Design
Insulation thickness per cable	0.4 mm
Winding compatibility: Capable of being applied to the cable and formed into a dipole winding by a semi- automatic winding system	Minimal fraying or abrasion during winding
Conductor bend radius minimum	20 mm
Compatible with Nb ₃ Sn heat treatment cycle	Minimal degradation of basic components
Thermal cycles to low temperature: 300 K- 4.2 K	10
Running cycles: ramp to maximum compressive stress	100
For conventional organic insulation scheme and innovative scheme if applicable: ability to be impregnated with a liquid of viscosity 200 mPa.s	200 mPa.s

 Table 6.
 NED conductor insulation specifications [3].

Mechanical ¹⁾	Design		
Applied conductor winding load	500 N		
Compression during heat treatment	20 MPa		
Coil re-shaping after heat treatment and before impregnation	20 MPa		
Compressive stress after completion of coil fabrication – at 300 K and 4 K.	200 MPa		
Shear: Short-beam shear strength at 4 K	50 MPa		
Tension: Transverse tensile strength of insulation laminate at 4 K	25 MPa		
Fracture, need to know properties at 300 K and 4 K, specification to be determined	TBD		
Design stresses are before irradiation.			
Thermal	Design		
Transverse thermal contraction (integrated between 300 K and 4 K)	0.003 to 0.004	4	
Thermal conductivity at 4.2 K	50mW/m/K		
Electrical	Design	Failure	
Breakdown voltage inter-turn tested in helium at 300 K	1000V 2500V/mm	2000V 5000V/mm	
Radiation			
The failure properties above must be achieved fo 10 years' running.	llowing doses ex	xpected during	
Dose	50 to 600 MGy		
Fluence > 0.1 MeV	2.5 to 30×10^{10}	⁶ cm ⁻²	

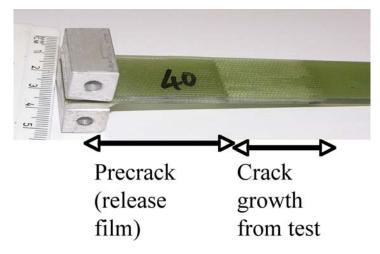


Figure 8 Example of Double Cantilever Beam (DCB) fracture test carried out at CCLRC/RAL.

4.2 Engineering specification

Before launching their efforts, CCLRC/RAL and CEA have written an engineering specification for the conductor insulation of NED-like, "wind & react," Nb₃Sn magnets (issued in July 2004) and have agreed on a coordinated Test Program for both conventional and innovative insulations (issued in October 2004). **Table 6** summarizes the most salient mechanical, thermal, and electrical requirements that make up the specification as well as a first guess on the radiation doses that should be sustained.

4.3 Conventional insulation

CCLRC/RAL has developed a standardized laminate production system and relies on three tests to screen candidate materials for conventional insulation

- inter-laminar fracture test,
- short-beam shear test,
- electrical breakdown test.

Figure 8 shows an example of a Double Cantilever Beam (DCB) sample used for fracture tests. The standard laminates leave sufficient material for future radiation testing. Details on this ongoing program can be found in Ref. [31] while **Table 7** summarizes the most salient results.

To gain experience and validate the inter-laminar fracture tests, three know systems of epoxy resins have been investigated:

- a brittle system made up of DGEBA resin with an acid anhydride hardener (HY918, Ciba),
- a tough system, made up of DGEBA resin with an aliphatic amine hardener (Jeffamine D-400),
- an intermediary system, made up of DGEBF resin, a PPGDGE flexibiliser and an aromatic amine hardener (HY5200, Ciba).

All samples were prepared using as received E-glass tapes with commercial sizing, and the tests were performed at room temperature and at 77 K. As expected, the brittle system yields the lowest work of fracture (~0.45 kJ/m² at room temperature), the toughest system yields the highest one (~1 kJ/m² at room temperature), while the intermediary system is in between (~0.8 kJ/m² at room temperature). The results are in the same order, but 20 to 40% higher at 77 K.

CCLRC/RAL has also started to investigate the issue of sizing. As already mentioned, the filaments of commercially available glass fiber tapes are usually coated with a mixture of organic materials, referred to as *sizing*. There are all kinds of sizings, with different functions (such as lubrication during high speed weaving or enhancement of wetting and chemical-coupling between fiber and matrix during resin impregnation). However, most sizings are not intended for high temperature use, and, if left in place during the Nb₃Sn reaction cycle, are likely to result in undesirable carbon residues [30]. In practice, the sizing is removed from the tapes by carbonization in air at temperatures in the 350-450 °C range prior to conductor wrapping and winding. The problem is that removing the sizing renders the tape fragile and easy to tear off by friction, which further complicates the already challenging "wind & react" coil manufacturing process.

Fabric	Sizing	Treatment	Resin/ Hardener	Work of fracture at 300 K (kJ/m ²)	Short beam shear strength at 77 K (MPa)	Breakdown voltage (kV/mm)
E glass	regular	as received	DGEBA/ anhydride acid	0.45		
		as received	DGEBF/ aromatic amine	0.8		
		as received	DGEBA/ aliphatic amine	1		
S glass	regular	as received	DGEBF/ DETDA	0.49	94	> 30
		heat treated ^{a)} (w/o de-sizing)	DGEBF/ DETDA			2.5
		de-sized and heat treated ^{a)}	DGEBF/ DETDA	Not meaningful ^{b)}	69	
S glass	polyimide	as received	DGEBF/ DETDA	0.7	89	
		heat treated ^{a)} (w/o de-sizing)	DGEBF/ DETDA	0.67	98	> 30

Table 7.	Salient results from	conventional insulation	screening tests a	at CCLRC/RAL	[31]	
	Surrent results in oni	e en		w conto/rain		

^{a)} At 660 °C for 60 hours in a vacuum.

^{b)} Sample failed through the glass layer and not in an inter-laminar fashion.

To solve this problem, CCLRC/RAL has identified an improved, polyimide, sizing material, produced by Hydrosize, NC, USA [32], which may be able to sustain the Nb₃Sn reaction cycle without serious degradation. The sizing is currently applied to various types of glass and quartz fiber fabrics commercialized by JPS Glass, SC, USA [33]. To assess its suitability to NED-like applications, CCLRC/RAL has undertaken a comparative test on standard laminates made up of conventional Sglass tapes (as received, de-sized and heat treated for 60 hours at 660 °C in a vacuum after de-sizing) and of polyimide-sized, S-glass and quartz fabrics provided by JPS (as received and heat-treated for 60 hours at 660 °C in a vacuum without de-sizing). The laminates were vacuum-impregnated with a system made up of DGBEF resin (DER354P, Dow) and a DETDA hardener (HY5200, Vantico). (This system was chosen because it is both relatively radiation stable and has a low viscosity, and, thereby, seems the best suited to NED application). The work of fracture measured on the conventional, as-received, S-glass sample is 0.49 kJ/m² at room temperature, which puts the resin system into the brittle category (not unexpected given the nature of the hardener that was chosen). No meaningful work of fracture could be measured on the conventional, de-sized, heat-treated, S-glass sample. Indeed, the sample failed through the glass layer and not in an inter-laminar fashion, thereby indicating that the glass was adversely affected by heat treatment. The results on the polyimide-sized, S-glass samples are very promising: the work of fracture on the sample made up of as-received fabric is 0.7 kJ/m^2 at room temperature and stays at 0.67 kJ/m^2 on the sample made up of heat-treated fabric. The short-beam shear strengths measured at 77 K are above ~90 MPa for all samples, save for the conventional, de-sized, heat-treated, S-glass sample where it falls to 69 MPa. Finally, electrical breakdown tests were carried out on conventional, heat-treated, de-sized and not de-sized S-glass samples and on heat-treated, polyimide-sized S-glass samples. The voltage measured on the conventional, de-sized sample and on the polyimide-sized sample are both in excess of 30 kV/mm, while the one measured on the sample made up of conventional S glass, heat-treated without de-sizing, is degraded to 2.5 kV/mm. At the light of these first results, the S-glass, polyimide-sized fabric provided by JPS appears to satisfied most NED mechanical and electrical specifications. The next question that CCLRC/RAL is trying to answer is whether or not the polyimide sizing can be applied to S-glass tapes of the desired thickness (typically: ~0.1 mm).

Magnet	Technology	Aperture (mm)	Maximum central field (T)	Stored energy (kJ/m)	$\frac{\Sigma F_x^{c)}}{(MN/m)}$	$\frac{\Sigma F_{\rm y}^{\rm c)}}{({\rm MN/m})}$
Tevatron	NbTi	76.2	4.4	64	0.5	0.3
HERA	NbTi	75	4.7	83	0.6	0.3
SSC	NbTi	50	6.7	110	0.9	0.4
LHC ^{a)}	NbTi	56	8.3	253 ^{b)}	1.6	0.8
MFISC ^{a)} [36]	NbTi	56	10	380 ^{b)}	2.1	1.0
MFRESCA[37]	NbTi	87.8	10.15	694	3.4	2.5
MSUT [38]	Nb ₃ Sn	50	11.5	391	3.25	1.6
D20 [39]	Nb ₃ Sn	50	13	802	5.6	2.0
NED	Nb ₃ Sn	88	14.4	1804	7.9	3.9

Table 8. Comparison of various $\cos \theta$, layer dipole magnet designs with respect to horizontal and vertical Lorentz force resultants computed over a coil quadrant.

^{a)} Twin-aperture design.

^{b)} Per aperture.

^{c)} Resultant over a coil quadrant.

4.4 Innovative insulation

The feasibility of the innovative insulation scheme has been demonstrated within the framework of an internally-funded Nb₃Sn R&D program at CEA/Saclay. The solution of precursors and its application to the fiber glass tape have been optimized to enable proper pre-impregnation and conductor wrapping [34]. Furthermore, it has been verified that, when subjecting a stack of insulated cables to a temperature cycle representative of the Nb₃Sn heat treatment, the cables bonded together and that the chemical reaction that takes place does not degrade the transport-current properties of Nb₃Sn wires [35]. The next step of the program is to better characterize and improve the mechanical properties after heat treatment and to reduce the thickness of the pre-impregnated tape. However, the work on innovative insulation has been put on hold at CEA due to a lack of human resources. It is expected to restart in January 2006.

5 Magnet Design and Optimization (MDO) working group

5.1 Working group charges and roadmap

Although the 88-mm-aperture, 15-T (conductor peak field) dipole magnet model, which was included in the initial NED proposal, has been dropped from the final CARE contract, CCLRC/RAL, CEA and CERN have decided to join forces to create an informal Working Group on Magnet Design and Optimization (WGMDO), coordinated by CIEMAT. This Working Group is an extension of scope with respect to the CARE contract and is mainly supported by additional resources.

Up to now, all superconducting accelerator magnets implemented in operating machines rely on conventional $\cos\theta$ or $\cos2\theta$, layer designs. The $\cos\theta$, layer design is very effective in terms of field quality (and field quality tuning), peak-to-central field ratio, and superconductor volume. However, and as illustrated in Figure 4(a), it presents one potential disadvantage: the Lorentz forces tend accumulate in the azinuthal direction and can result in high transverse pressures over the midplane conductors. This transverse pressure must be limited to a reasonable value to prevent critical current degradation. Of course, the larger the magnet aperture and the central field, the larger the Lorentz forces. Table 8 summarizes values of horizontal and vertical Lorentz force resultants (computed over a coil quadrant) for a series of $\cos\theta$, layer dipole magnet designs developed over the years. It appears that the Lorentz forces expected in NED Reference Design V1 are about five times higher than in LHC arc dipole magnets, thereby requiring careful stress management.

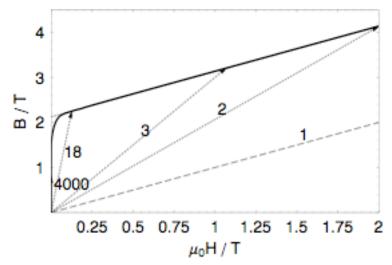


Figure 9 Iron yoke *B-H* curve used by NED/WGMDO partners for electromagnetic computations.

Consequently, the Working Group has been charged with addressing the following questions:

- How far can we push the conventional, $\cos\theta$, layer design in the aperture vs. central field parameter space (especially, when relying on strain-sensitive conductors)?
- What are the most efficient alternatives in terms of performances, manufacturability and costs?

At first, the Working Group has agreed on a common set of high-field-dipole-magnet design parameters (see **Table 9**) and on a common set of material properties, such as iron yoke *B*-*H* curve (see **Figure 9**) and Young's modulii and integrated thermal expansion coefficients (see **Table 10**). Then, it has selected a number of magnetic configurations to be studied and compared, which include:

- the conventional, $\cos\theta$, layer design,
- Pérot's $\cos\theta$, slot design [21],
- a so-called *ellipse-type* design proposed by CEA,
- a so called *motor-type* design proposed by CIEMAT [3],
- the twin-aperture, common-coil design, first proposed by G. Danby at Brookhaven National Laboratory (BNL) in 1983 [40] and subsequently resuscitated by R. Gupta in 1996 [41],
- the tilted-solenoid or double-helix design first proposed by D.I. Meyer in 1970 [42].

The comparison will be carried out in three steps: (1) comparison of 2-D electromagnetic designs, (2) comparison of 2-D mechanical designs and (3) comparison of 3-D designs. Each partner has chosen one or two configurations and has started to work on 2-D electromagnetic and mechanical designs, but the analyses have not yet achieved a sufficient level of maturity to enable a full blown comparison.

Before describing the ongoing work, let us introduce customary notations. Let (O, x, y, z) designate a rectangular coordinate system. For the 2D electromagnetic optimizations, the current distributions are assumed to be uniform in z and the magnetic flux density has only two components, B_x and B_y , which are also uniform in z. Then, in the magnet aperture, the magnetic flux density can be expanded into a power series of the form

$$B_{\rm y} + i B_{\rm x} = B_{\rm ref} \ 10^{-4} \sum_{n=1}^{+\infty} \left(b_{\rm n} + i a_{\rm n} \right) \left(\frac{x + i y}{R_{\rm ref}} \right)^{n-1} \tag{1}$$

where B_{ref} is the main dipole field, R_{ref} is the reference radius, and b_n and a_n are the normal and skew 2*n*-pole coefficients expressed in so-called *units*.

Parameter	Value	Units
Peak field on conductor	15	Т
Aperture	88-130-160	Mm
Reference radius	29-43-53	Mm
Superconductor $J_{\rm C}$	3000	A/mm ² @ 4.2K and 12 T
	1500	A/mm ² @ 4.2K and 15 T
Cu-to-non-Cu ratio	1.25	
Operating margin	10	%
Filling factor of cable	87	%
Insulation thickness	0.2	mm per conductor face
Cabling degradation	10	%
X-section multipoles	A few10 ⁻⁴	@ reference radius
Overall coil length	1.3	М
Peak stress	150	MPa
Max. coil deformation	< 0.05	mm (due to Lorentz forces)
Peak temperature	300	K (quench)
Peak voltage to ground	1000	V (quench)
Peak inter-turn voltage	100	V (quench)

 Table 9. Salient high-field dipole magnet design parameters selected by NED/WGMDO.

 Table 10. Salient material properties used by NED/WGMDO partners for mechanical computations.

Material	Used on		Elastic Modulus (GPa)		Integrated thermal expansion	
		4.2K 293K		– ratio	(293–4.2 K)	
Insulated and impregnated Nb ₃ Sn conductor stack	Coil	42	30	0.3	-3.9 x 10 ⁻³	
Cu-Al alloy	Wedges/Spacers		110	0.3	-3.6 x 10 ⁻³	
G10 Fibre direction Through thickness	Spacer		28 6.4	0.3	-2.6 x 10 ⁻³ -8.0 x 10 ⁻³	
Polyimide	Ground plane insulation		2.5	0.34	-6.0 x 10 ⁻³	
Austenitic stainless steel	Collar/ Outer shell		194	0.3	-2.6 x 10 ⁻³	
Magnetic steel	Yoke		205	0.3	-2.1 x 10 ⁻³	

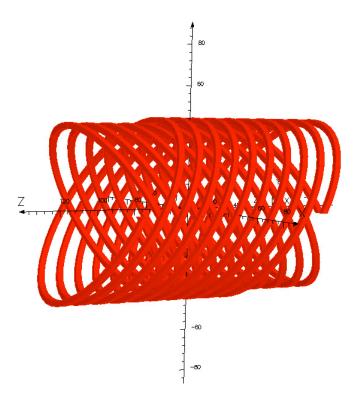
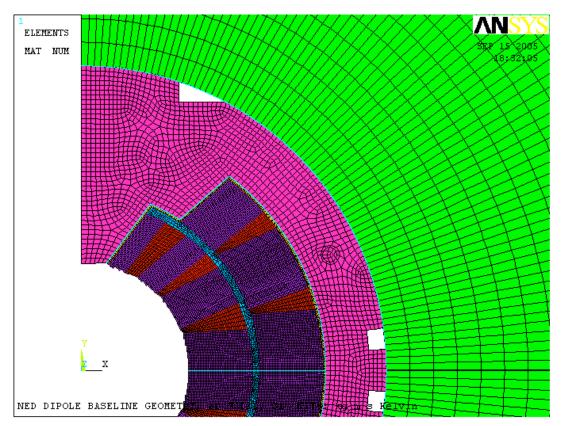


Figure 10 Tilted-solenoid or double-helix configuration under investigation by CCLRC/RAL.


5.2 CCLRC/RAL Contribution

CCLRC/RAL has chosen to investigate the Reference Design V1, $\cos\theta$, layer design and to assess the feasibility of a double-helix magnetic configuration.

The $\cos\theta$ optimization was carried out using software supplied by Vector Fields (VF) [43], which has close links with the RAL magnet group. At first, the software was used to construct a 2D parameterized FE model, which includes the option of modeling the nonlinear effects of iron and a non-uniform current density in the conductor winding (as generated by the slightly-keystoned, NED Rutherford-type cable). A number of test cases were run to check the optimizer provided by Vector Fields and to look at the effects of changing the objective functions. The output from the full model has been compared with ROXIE (see Section 5.4) and it gives the same results for the same geometry and field. Investigations are being carried out to determine whether the optimizer routines from both packages yield the same solutions, given the same starting point.

The work on the double helix configuration has just begun. As illustrated in Figure 10, a basic model capable of being used with the VF optimizer has been built and is ready to run.

In parallel, CCLRC/RAL has started the development of a 2D mechanical model of NED Reference Design V1 based on ANSYS[®]. The model is in two steps. The first step includes the coil assembly, the ground plane insulation, pairs of austenitic steel collars and keys. It is used to simulate the collaring process during which the collars are implemented around the insulated coil assembly and are clamped by means of the keys to pre-compress the coil azimuthally. The second step includes the aforementioned collared-coil assembly completed by a two-piece, horizontally-split, iron yoke and a welded outer shell that holds the coldmass together. The two yoke halves are assembled around the collared-coil assembly in such way that there remains a gap at their midplane. The room-temperature coil pre-compression after collaring and the yoke midplane gap after shell welding must be optimized to ensure that, when the magnet is cold and energized, the coil remains under compression and the yoke midplane gap is closed, thereby providing a very stiff support against the Lorentz force. The first step of the model is now fully operational, while the details of the second step are being worked out. **Figure 11** presents an overview of the coldmass mesh.

Figure 11 2-D mesh of NED Reference Design V1 generated by CCLRC/RAL for mechanical computations (purple: conductor stack, red: Cu-Al alloy wedges, blue: G10 interlayer spacer, pink: stainless steel collars, green: iron yoke, yellow: polyimide ground plane insulation; not visible here is the stainless steel outer shell surrounding the iron yoke).

5.3 CEA Contribution

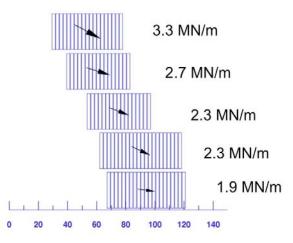
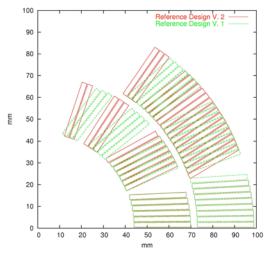
CEA has been working on an original design referred to as *ellipse-type*, and has carried out 2D electromagnetic analyses of 88-mm-, 130-mm- and 160-mm-aperture models using ROXIE. It has been shown that, in each case, accelerator-field quality can be reached by optimizing the conductor distribution and that the peak-to-central-field ratio is very advantageous. Nevertheless, the Lorentz forces involved are huge a lot of attention has to be paid to the mechanical design. CEA is presently developing a mechanical model of the 130-mm-aperture design based on CASTEM [44]. As an illustration, **Figure 12** presents the conductor and Lorentz force distributions for the 130-mm-aperture design.

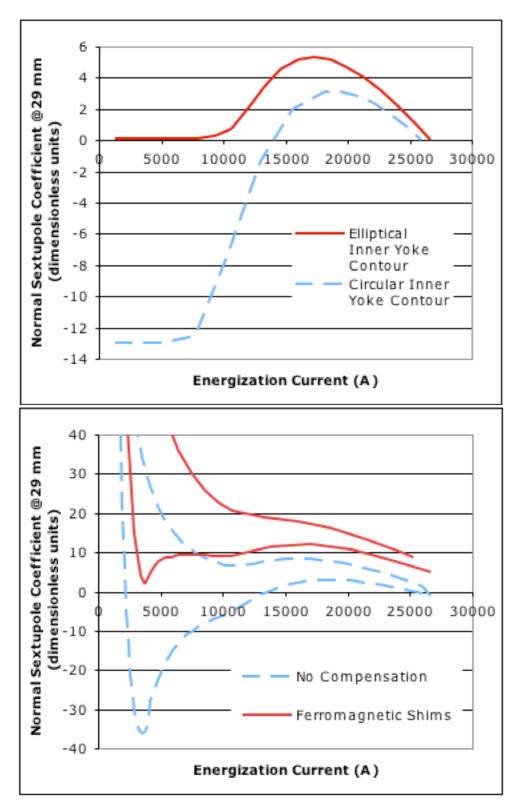
In parallel, and at the margin of the WGMDO efforts, CEA has been subcontracted by EFDA to study a 130-mm-aperture, 12.5-central-field, dipole magnet relying on a conventional $\cos\theta$, layer design. The preliminary mechanical analysis carried out as part of this study concludes that the Lorentz stresses originating in the coils are excessive and that there is no easy way to control and limit them [45]. This may indicate that such a field level in such an aperture is out of reach for the conventional $\cos\theta$, layer design and that one needs to rely on a different magnetic configuration.

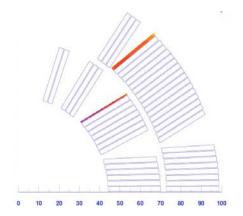
5.4 CERN Contribution

CERN has pursued the 2D electromagnetic optimization of Reference Design V1 with ROXIE. The optimization was carried out with respect to

- conductor geometry (to minimize all multipole coefficients and improve radial positioning of conductor blocks in 2D cross-section),
- shape of iron yoke inner boundary (to minimize saturation effects),
- size and implementation of ferromagnetic shims (to compensate superconductor magnetization effects).


Figure 12 Conductor and Lorentz force distributions in the top right quadrant of 130-mm-aperture, ellipse-type design developed by CEA.


Figure 13 Comparison of conductor distributions for NED Reference Designs V1 (green dashed lines) and V2 (red continuous lines) after re-optimization at CERN.

The re-optimization is now completed and has led to the definition of a new reference design, referred to as Reference Design V2, with a good field quality (all multipole coefficients are below 1 unit at a reference radius of 29 mm, save for the normal 18-pole, b_9 , which is equal to 1.7 unit and the normal 22-pole, b_{11} , which is equal to 2.7 unit), efficient peak-to-central field ratio (~1.03 to 1), 15.0 T conductor peak field for a quench current of 29.4 kA and a more radial conductor distribution. Figure 13 presents a comparison of the two reference designs.

Regarding iron saturation, Figure 14(a) presents a comparison of the distortions of the normal sextupole coefficient, b_3 , computed for the conductor distribution of Reference Design V2 and two different yoke configurations: one with a circular inner boundary (with an inner radius of 125.4 mm) and one with an optimized, elliptical inner boundary (with a vertical, half major axis of 136.6 mm and an horizontal, half minor axis of 125.4 mm). Relying on an elliptical inner boundary enables one to reduce the b_3 peak-to-peak variations by a factor ~3. Let us recall that the effects of iron saturation on the field quality of $\cos\theta$ magnets have been identified for more than 30 years [46] and that the idea of shaping the iron yoke to compensate them has been around for almost as long [47]. To the authors' knowledge, the first systematic study on a yoke with an elliptical inner boundary was carried out within the framework of the Relativistic Heavy Ion Collider (RHIC) project at BNL in the mid 1980's [48].

Figure 14 Results of feasibility studies carried out at CERN to reduce the distortions of normal sextupole coefficient, b_3 : (a) comparison of saturation effects produced by an iron yoke with a circular inner boundary (dashed line) and with an optimized elliptical inner boundary (continuous line; top) and (b) comparison of hystereses produced by superconductor magnetization (extrapolated to a conductor with a non-Cu J_C of 3000 A/mm² and an effective outer filament diameter of 50 µm) without corrective shims (dashed line) and with two optimized ferromagnetic shims astutely implemented in the coil cross-section (continuous line; bottom).

Figure 15 Implementation of corrective ferromagnetic shims to compensate the effects of persistent magnetization currents in NED Reference Design V2 optimized by CERN.

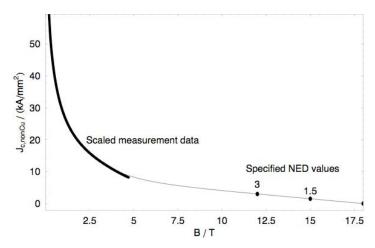
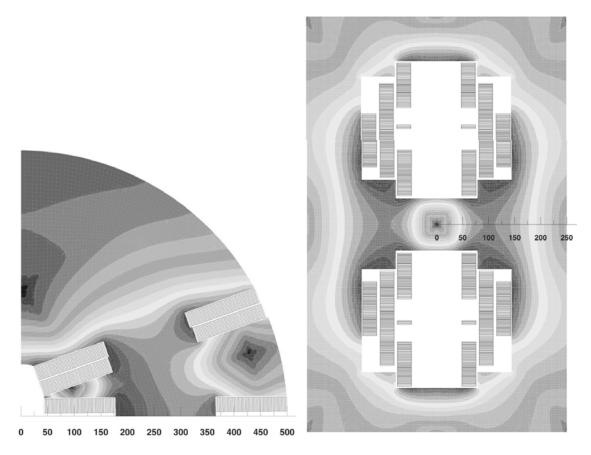



Figure 16 Extrapolated, non-copper critical current density, J_c , vs. magnetic flux density, B, curve used by CERN to compute persistent magnetization current effects in NED.

Regarding superconductor magnetization, Figure 14(b) presents a comparison of the induced b_3 hystereses computed when taking into account the full effect (no corrective shims) and when introducing two ferromagnetic shims at suitable locations inside the coils: one 1.5-mm-thick shim attached right below the upper wedge of the outer layer and one 0.7-mm-thick shim attached right below the middle wedge of the inner layer, as shown in Figure 15. The effects of persistent magnetization currents were estimated using a ROXIE feature which combines a vector hysteresis model for hard superconductors with the BEM-FEM method and which relies on a given $J_{\rm C}(B)$ fit function for the superconducting filaments [49]. The $J_{\rm C}(B)$ function used in the simulation is shown in Figure 16. It was extracted from magnetization measurements performed by Twente University on an existing 0.9-mm-diameter, 504-filament PIT wire produced by SMI in 2000 [50], appropriately rescaled to NED specifications (in particular, with respect to the non-copper critical current density of 3000 A/mm^2 at 4.2 K and 12 T and to the effective filament outer diameter of 50 μ m). The introduction of the two ferromagnetic shims enables one to reduce the b_3 variations during the up-ramp (lower part of the hysteresis curves) by a factor in excess of 3. As for iron saturation, the effects of superconductor magnetization have been known for more than 30 years [51]. The idea of compensating them by ferromagnetic shims was first proposed at the time of Superconducting Super Collider (SSC) project [52] and was revived in the late 1990's when it became clear that the effective filament diameters of Nb₃Sn wires would remain significantly higher than those achieved in Nb-Ti wires. At the time, LBNL suggested a thin, continuous, iron coating on the magnet bore tube [53] while FNAL investigated segmented ferromagnetic strips distributed around the magnet bore tube and a ferromagnetic cable core [54]. The idea of using simple but very effective shims attached to the coil wedges was first discussed in Refs. [55] and [56].

Figure 17 Examples of 2D, 88-mm-aperture, electromagnetic designs investigated by CIEMAT: (a) motor type (top) and (b) common-coil (bottom).

The encouraging results of Figure 14(a) and Figure 14(b) show that the selected correction schemes can be quite effective (at least on the normal sextupole coefficient, b_3), and that we do have some means of compensating the effects of both iron saturation and superconductor magnetization.

5.5 CIEMAT Contribution

CIEMAT has worked on the 2D electromagnetic analysis of the 88-mm- and 130-mm-aperture motortype design and of the 88-mm-aperture common-coil design using ROXIE. Starting from the set of design parameters agreed upon by the Working Group, the field quality has been optimized in the cross-section while keeping an eye on the feasibility of the mechanical design and on the Lorentz forces to be handled. For both configurations, the number of design variables is enough to get an optimum field quality, as well as a good peak-to-central field ratio. However, the motor-type design appears to yield a high fringe field while calling for a large superconductor volume. As an illustration, **Figure 17**(a) and **Figure 17**(b) show examples of the 88-mm-aperture motor-type and common coil designs investigated by CIEMAT.

6 Conclusion

Save for the innovative insulation, all the Tasks of the NED Activity have been launched and are well under way. The cryostat for heat transfer measurements is completed and has been delivered to CEA/Saclay on 20 September 2005, where it is being readied for commissioning. The next few months will be critical for the Conductor Development Task, with the results of STEP1 wires. Polyimide-sized glass fiber tapes seem a promising alternative to conventional insulation systems. The NED collaborators remains of course eager to achieve their initial goals and are still actively seeking additional funding to complete the detailed design, manufacture and test of the model magnet left out from the CARE contract.

Acknowledgements

The authors wish to thank Roy Aleksan and Lucio Rossi for their continuous and active support.

References

- [1] Napoly O, Aleksan R, et al. 2005 The CARE accelerator R&D programme in Europe *presented at the* 2005 Particle Accelerator Conference, Knoxville, TN, May 16-20
- [2] Devred A, Baynham D E, *et al.* 2004 High field accelerator magnet R&D in Europe *IEEE Trans. Appl. Supercond.* 14(2) 339-344
- [3] Devred A 2005 Status of the Next European Dipole (NED) activity of the Coordinated Accelerator Research in Europe (CARE) project *IEEE Trans. Appl. Supercond.* **15**(2) 1106-1112
- [4] Strait J, Lamm M, *et al.* 2003 Towards a new LHC interaction region design for a luminosity upgrade *Proceedings of 2003 Particle Accelerator Conference* 42-44
- [5] Devred A 2003 High field accelerator magnets beyond LHC *Proceedings of 2003 Particle Accelerator Conference* 146-150
- [6] Devred A, Gourlay S and Yamamoto A 2005 Future accelerator magnet needs *IEEE Trans. Appl.* Supercond. 15(2) 1192-1199
- [7] Gourlay S A, Ambrosio G, et al. 2005 Magnet R&D for the US LHC Accelerator Research Program (LARP) presented at the 19th International Conference on Magnet Technology, Genova, Italy, September 18-23
- [8] Zlobin A V, Ambrosio G, et al. 2005 R&D of Nb₃Sn accelerator magnets at Fermilab IEEE Trans. Appl. Supercond. 15(2) 1113-1118
- [9] Lietzke A F, Bartlett S E, *et al.* 2005 Test results of HD1b, an upgraded 16 tesla Nb₃Sn dipole magnet *IEEE Trans. Appl. Supercond.* **15**(2) 1123-1127
- [10] <u>http://lt.tnw.utwente.nl/project.php?projectid=9</u>
- [11] NEUROSPIN is a full-body, 500 MHz, MRI system under consideration at CEA.
- [12] Burnod L, Leroy D, *et al.* 1994 Thermal modeling of the LHC dipoles functioning in superfluid helium *Proc. of 1994 European Particle Accelerator Conference* 2295-2297
- [13] Meuris C, Baudouy B, et al. 1999 Heat transfer in electrical insulation of LHC cables cooled with superfluid helium Cryogenics **39** 921-931
- [14] Zlobin A V, Ambrosio G, et al. 2003 Conceptual design study of Nb₃Sn low-beta quadrupoles for 2nd generation LHC IRs *IEEE Trans. Appl. Supercond.* 13(2) 1266-1269
- [15] Kriosystem 18 Muchoborska Street 54-424 Wroclaw Poland
- [16] Rossi L and Sorbi M July 2004 QLASA: a computer code for quench simulation in adiabatic multicoil superconducting windings INFN/TC-04/13 <u>http://www.lnf.infn.it/sis/preprint/pdf/INFN-TC-04-13.pdf</u>
- [17] MAST and SABER[®] are commercialized by Synopsis, Inc. 700 East Middlefield Road Mountain View, CA 94043 USA <u>http://www.synopsys.com/products/mixedsignal/saber/saber.html</u>
- [18] Hagedorn D and Rodriguez-Mateos F 1992 Modelling of the quenching process in complex superconducting magnet systems *IEEE Trans. Magn.* **28**(1) 366-369
- [19] Granata V, Sorbi M, *et al.* 2005 Study of the protection of system for cos-theta NED dipole *presented at the 19th International Conference on Magnet Technology, Genova, Italy, September 18-23*
- [20] Russenschuck S 2005 Electromagnetic Design and Mathematical Optimization Methods in Magnet Technology E-book Second Edition ISBN: 92-9083-242-8 http://russ.home.cern.ch/russ
- [21] Patoux A, Pérot J and Rifflet J M 1983 Test of new accelerator superconducting dipoles suitable for high precision Field *IEEE Trans. Nucl. Scien.* NS-30(4), pp. 3681-3683
- [22] Alstom Magnets and Superconductors (MSA) 3 Avenue des trois chênes 90018 Belfort Cedex France
- [23] ShapeMetal Innovation BV Het Lentfert 31 7547 SN Enschede The Netherlands
- [24] Wada H, Walters C R, et al. 1994 VAMAS intercomparison of critical current measurements on Nb₃Sn superconductors: a summary report Cryogenics 34 899-908
- [25] Goodrich L F and Srivastava A N 1994 A simple and repeatable technique for measuring the critical current of Nb₃Sn wires *Proc. of 7th International Workshop on Critical Currents in Superconductors* pp. 609-612
- [26] Den Ouden A, Boutboul T, et al. 2005 Critical current measurements on Nb₃Sn conductors for the NED project presented at the 19th International Conference on Magnet Technology, Genova, Italy, September 18-23
- [27] Greco M, Bernini C, et al. 2005 Magnetization Measurements of Nb₃Sn Wires for the Next European Dipole (NED) presented at the 19th International Conference on Magnet Technology, Genova, Italy, September 18-23

- [28] ANSYS[®] is a registred trademark of ANSYS, Inc. Southpointe 275 Technology Drive Canonsburg, PA 15317 USA <u>http://www.ansys.com/β</u>
- [29] Durante M, Bredy P, *et al.* 2001 Development of a Nb₃Sn multifilamentary wire for accelerator magnet applications *Physica C* **354** 449–453
- [30] Devred A 2002 Insulation systems for Nb₃Sn accelerator magnet coils manufactured by the wind & react technique *IEEE Trans. Appl. Supercond.* **12**(1) 1232-1237
- [31] Canfer S J, Baynham D E, Greenhalgh R J S 2005 Insulation development for the Next European Dipole presented at the 2005 Cryogenic Engineering Conference/International Cryogenic Materials Conference, Keystone, CO, Aug 29-Sep 2
- [32] Hydrosize 3209 Gresham Lake Road Suite109 Raleigh NC 27615 USA info@hydrosize.com
- [33] JPS Composites Greenville 29607 SC USA
- [34] Puigségur A, Quettier L, *et al.* 2003 Development of an innovative insulation for Nb₃Sn wind & react coils *Adv. Cryo. Eng. (Materials)* **50** 266-272
- [35] Quettier L, Rey J M, *et al.* 2005 An innovative insulation for Nb₃Sn wind and react coils: electrical tests *presented at the 19th International Conference on Magnet Technology, Genova, Italy, September 18-23*
- [36] Leroy D, Oberli L, et al. 1998 Design features and performance of a 10 T twin aperture model dipole for LHC Proc. of 15th International Conference on Magnet Technology Science Press Beijing China 119–122
- [37] Leroy D, Spigo G, *et al.* 2000 Design and manufacture of a large-bore 10 T superconducting dipole for the CERN cable test facility *IEEE Trans. Appl. Supercond.* **10**(1) 178–182
- [38] den Ouden A, Wessel S, et al. 1994 An experimental 11.5 T Nb₃Sn LHC type of dipole magnet IEEE Trans. Magn. 30(4) 2320–2323
- [39] Dell'Orco D, Scanlan R M and Taylor C E 1993 Design of the Nb₃Sn dipole D20 *IEEE Trans. Appl. Supercond.* 3(1) 82–86
- [40] Danby R G, Palmer R, et al. 1983 Panel discussion of magnets for a big machine Proc. of 12th International Conference on High-Energy Accelerators 52–62
- [41] Gupta R C 1998 A common coil design for high field 2-in-1 accelerator magnets *Proc. of 1997 Particle* Accelerator Conference 3344–3346
- [42] Meyer D I and Flask R 1970 A new configuration for a dipole magnet for use in high energy physics applications *Nucl. Instr. and Methods* **80** 339–341
- [43] Vector Fields 24 Bankside Kidlington Oxon OX5 1JE United Kingdom
- [44] CASTEM is a trademark from CEA/Saclay France
- [45] Portone A, Salpietro E 2005 Conceptual design of the 12.5 T superconducting EFDA dipole presented at the 19th International Conference on Magnet Technology, Genova, Italy, September 18-23
- [46] Parzen G and Jelett K 1971 Saturation effects in high-field superconducting magnets *IEEE Trans. Nucl. Sci.* NS-18(3) 646-648
- [47] Coupland J H, Simkin J and Randle T C 1973 Very high field synchrotron magnets with iron yokes Nucl. Instr. and Methods 106 595-604
- [48] Morgan G 1985 Use of an elliptical aperture to control saturation in closely coupled, cold iron, superconducting dipole magnets *IEEE Trans. Nucl. Sci.* NS-32(5) 3695-3697
- [49] Aleksa M, Auchmann B, *et al.* 2004 A vector hysteresis model for superconducting filament magnetization in accelerator magnets *IEEE Trans. Magn.* **40**(2) 864-867
- [50] den Ouden, Wessel, W A, et al. 2001 Progress in the Development of an 88-mm Bore 10 T Nb₃Sn Dipole Magnet IEEE Trans. Appl. Supercond. 11(1) 2268-2271
- [51] Green M A 1971 Residual field in superconducting dipole and quadrupole magnets *IEEE Trans. Nucl. Sci.* NS-18(3) 664-668
- [52] Green M A 1987 Control of the fields due to superconductor magnetization in the SSC magnets *IEEE Trans. Magn.* MAG-23(2) 506–509
- [53] Caspi, S 1999 private communication
- [54] Kashikin V V and Zlobin A V 2001 Correction of the persistent current effect in Nb₃Sn dipole magnets *IEEE Trans. Appl. Supercond.* **11**(1) 2058-2061
- [55] Kashikin V V, Barzi E, *et al.*, 2003 Passive correction of the persistent current effect in Nb₃Sn dipole magnets *IEEE Trans. Appl. Supercond.* **13**(2) 1270-1273
- [56] Leroy D 2004 Requirements on SC materials, strand and cable for the future *Proc. of the Workshop on Accelerator Magnet Superconductors (WAMS)* Archamps France March 22-24