
Evaluation of Meta-scheduler Architectures and Task Assignment
Policies for High Throughput Computing

Eddy Caron, LIP/ENS Lyon, 46 Alle d’Italie, 69364 Lyon Cedex 07
V. Garonne, A. Tsaregorodtsev

Centre de Physique des Particules de Marseille, Marseille, France

January 29, 2006

Public Note
Issue : 1
Revision : 0
Reference : LHCb-2005-082-Offline
Created : January 12, 2005
Last modified : January 29, 2006

Abstract

In this paper we present a model and simulator for many clusters of heterogeneous PCs belonging to a
local network. These clusters are assumed to be connected to each other through a global network and
each cluster is managed via a local scheduler which is shared by many users. We validate our simulator
by comparing the experimental and analytical results of a M/M/4 queuing system. These studies indicate
that the simulator is consistent. Next, we do the comparison with a real batch system and we obtain an
average error of 10.5% for the response time and 12% for the makespan. We conclude that the simulator is
realistic and well describes the behaviour of a large-scale system. Thus we can study the scheduling of our
system calledDIRAC in a high throughput context. We justify our decentralized, adaptive and opportunistic
approach in comparison to a centralized approach in such a context.

Issue: 1

0.1 Introduction

In an institutional large scale system [5] resources are heterogeneous clusters which belong to a local
network (LAN) and miscellaneous administrative domains. These clusters are shared between many users
or virtual organizations [6] and a local policy is applied to each cluster which defines their access rights.
This policy is applied through a resource management system, i.e. a batch system.
To aggregate theses clusters and manage the workload a global architecture must be defined paying special
attention to the size of these systems. For example, in the High Energy Physics domain the envisaged size
is around a hundred sites spread all over the world which is equivalent to 30,000 nodes. This domain also
strongly favors high throughput [12], which attempts to maximize the number of jobs completed on a
daily, or longer, basis. This is typical of situations where the supply of computational jobs greatly exceeds
the available resources and jobs are generally not time critical. While batch systems are often used at the
local level, there is no common solution in a global context. The DIRAC system has been developed to
meet these requirements and provide a generic, robust grid computing environment.
In this paper we propose an evaluation of the performances and the behavior of the DIRAC system in a
high throughput context. The paper is organized as follows: Section 2 presents the background; Section 3
discusses the DIRAC architecture and main components; Section 4 presents the model used; while Section
5 discusses the simulation tool and section 6 descibes how it was tested; Section 7 shows the experimental
setup; Section 8 the results and finally Section 9 finishes with conclusions and future plans.

0.2 Background

In a multi-site grid project [18, 8, 1], decisions are often taken with a global view of the system. The
architecture in Figure 1 is composed of a centralized meta-scheduler and a centralized information system.
This approach put in place as ’Push’ paradigm.

node

node
nodenodenode

node

node
node

node node

node

Local Scheduler

node

Information flow:
Tasks flow:

Task generator (clients)

Global Scheduler System
Global Information

Update at time interval ∆t

System
Local Information System

Local Information
System

Local Information

Local Scheduler Local Scheduler

Site Site Site

Figure 1: Example of an architecture with centralized scheduling

In this model, the global information system keeps all the static and dynamic information about the system
state in one place. Sensors deployed on the sites update the information by first querying the local in-
formation system and then updating their own information in the global information system. Ideally these
updates are done whenever a change of state happens in the system which could, for example, be the arrival
or end of a task. In fact, this solution often generates a message storm and needs some kind notification
mechanism. The use of a period�t seems most appropriate and stems the flow of messages.

Some studies [9] propose strategies which employ file queuing systems [10] whilst others [17] use simula-
tion mechanisms like BRICKS [16]. Generally these work quite well but only in a simplified and unrealistic
model. Thus far no project is able to manage the workload on more than a hundred sites and the problem
of a multi-site system for high throughput computing has not yet been explored.

page 1

Issue: 1

0.3 The DIRAC system

DIRAC (Distributed Infrastructurewith Remote Agent Control) [7] has been developed by the CERN LHCb
physics experiment to facilitate large scale simulation and user analysis. The DIRAC system has recently
been used for an intensive physics simulation involving more than sixty sites, 90 TB of data, and in excess
of one thousand 1 GHz processor-years. DIRAC is organized into a Service Oriented Architecture (SOA),
with a number of independent services including monitoring and resource management.

0.3.1 The resource management system: The ’Pull’ paradigm

node

node
nodenodenode

node

node
node

node node

node

Local Scheduler

node

Match-Maker
Service

global queues

Information flow:
Tasks flow:

Task generator (clients)

Local Scheduler Local Scheduler

Site
agent

Site
agent

Site
agent

Figure 2: The DIRAC scheduling model.

Figure 2 illustrates the DIRAC scheduling model which deploys agents on the sites and uses central global
queues. DIRAC uses a ’Pull’ paradigm where agents demand a task if they detect free slots. Using the
cycle-stealing paradigm borrowed from global computing [14], tasks are only run when resources are not in
use by the local users. DIRAC extends this concept to different computing resources by defining a criterion
of availability. These resources could be anything from a simple PC to whole batch systems. As soon as
a resource is detected to be available the dedicated agent requests tasks from the match-maker service.
This is accomplished using the resource description which contains the dynamic and static information
about the resource. The match-maker service allocates tasks to resources by viewing the global job
queues and using Classad matchmaking from the CONDOR project [12].

The Matchmaker compares one-on-one requirements performing a round-robin on each of the job queues
until it finds a suitable job for a particular resource. This is an O(n) operation, which, in the worst case,
would involve all n queued tasks in the system being checked once against the resource characteristics
defined in the task request. This operation is independent from the total number of resources and the total
number of tasks.

0.4 The performance model

Let C represent the set of clusters present in the multi-sites platform. Each cluster C i owns a set of worker
nodesNi and belongs to a local domain, i.e. a LAN (Local Area Network). This local network describes a
graph for the nodes. Each link of this graph has a local bandwidth bwt Ci and a local latency latencyCi .

0.4.1 The topology

A cluster Ci is connected to the global network or WAN (World Area Network) by a switch. Figure 3
describes this topology with links having the same properties as previously mentioned. Let bwt C be the
global bandwidth and latencyC the global latency.

page 2

Issue: 1

node

node

node

node

node

node

node

node
node node

node node

node

node

node

node

node

node

WAN

node

LAN
Local domain

Figure 3: Example of a topology for a meta-scheduling platform.

Many different approaches exist to generate the right graph for the proposed model. Tools exist, such as
ENV [15] to describe the characteristics of a real topology. Although there is not sufficient information
to suggest that these tools scale well it was decided to use a generator topology. Some recent studies [13]
show that networks follow specific power laws. The graph generator according to these laws are generally
random, degree-based or hierarchical.

0.4.2 The node characteristic

Let (i, j) be the pair defines the j jth node of cluster Ci. Each node (i, j) has a processor capacity capacity i,j

and to express this we define one computing unit, the NCU (Normalized Computing Unit). This unit is
determined by special application benchmarking on different referential machines, taking into account the
absolute time. So the capacity of a node is simply the total number of computing units able to be computed
per unit time. We can then model the platform heterogeneity and define the average platform capacity
as capacitym = 1∑

i∈C card(Ni)

∑
i∈C,j∈Ci

capacityi,j.

0.4.3 The workload model

We define two levels for the workload, local and global. The global workload corresponds to the tasks
submitted to the metacomputing system, usually called meta-tasks. The local or background workload
corresponds to tasks locally submitted to a cluster. A meta-taskmk is mapped locally to a simple task k.

A typical task k has four attributes : attributes={tlk, lengthk, prock , groupk} where tlk is the local
submission date, lengthk the length expressed in NCU, prock is the total number of processors required
for the task execution and groupk the organization who submits the task. A meta-task mk is composed
of the task properties sub-set and the global submission date tk. So we have meta-attributesk={tk,
attributesk}.
Modelling the workload for a metacomputing system involves determining k for each task from the task
set T then submitting the attributes attributsk to a cluster Ci. The meta-tasksmk of the set of meta-tasks
MT and their meta-attributes are also submitted to the system. The methods used to generate a workload
are the following: a randomize workload; a workload derived from real system traces and lastly a stochastic
workload.

A random workload and, in the same way, a workload derived from a real system are not realistic. A
workload derived is judged to represent too many platform dependant characteristic and so too specific.
Instead, the stochastic workload is chosen here. Someworks [11] studying computing centre traces propose
a complete probabilistic model and so we write S(T) for the distribution function which generates the
length set for a set of task T . Let CA be the cut applied to this length set which fixes the maximal and
minimal length. We also denote the distribution function which generates the submission date set by
A(T) for a set task and finally the average submission rate by λT .

page 3

Issue: 1

0.4.4 The local model scheduling

At the local level, nodes of a same site are typically managed by a resource management system, e.g a
batch system. Other implementations use queues which are defined by the characteristics of the task, for
example, their length. Shared time scheduling between users is done by the local scheduler which would
normally apply policies based on quotas or priorities. For a cluster C i, we can define a queues set Qi

. Each queue qi,j of Qi is composed of a set of nodes Nqi,j
. Any particular node can belong to one or

many queues. The tasks submitted to the site are then added to these queues to wait for their execution.
Subsequently, a queue qi,j will contain a task set Ti,l. We define the queue depth depthi,j = card(Ti,l)
as the total number of tasks waiting in the queue a particular instant. The maximal time that a task could
spend in execution on a node of the queue q i,j is denoted by tmaxi,j .

0.4.5 Measures and metrics

For a task k, we define three following states: queued, running and done. The state queued means that a
task is in a waiting queue. When the task is executing it is in the running state and the done state signals
that the task is completed. The corresponding times for the changing states running, queued and done
for a task k are respectively rk, qk and dk. the local waiting time for a task k is the execution beginning
time minus the submission time rk − tlk. The execution time is dk − rk and the local response time is
dk − tlk. For a meta-taskmk, we have a global waiting time which is the beginning execution time minus
the global submission time, rk − tk. The global response time is dk − tk.

For the set of meta-tasksMT , we define the average waiting time:

waitingm =
1

card(MT)

∑
k∈MT

(rk − tk) (1)

the average execution time:

executionm =
1

card(MT)

∑
k∈MT

(dk − rk) (2)

and the average response time:

responsem =
1

card(MT)

∑
k∈MT

(dk − tk) (3)

We also define the makespan which is the full time to complete all the jobs inMT :

makespan = max
k∈MT

(dk) − min
k∈MT

(tk) (4)

0.5 Simulation tool

Simgrid [2] is a discrete event toolbox which allows the modelling and description of a platform for cen-
tralized, hierarchical or fully distributed scheduling. The improvements made to Simgrid are as follows:

A description platform module. Our simulator is interfaced with the hierarchical graph generator
Tiers [4]. We have to specify the total number of WAN, LAN, nodes per LAN and the redundancy
links. For the capacity information, we define a sample set of nodes where each node is weighted by
a percentage. This percentage expresses the proportion of this node type present in the platform. The
node NCU capacities and their weights are inspired by the performances obtained by DIRAC for a
physics application on the production platform [3]. This platform was composed of more than 4,000
nodes and twenty different node configurations. Based on the total number of nodes and their pro-
portions we generate the set P of all available capacity. Then for each node we proceed by drawing
lots in the set P and one occurrence of this value would be removed from the set P until the capacity
attribute is filled for all nodes.

page 4

Issue: 1

A workload generator. Simgrid has already got an implementation of the task concept. In this model,
however, the meta-data is added e.g., the organization submitting tasks. The workload generator
provides different probability density functions (p.d.f) like the Gamma law, Gaussian law and so
on. To have a shared system we implement an agent per client or organization. The simulation tool
allows one to simulate different system users. Therefore, it is possible to have different workloads
submitted at the same time and evaluate their interactions.

A generic batch system. The basic entity at the local level is the batch system. As Simgrid does not
provide a model for this, a generic one has been implemented. The design is illustrated by Figure 4.

Scheduler
Local

Submission Switcher

System
Information

Head Node Informations

New task

End task

node

node

node

node

node

Information flow:
Tasks flow:
Notification:

Figure 4: The generic Batch system design.

A head node hosts the principal components: switcher, queues, information system and finally the
local scheduler. Each node communicates with the head node. A task submission is managed by
the switcher which with regard the task requirements, places it in a queue and notifies the scheduler.
This then queries the monitoring and accounting system to choose a candidate node. If no resource
is available the task stays in the queue but once the task is sent to the node it is executed. After the
task is completed, the scheduler is notified which triggers a cycle where the scheduler looks at the
queues and determines if another task could be executed. The scheduler configuration is entered by
file and includes properties such as the total number of queues, the availability or not of a node in a
queue and the maximum number of tasks which could execute on a node.

The meta-scheduling architectures. Two kinds of global architectures were implemented. First the
centralized architecture outlined in Section 0.2. Second the DIRAC architecture described in the
Section 0.3.

A monitoring and accounting system. For each simulation run the information relating to each task is
recorded. This helps the analysis of a particular strategy by facilitating the measures and metrics
computation described in Section 0.4.5.

0.6 Validation of the simulation tool

0.6.1 Analytical validation

For the theoretical validation, experiments were performed on M/M/m queuing systems [10].

Figure 5 shows the response time differences between the simulated results and the analytical theory for a
M/M/4 system. The service time average is four units time. The arrival rate follows an exponential law.
The simulated responses are derived from 16 independent runs of 1,000 tasks and the root mean square
error for all simulated arrival rates. The results obtained are consistent with theory.

0.6.2 Experimental Comparison

A dedicated and heterogeneous cluster was used, described in Table 1.

A DIRAC agent was deployed on the cluster with a task generator put in place. This generator submits
independent and sequential tasks with no communications. The submission times follow a Poisson law and

page 5

Issue: 1

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 5 6

Simulation

Analytical

Inter-time(s)

Lo
ga

rit
hm

 o
f r

es
po

ns
e

tim
e

Figure 5: Reponse time comparison between simulation and M/M/4 theory queueing system.

Attributes Values

Total number of nodes (card(Ni)) 3
Type PII PII PIII

Processor(MHz) 350 400 600
Memory(mo) 128 128 128

Capacity(NCU.s−1) 32.12 52.12 100.00
Scheduler openPBSv2.3
Politicy First Come First Serve(FCFS)

Local Network Megabyte Ethernet

Table 1: Platform caracteristics used for the simulation validation.

the benchmark used was a program which implements a CPU consumed counter. It takes one parameter
which is the number of CPU to consume before ending. This length is created for each task and follows a
Weibull law. The response time and the waiting time are then captured by the DIRAC monitoring service.
Then, we capture this workload to inject it in our simulator. To estimate the execution time according to the
node capacity we normalize this time with the node NCU capacity. The NCU node capacity is determined
by benchmarking, outlined in Table 1. A simple topology is assumed where each node is connected to the
head node by a simple link with 100 mega byte/s bandwidth and a null latency, as illustrated in Figure 4 .

0.6.3 Results

The total number of tasks is 330, i.e. card(MT) = 330. We observe for first instance an average error
of 80% for the response time as illustrated in Figure 0.6.3. After a trace study we characterize two service
times, µrec and µsend. µrec is the service time between task arrival and task sending on a node or in queue
and µsend is the necessary time to notify the scheduler of a task completion. This large average error can
be explained by the fact that the scheduler made its choice with a different system state view. The nodes are
heterogeneous so the consequences are dramatic for the response time. We correct this error by including
the service times µrec and µsend measured on the real system injected as traces. Then, we obtain exactly
what we would expect in reality which validates the code. The experiment is then repeated by setting time
services to constants. These constants are the average service time observed in reality (µ rec = 3.75s,
µsend = 2s). After this we observe an improvement in the average error of 10.5%. Figure 0.6.3 shows the
makespan evolution versus the total number of tasks. For the constant service time, we see an average error
of 12%. From this it is possible to conclude that at the local level the simulator is realistic. It is now possible
to proceed to the strategies and meta-scheduling architectures evaluation. One further improvement could
be to make the service times µrec and µsend a distribution function approaching the real behavior.

page 6

Issue: 1

0

10000

20000

30000

40000

50000

60000

0 50 100 150 200 250 300

M
ak

es
pa

n(
s)

Total number of tasks

Real makespan

Simulated makespan with no service time
Simulated makespan with constant service time

Figure 6: Comparison between simulation and a real batch system with µ rec = µenv = 0 and µrec =
constant, µenv = constant. Makespan evolution vs. the number of tasks.

0.7 Experimentals setup

The decentralized DIRAC architecture described in Section 0.3 and the centralized approach from Section
0.2 can now be compared. The message control size for both architectures is 30 KB in the simulation.
The workload characteristics are inspired by an empirical study [11] and Table 2 summarises the platform
parameters and workload attributes.

Parameters Notations Values

Pl
at
fo
rm

︷
︸︸

︷ Total number of sites card(C) 3
Total number of node per site card(Ni) 20
Total number of queue per site card(Fi) 1

mean node capacity capacitym 96 NCU.s−1

Local policy M/M/card(Ni)/FCFS FCFS
Maximal execution time tmaxi,j 24000s
local/global bandwith bwtC /bwtCi 1000 Mbit/100 Mbit
local/global latency latencyC , latencyCi 0s

W
or
kl
oa
d

︷
︸︸

︷

Task Type card(prock) 1
Length distribution S(Mt) → {sizek} Weibull(α = 142.2, β = 0.45)

Length cut C(taillek) 37300 < taillek < 242800

G
lo
ba
l

︷ ︸
︸︷

Total number of task card(Mt) 500
Arrival time distribution A(Mt) → {tlk} Poisson(m = 0.05, s = 4)
mean inter-arrival 1/λMt 19s

L
oc
al

︷ ︸
︸︷

Total number of task per site card(Ti) 500
Arrival time distribution A(Ti) → {tk} Poisson(m = 0.011, s = 4)
mean inter-arrival 1/λTi 87s

Table 2: Experiments parameters.

The associated DIRAC strategy is detailed in section 0.3. The criterion of availability is expressed in 5
which implies that tasks in the waiting state scheduled on a computing resource should not exceed 30% of
the total number of nodes.

depthi,j

card(Nqi,j)
< ε, e.g. ε = 0.3 (5)

The policy applied at the matchmaker level is that of FRFS(Fit Resource First Serve). That means that the
first resource which matches well is chosen.

We also propose to evaluate the impact of the deployment in DIRAC. Let us consider two kinds of agent

page 7

Issue: 1

deployment. The static approach is described in Section 0.3 whereas the dynamic approach is a concept
similar to the resource reservation. After detecting the availability, the agent deployed on the site queries
the match-maker to ask if tasks are available. In the case of a positive answer, it submits an agent wrapped
in simple task to the cluster. Once the agent arrives at the node, it checks the node capacity and environment
and creates the resource description accordingly. After that the agent queries a task from the match-maker.
If no task is returned the agent dies. In the simple reservation mode ’Run Once’, the agent dies after the
completion of the first task while in a ’filling’ mode it queries for one more task with respect to the available
time.

The algorithm for the centralized scheduling is the following. At each task arrival the scheduler looks for
the least loaded resource, i.e. the resource q i,j from cluster Ci which has the minimum measured depth
depthi,j with ∀i ∈ C and ∀j ∈ Fi.

Now we compare two approaches which strongly favour high throughput computing but the question is:
what architectures and implementations could influence their performance?

0.8 Results

Figure 7 shows the evolution of total number of tasks in the state queued and running during the experiment.
The third line is the done cumulated task curve.

Cumulated done tasksCumulated done tasks

Running tasksRunning tasks

Queued tasksQueued tasks

Time(s)

To
ta

l n
um

be
r o

f t
as

ks

(a) Centralyzed approach with�t = 0.

Time(s)

To
ta

l n
um

be
r o

f t
as

ks
Cumulated done tasksCumulated done tasks

Running tasksRunning tasks

Queued tasksQueued tasks

(b) DIRAC approach.

Figure 7: Tasks evolution vs. time in a dedicated platform.

The saturation phase gives us the platformmaximal capacity which is equivalent to the sum of all nodes ,i.e.∑
i∈C Ni, here 60. The two approaches saturate all resources but this is different in the DIRAC approach

where the evolution of the tasks in the queued state is constant (Figure 7(b)).

The Figure 8 shows the variation of the �t period versus average waiting time waiting m for central-
ized scheduling in first a dedicated context and then in a shared context. The DIRAC waiting times are
qualitatively indicated because they are independent in philosophy from�t (Figure 8(b)).

DIRAC does not use a central information service so does not depend on this period. For a�t less than 95
s, the waiting time is better than the centralized scheduling in a dedicated context and performs better by
around 60 s in the shared context. In the latter the performances rapidly degrade and a more chaotic effect
is observed. The upper bound observed corresponds to the situation where all tasks are scheduled on the
same site where�t > maxk∈Mt tk.

Figure 9(a) compares the makespan as well as the local and global response times executed for the four
evaluated strategies. For a null �t, the best makespan is obtained for the centralized approach although
the smallest response time came from the DIRAC approach in the filling reservation mode. The execution
times are of the same order for all strategies. This is explained by the platform characteristic that sites have

page 8

Issue: 1

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000

W
ai

tin
g

Ti
m

e(
s)

∆t(s)

platform
shared

platform
dedicated

∆t>max
kk Mt
t

(a) Full variation.

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600

W
ai

tin
g

Ti
m

e(
s)

DIRAC

∆t(s)

DIRAC Centralyzed
Dedicated

Shared
Centralyzed

Shared

Dedicated

(b) Comparison with DIRAC.

Figure 8: Average waiting time for meta-task vs. period�t for the centralized approach in a shared and a
dedicated context.

the same capacity on average. The response time difference is mainly due to the local and global waiting
time. The largest local waiting time is found with the static DIRAC scheduling however, the global waiting
time in this situation is minimal.

In the case of DIRAC reservation the local waiting times are null because the matching is done directly
from the node. The waiting time is expressed for the agents in this case. The effect of changing the deploy-
ment from static to dynamic gives a improvement of 10% for the average response time. The reservation
mode filling nearly introduced a 50% improvement for the average response time in comparison with the
centralized approach.

The graphs in Figure 9(b) illustrate the rate of tasks demanding the match-maker service in the
tree DIRAC deployment mode with the static approach (top), the simple reservation (middle) and the ’fill-
ing’ reservation mode (bottom).

During the platform initialization and at the experimentation end, the load is important on the service
matchmaker in the static case. The total number of queries with the static approach is about 872 with
about 699 for the dynamic case. We also establish that the the match-maker load is more homoge-
neous for the dynamic case.

0.9 Discussion

In an ideal situation the centralized approach gives the best results but it is often impractical to assume that
such a platform would stay stable. Common failures, by order of importance are: network failure; the disk
quotas; unavailability of services; incorrect local configuration and finally power cut. With this large scope
of error it is difficult to keep an ideal view of a global system. The scheduling is totally dependant on the
information system performance and this system often does not scale well.

DIRAC bypasses this problem because one of the main characteristics is the total absence of a system global
view. It takes its decisions with a partial and global view. Each resource, in conjunction with its current
state, gets an appropriate workload to suit its capacity. The tasks are put in a buffer where the scheduling
event is an attribute of the resource availability which is the opposite to the centralized approach where the
triggered event is a task submission.

If a platform deterioration occurs, any drawback from using the centralized approach is immediately paid
back in term of performance. This effect is also more significant if the approach is combined with predic-
tions. A rapid state change of a resource is taken into account only after a lapse of time in the centralized
model. During this lapse in a high throughput context, the decisions made can be disastrous. Resource star-
vations and system information failures are also two main drawbacks which do not affect DIRAC, where

page 9

Issue: 1

Metrics and measures vs. Time(s)

0

5000

10000

15000

20000

25000

RT GWT LWT ET

Decentralyzed

Centralyzed

Decentralyzed with reservation

Decentralyzed with reservation, mode filling

M: Makespan

RT: Average Response Time

GWT: Average Global Wait Time

LWT: Average Local Wait Time

ET: Average Execution TIme

M

(a) Strategies comparison for: centralized approach, DIRAC
with a static deployment and the two DIRAC reservation mode
simple and filling.

Demands rate vs. Time(s)

DIRAC, bin = 200 s

DIRAC with reservation, bin = 200 s

DIRAC with reservation, mode filling, bin = 200 s

(b) Traffic on the match-maker service vs. time for the three
DIRAC strategies.

Figure 9: Results and caracteristics for strategies.

all available resources are utilized immediately.

DIRAC demonstrates adaptability. This dynamic aspect forces scheduling in an opportunistic, reactive and
non-predictiveway. On the other hand, the results are quite similar with the centralized scheduling. DIRAC
is easy to implement, stable and flexible. It also facilitates resource reservation which can significantly
increase performances. Nevertheless it must be said that technically this improvement required direct
communication with worker nodes. Within DIRAC passive communication mode relaying of outbound
connectivity is used to accomplish this.

The reservation mode causes a higher and more regulated load on the match-maker service. This
penalty for this improvement is the huge number of agents which abort right after the non-task answer (299
in our case which is non-negligible).

0.10 Conclusion and future works

In this paper we propose a model for a meta-scheduling platform. We measure an average error of 12%
for the makespan prediction. With this tool it is demonstrated that a centralized approach is better than a
decentralized approach in term of performances for high throughput computing. However, this happens
only in the ideal case where the update period is quasi null. Above 95s in a dedicated context, the ’pull’
approach had similar results and importantly was more stable. The same observation is made in a shared
context. The ’pull’ approach also provides an abundance of scenarios which allow a performance enhance-
ment the of just under fifty percent compared to the centralized approach. This was most evident with
resource reservation. It will be interesting to study the impact of the migration from site to site with regard
to their local workload. The criterion for optimizing the scheduling is specific to the application itself,
therefore, since many applications are executed concurrently on the same platform, grid scheduling must
be done with a multi-criteria scheduling approach. Future work will be into the study of this aspect.

Acknowledgment

We gratefully acknowledge Stuart Paterson for helping to prepare this document.

page 10

BIBLIOGRAPHY

Bibliography

[1] Abhijit Bose, Brian Wickman, and Cameron Wood. Mars: A metascheduler for distributed resources
in campus grids. In GRID ’04: Proceedings of the Fifth IEEE/ACM International Workshop on Grid
Computing (GRID’04), pages 110–118, Washington, DC, USA, 2004. IEEE Computer Society.

[2] H. Casanova. Simgrid: A toolkit for the simulation of application scheduling. In Proceedings of
the First IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2001),
Brisbane, Australia, 15-18May 2001.

[3] J. Closier and al. Results of the lhcb experiment data challenge 2004. In CHEP’04, Interlaken,
November 2004.

[4] Doar. A better model foor generating test networks. In IEEE GLOBECOM, 1996.

[5] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infrastructure.
Morgan-Kaufmann, 1998.

[6] Ian Foster. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. Lecture Notes in
Computer Science, 2150, 2001.

[7] Garonne, V. and Stokes-Rees, I. and Tsaregorodsev, A. DIRAC: A Scalable Lightweight Architecture
for High Throughput Computing. In Grid 2004, 5th IEEE/ACM International Workshop on Grid
Computing, November 2004.

[8] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evaluation of job-scheduling strate-
gies for grid computing. In Proceedings of the First IEEE/ACM International Workshop on Grid
Computing, pages 191–202. Springer-Verlag, 2000.

[9] Ligang He, Stephen A. Jarvis, Daniel P. Spooner, and Graham R. Nudd. Optimising static workload
allocation in multiclusters. In IPDPS, 2004.

[10] L. Kleinrock, editor. Queueing Systems Volume I : Theory. John Wiley and Sons, 1975.

[11] Hui Li, David Groep, and Lex Walters. Workload characteristics of a multi-cluster supercomputer. In
Job Scheduling Strategies for Parallel Processing. Springer-Verlag, 2004.

[12] Miron Livny, Jim Basney, Rajesh Raman, and Todd Tannenbaum. Mechanisms for high throughput
computing. SPEEDUP Journal, 11(1), June 1997.

[13] D. Lu and P. Dinda. Synthesizing realistic computational grids. In Proceedings of ACM/IEEE SC
2003, 2003.

[14] SETI@Home. http://setiathome.ssl.berkeley.edu/.

[15] G. Shao, F. Berman, and R. Wolski. Using effective network views to promote distributed applica-
tion performance. In Proceedings of the 1999 International Conference on Parallel and Distributed
Processing Techniques and Applications, 1999.

[16] A. Takefusa. Bricks: A performance evaluation system for scheduling algorithms on the grids. In
JSPS Workshop on Applied Information Technology for Science, 2001.

page 11

BIBLIOGRAPHY

[17] Atsuko Takefusa, Satoshi Matsuoka, Henri Casanova, and Francine Berman. A study of deadline
scheduling for client-server systems on the computational grid. In HPDC ’01: Proceedings of the
10th IEEE International Symposium on High Performance Distributed Computing (HPDC-10’01),
page 406. IEEE Computer Society, 2001.

[18] S. Vadhiyar and J. Dongarra. A metascheduler for the grid. In Proceedings of the 11th IEEE Sympo-
sium on High-Performance Distributed Computing, 2002.

page 12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

