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Abstract

Precision tracking is not only a matter of integrator sim-
plecticity, it also requires accuracy in modelling of mag-
netic fields, their non-linearities and possible defects. Step-
wise ray-tracing can make the best use of these two crucial
prerequisites regarding precision integration ; allied with
the computing speed of modern computers, this results in
high performance tools. The topic is discussed through re-
cent developments in the ray-tracing code Zgoubi, aimed at
multiturn tracking in the strongly non-linear fields of fixed
field alternating gradient synchrotrons.

INTRODUCTION

From the early years of synchrotron developments, step-
wise ray-tracing has been considered a good technique to
integrate particle motion, allowing the drawing of machine
parameters from single- or multi-turn tracking, possibly us-
ing magnet field maps [1]. The developments presented
here are based on such methods using the ray-tracing code
Zgoubi [2].

Zgoubi has long been used in synchrotron studies (cf.,
LHC [3], FNAL recycler ring [4], muon storage rings [5]),
and the recent developments in the code discussed here
further permit the difficult simulation of large amplitude,
multi-turn 6-D tracking in scaling and non-scaling FFAGs,
for which only a few codes have been applied [6].

Ray-tracing thus offers a mean for fast optimization of
FFAG magnet geometry and fields as constrained by design
parameters ; it provides correct simulation of multiturn mo-
tion, with such outcomes as the right computation of lattice
tunes, tune variations, time of flight, etc. ; it yields preci-
sion 6-D multiturn tracking and motion stability limits in
FFAGs.

In the following, the methods for simulating FFAG fields
are described, and then applied to various problems of 6-D
or 4-D tracking in FFAG rings, scaling and isochronous.

RAY-TRACING METHOD, INGREDIENTS

We first recall the ingredients of the Zgoubi method that
intervene in the implementation of dipole N -uplet simula-
tions.

Position and velocity The integration method is based on
stepwise resolution of Lorentz equation by a technique of
Taylor series. The working frame is shown in Fig. 1. Posi-
tion and velocity of a particle subject to md~v/dt = q ~v ×~b
are tracked using truncated Taylor expansions in the inte-
gration step ∆s

u (M1)
M1

R (M 1)

u (M0)

R (M
0

)

Z

X
Y

Z

Y

X

M

0

Reference

Figure 1: Zgoubi frame and coordinates.

~R(M1) ≈ ~R(M0) + ~u(M0) ∆s + ~u′(M0)
∆s2

2! + ... (1)

~u(M1) ≈ ~u(M0) + ~u′(M0) ∆s + ~u′′(M0)
∆s2

2! + ...

wherein ~u = ~v/v, ∆s = v ∆t, ~u′ = d~u/ds, m~v =
mv~u = q Bρ~u, and with the derivatives ~u(n) = dn~u/dsn

given by ~u′ = ~u × ~B, ~u′′ = ~u′ × ~B + ~u × ~B′, ~u′′′ =
~u′′ × ~B + 2~u′ × ~B′ + ~u× ~B′′, etc.

Taylor coefficients Computation of the coefficients in
Eqs. 1 requires the knowledge of the magnetic field ~B(s)

and derivatives dn ~B/dsn (n ≤ 5) in the orthogonal frame
(O,X,Y,Z) (Fig. 1). On the other hand, the magnetic field
in a dipole can be obtained from a mid-plane model of
the vertical field component (the horizontal component is
zero by symmetry), in cylindrical coordinates, of the form
Bz(r, θ) = Bz0 F(r, θ)R(r), with factors F(r, θ) and
R(r) accounting for the longitudinal (e.g., field fall-offs at
dipoles’ ends) and for the transverse (e.g., transverse non-
linearities) variation of the dipole field. The way the mid-
plane field and its derivatives Bz(r, θ),

∂k+lBz

∂θk∂rl at all
(r, θ) are obtained from this model is detailed below.

Once this is done, a transformation from the cylindrical
frame of the magnet into the Cartesian frame in Fig. 1 is
performed, next, Z-derivatives and extrapolation off mid-
plane are obtained from Maxwell equations and Taylor ex-
pansions, thus yielding the 3-D field description

~B(X, Y, Z),
∂k+l+m ~B

∂Xk∂Y l∂Zm

Eventually, ~B(s) and dn ~B/dsn needed in Eqs. 1 are de-
rived by appropriate coordinate transformations.

STRONGLY NON-LINEAR FIELDS

Two new procedures, named “DIPOLES” and “FFAG”,
have been installed in the ray-tracing code for the purposes
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outlined [7]. They can account for overlapping fields in the
case of neighboring dipoles (Figs. 2-a,b). Dipoles are de-
fined by their parameters as wedge angles, pole curvature,
fringe field extents, etc., [2, b], and are positioned within
a sector region with angle AT , by means of angles ACNi.
The (r, θ) field dependence has the form

Bzi(r, θ) = Bz0,iRi(r)Fi(r, θ) (2)

(the index i stands for the dipole of concern in an N-uplet).
“DIPOLES” and “FFAG” differ by the radial behavior, re-
spectively

Ri(r) = b0i
+ b1i

r−R0,i

R0,i
+ b2i

(

r−R0,i

R0,i

)2

+ ..., (3)

Ri(r) = (r/R0,i)
Ki (4)

The first form of Ri(r) is proper to simulate FFAG
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Figure 2: (a) : FFAG sector triplet. (b) : example of overlapping
fields at constant radius, the three field contributions are repre-
sented separately, together with their merging. (c) : mid-plane
field on closed orbits at various energies. (d) : a sample field
derivative on closed orbit, ∂2Bz(r, θ)/∂θ2.

isochronous lattices [8], SC magnets [9], non-scaling
FFAG lattices [10], etc., by ad hoc values of the bji

co-
efficients. The second form is specific to scaling FFAG.
The axial dependenceFi(r, θ) is modeled using fall-offs at
EFBs of the form

FEFB(d) = (1 + exp[P (d)])−1

with P (d) = C0 + C1d/g + C2(d/g)2 + ... + C5(d/g)5

wherein d is the distance to the EFB and depends on r and
θ ; the normalizing coefficient g is in general of the form

g(r) = g0(R0/r)κ

(κ ≥ 0) with g0 the dipole gap. A dipole having two EFBs
(entrance and exit) with each one its own fringe field factor,
the resulting form factor at (r, θ) due to dipole (i) of the N -
uplet is thus taken to be

Fi(r, θ) = FEntrance(r, θ)×FExit(r, θ)

The total mid-plane field and derivatives at (r, θ) in an N -
uplet are obtained by summing the contributions of the N
dipoles taken separately (e.g., N = 3 in Fig. 2), namely

Bz(r, θ) =
∑

i=1,N Bz0,iRi(r)Fi(r, θ) ,

∂k+l ~Bz(r, θ)

∂rk∂θl
=

∑

i=1,N
∂k+l ~Bzi(r,θ)

∂rk∂θl (5)

Eventually, the 6-D field model ~B(r, θ, z) and derivatives
∂k+l+m ~B

/

∂rk∂θl∂zm are deduced by z-extrapolation.
Sample Bz(r, θ) patterns, using the scaling field model in
Eq. 4, are given in Figs. 2-b-c, a simulation of the field in
an FFAG triplet with characteristics drawn from the KEK
150 MeV proton machine [11].

6-D TRACKING IN A SCALING FFAG

We now show that these methods provide correct results,
by applying it to 6-D tracking in a scaling FFAG ring.

A 12-cell scaling FFAG ring is considered, representa-
tive of the KEK 150 MeV proton FFAG [11]. The cell
is a 30 degree sector encompassing a DFD triplet, with
K = 7.6 in Eq. 4, yielding field on closed orbits as
schemed in Figs. 2-b-c, and quasi-zero chromaticity in both
planes. Closed orbits in a cell and one-turn tunes are dis-
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Figure 3: (a) : closed orbits in a cell. (b) : one-turn tunes.

played in Fig. 3 ; with optimized integration step size, tunes
values can be guaranteed with good accuracy, better than
10−4. Other first order results, as drawn from multiturn
tracking, are displayed in Tab. 1 and show satisfying con-
sistency with published data [11, 12], the momentum com-
paction satisfies α ≈ 1/(1 + K). The vertical chromaticity
is not exactly zero due to the fringe fields (zero vertical
chromaticity is obtained as expected when a geometrical
model with hard edge is used [7]). Fig. 4 shows sample
phase space motion at 50 MeV. The horizontal symplec-
ticity is very good. The vertical motion shows confined
emittance spread, attributed to non-linear coupling.

Next, stationary bucket dynamics has been simulated
(Fig. 5) assuming a single cavity located in a straight sec-
tion, with peak voltage 19 kV. The agreement with theory
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Table 1: First order and longitudinal motion tracking results.
E orbit length frev mom. synchr.

(MeV) (m) (MHz) compac. tune

10 28.6333 1.5165 0.11605 0.01133
22 29.9794 2.1245 0.11611 0.00759
43 31.1885 2.8089 0.11616 0.00534

125 33.2724 4.2386 0.11619 0.00291
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Figure 4: (a) : pure radial motion, particles launched with r0 =
rc.o. + 0.5 cm (1) and at the stability limit (2). (b) : vertical
motion, given r0 = rc.o..

(e.g., bucket height, synchrotron tunes - Tab. 1) is excellent
over the all energy span of the FFAG.
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Figure 5: (a) : stationary bucket in the 100 MeV orbit region. (b,
c) : respectively (r, r′) and (r, z) motions during 12→ 150 MeV
acceleration, for a particle launched near the 12 MeV horizontal
closed orbit with z0 = 1 cm ; the vertical damping follows

√
Bρ.

Eventually, a full acceleration cycle, 2 104 turns from 12
to 150 MeV, using 20 deg. synchronous phase, has been
performed, sample results are given in Fig. 5.

Using field maps

Magnetic field maps can be used (Fig. 6-a), even in such
highly non-linear problem. This is illustrated in Fig. 6-b
which displays the horizontal motion stability limits and
corresponding large amplitude tunes, at five different ener-
gies, as obtained by multiturn tracking, which clearly show
good simplecticity behavior. There are two sine qua non
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Figure 6: (a) : magnetic field along closed orbits, drawn by track-
ing in TOSCA 3-D field maps [13]. (b) : corresponding horizontal
stable motion limits and large amplitude tunes.

Table 2: CPU time.

CPU time (seconds per turn per particle) :

Pentium III 1 GHz Xeon 2.8 GHz
Analyt. Num. Analyt. Num.

2nd order 0.17 s 0.40 s 0.10 s 0.25 s
4th order 0.44 s 1.00 s 0.17 s 0.64 s

conditions in getting precision, multiturn tracking. First,
the integrator must be good, RK4 methods for instance
would not allow simplectic tracking too far out of the me-
dian plane, by contrast with the Zgoubi method. Second,
the map mesh must be dense, so as to insure a good inter-
polation of the - fast oscillating, see Fig. 2-d - derivatives
which intervene in Eq. 1.

COMMENTS

Computation of field derivatives by numerical differen-
tiation from the mid-plane geometrical field model (Fig. 2)
yields good tracking symplecticity, in particular transverse
motion (Fig. 4) can be explored up to stability limits. How-
ever, using analytical expressions instead for computing the
derivatives insures best precision, and allows faster track-
ing, by a factor of more than 2.

Acceleration and 6-D motion are very well handled
(Fig. 5). These developments yield an efficient ray-tracing
tool for multi-particle, or long-term, tracking based studies,
and, accounting for the built-in fitting procedure, for FFAG
magnetic field and machine design studies.

CPU time - Computing speed tests were performed

139



4

upon 12 → 150 MeV acceleration in the 12 cell FFAG
ring (conditions as in Fig. 5), using two different proces-
sors, Pentium III 1 GHz or Xeon 2.8 GHz, under Linux
system. An integration step size ∆s = 0.5 cm is consid-
ered, derivatives are computed with either the analytical or
the numerical method, up to either second or fourth order
as indicated in Tab.. 2. Such computing speed means that
one can envisage overnight runs on computer network sys-
tems, aiming at such goals as long-term DA tracking, 6-D
multi-turn beam transmission, resonance crossing studies.

ISOCHRONOUS LATTICE

A positive chromaticity, isochronous FFAG cell (Fig. 7-
a), has been designed by G. Rees [8], for the purpose of fast
(16-turn) acceleration of muons in the Neutrino Factory.
Isochronism has been obtained by means of the non-linear

(a) Isochronous cell

(b) Field profiles B (T) vs. x (m)
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Figure 7: (a) isochronous cell, mirror-symmetric. (b) transverse
profile of magnetic fields in the three types of dipoles of the cell,
bd, BF, BD (from top to bottom). (c) field on closed orbits along
the cell, at 8, 95, 11, 14 and 20 GeV.
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Figure 8: 1000-cell tracking, motion stability limits at better than
0.1 cm precision : (a,b) pure horizontal motion, (c,d) vertical mo-
tion at vicinity of horizontal closed orbit.

transverse field profiles schown in Fig. 7-b,c,d. Such field
shapes can be reproduced for the ray-tracing purposes by
using the mid-plane field model in Eq. 3, given adequate
bi coefficients obtained by matching, and yielding typical
fields on closed orbits shown in Fig. 7-e.

A main interest of this particular type of “non-scaling”
FFAG design, with cyclotron-like longitudinal behavior, is
in its yielding best use of the high gradient, 200 MHz RF
acceleration. It also allows use of insertions in the ring.

This type of lattice provides a good illustration of the
power of stepwise ray-tracing : the design parameteriza-
tion requires precision, in particular the isochronism has
to be controlled at a the 10−6 level, which means neces-
sary accuracy on the description of the strongly non-linear
magnetic fields in the cell dipoles, and on ray-tracing. Typ-
ical outcomes of good symplecticity tracking are the mo-
tion stability limits - in other words, the cell acceptance, of
prime interest - as displayed in Fig. 8.

ADJUSTED FIELD PROFILE LATTICE

This type of non-scaling FFAG lattice has recently been
proposed by A.G. Ruggiero for application in GeV range
proton machines [10, 14].

The longitudinally “Adjusted Field Profile” causes the
index to be a function of the radial displacement x and
of the longitudinal position, that is n = n(x, θ) (Fig. 9),
so cancelling the momentum dependence of the focusing
strength, a consequence being a reduced “non-scaling” :
the variation of the total tune is only of the order of a frac-
tion of an integer over the full acceleration cycle (Fig. 10).
This method has been applied with dipole triplet cells that
have been found to be advantageous, especially in the FDF
configuration that yields low dispersion (Fig. 10). This type
of design is believed to yield competitive technology that
can allow beam performance at the level of the other accel-
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F FD

Figure 9: Field profiles vs. radial excursion at some azimuths in
the F- (left graph) and D-sector (right) AFP magnets.

Figure 10: Left : total tunes only vary by a fraction of an integer
during acceleration. Right : optical functions in the adjusted field
profile non-scaling FDF cell.

erator architectures. A main feature is in the compactness
of the magnets ensuing from the much reduced beam ex-
cursion, compared to scaling FFAG.

Developments in the ray-tracing code Zgoubi are now
in progress, in order to allow simulation of these (x, θ)-
dependent, non-linear, sector fields. The principle is in us-
ing the polynomial mid-plane modelling of Eq. 2 with ra-
dial dependenceRi as in Eq. 3, yet with the bi coefficients
functions of the azimuth θ in all three dipoles, namely

Ri=1−3(x, θ) = b0,i(θ) + b1,i(θ) x + b2,i(θ) x2 + ...
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NUFACT-Note-140 (2004).

[13] Field maps provided by M. Aiba, KEK, summer 2004.

[14] Adjusted Field Profile for the Chromaticity Cancellation in
a FFAG Accelerator, A. G. Ruggiero, Contribution to ICFA-
HB2004, October 18-22, 2004, Bensheim, Germany.

141




