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Abstract

We compute, in the MSSM framework, the total electroweak contributions at one loop for the

process pp → tW + X, initiated by the parton process bg → tW . The supersymmetric effect

is analyzed for various choices of the SUSY benchmark points. Choosing realistic unpolarized

and polarized experimental quantities, we show the size of the various effects and discuss their

dependence on the MSSM parameters.
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I. INTRODUCTION

The relevance of the process of associated tW production from proton - proton collisions

has been exhaustively stressed in recent dedicated studies [1]. In the Standard Model frame-

work, it is well known that accurate measurements of the production rate would provide an

excellent determination of the tbW coupling. For physics beyond the SM, one expects that

precision tests of virtual effects might be performed, provided that the effects were suf-

ficiently large, i.e. at least of the same size as the overall theoretical and experimental

uncertainty. On the theoretical side, an estimate given in [1] predicts for the total produc-

tion cross section an uncertainty of about 15%. On the experimental side one must recall

the fact that the considered process will be seen, for the first time, at LHC, simply because

of the required pp energy. Therefore an estimate of the expected experimental uncertainty

is in fact still missing. This might be particularly relevant, if the estimated effect turned

out to be reasonable (e.g. of the same size as the theoretical one), for the special purpose of

performing a precision test of supersymmetric models, in particular of the simplest available

one, the MSSM. In fact, in a previous paper [2], the genuinely weak effects of the model

were considered at one loop for all the processes of single top production (td, tb, tW and also

tH−) at LHC. The treatment was rather preliminary and qualitative, and only considered

the very special case of a light SUSY scenario and of a production in a large (∼ 1 TeV)

final invariant mass range, where a simple logarithmic expansion of so called Sudakov kind

could be used. The feature that emerged was that, for the three processes that will certainly

be seen at LHC (i.e. td, tb, tW ), the electroweak relative effect in the MSSM is sizable,

particularly for large tanβ values where it could reach the 30 % size. This appeared to us a

good motivation for performing a complete accurate estimate, valid for all realistic invariant

masses and containing all the parameters of the model. In this paper, we present the results

of our effort for the tW production process. It is, to our knowledge, the first complete cal-

culation of the electroweak MSSM effects at one loop for the process, that also includes the

QED soft photon radiation. We have checked the validity of our results in three different

ways, i.e. (a) we have verified the cancellation of all the (virtual) ultraviolet divergences,

(b) we have verified the cancellation of all the (real and virtual) infrared divergences and,

last but not least, (c) we have verified the exact reproduction of the asymptotic Sudakov

expansions, given in [2], from the computed Feynman diagrams. After these three checks
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we hope that our results should be correct, and we shall show them in the paper with the

following plan: in Section II a brief description of the relevant Feynman diagrams is given,

and a discussion of the cancellation of the ultraviolet and infrared divergences is provided.

Section III shows the reproduction of the (essentially academic) asymptotic Sudakov expan-

sion. In Section IV, the realistic observables are defined, and the related MSSM effect is

shown for various choices of the SUSY benchmark points. A final discussion that included

a review of future calculations is provided in Section V.

II. MSSM bg → tW PRODUCTION AT ONE LOOP

The process that we have considered is the so called exclusive associated tW production,

whose partonic description corresponds to the two body final state reaction

bg → tW− (1)

that is represented, at Born level, in Fig. (1). In this paper we shall not consider the inclusive

process

gg → tbW−. (2)

As known [3], the collinear b component of this process is already enclosed as a QCD NLO

correction to the bottom quark distribution function of the exclusive process Eq. (1) and

our treatment will only consider the one-loop electroweak effects.

At the one loop level, we have to consider different kinds of Feynman diagrams, several

of which will exhibit an ultraviolet divergence. We shall choose the on-shell renormalization

scheme, and in this framework we shall define the following classes of Feynman diagrams:

A. Born, self-energies and counterterms

The two Born diagrams represented in Fig. 1 (a, b) are an s-channel b quark exchange

and a u-channel top quark exchange. With the definitions s = (pb + pg)
2 = (pW + pt)

2, and

u = (pb − pW )2 = (pg − pt)
2 channel, we have

ABorn(gb → Wt) =
egs

sW

√
2
ū(t)[

ǫ/PL(q/ + mb)e/

s − m2
b

+
e/(q′/ + mt)ǫ/PL

u − m2
t

]u(b) (3)

where

q = pg + pb = pW + pt s = q2 q′ = pt − pg = pb − pW u = q
′2, (4)
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and e, ǫ are the gluon and W polarization vectors, respectively.

In the on-shell renormalization scheme, these Born terms have to be completed with

counterterms associated to the b, t, and W lines. These counterterms are expressed in

terms of quark and gauge bosons self energy functions Σf
L,R,S(k2), ΣV V ′

(k2). In these self-

energies we take into account SM and SUSY contributions (sfermions, Higgs, neutralinos

and charginos). The b and t quark propagators are also modified by self-energy functions

of s and u.

In the s-channel, we can use the invariant forms

Is
1L,R = ǫ/q/e/PL,R Is

2L,R = ǫ/e/PL,R (5)

and write the amplitude as

A =
∑

η

{N s η
1 Is

1η + N s η
2 Is

2η} (6)

where

N s L
1 =

egs√
2sW (s − m2

b)
{1 + δZW

1 − δZW
2 +

1

2
δΨW +

1

2
δΨt

+
3

2
δZb

L +
1

2
δZt

L − s

s − m2
b

(Σb
L(s) + δZb

L)

− m2
b

s − m2
b

(Σb
R(s) + δZb

R) − 2m2
b

s − m2
b

[Σb
S(s) − 1

2
(δZb

L + δZb
R) − δmb

mb

]} (7)

N s R
1 = 0 N s L

2 = 0 (8)

N s R
2 =

egsmb√
2sW (s − m2

b)
{1 + δZW

1 − δZW
2 +

1

2
δΨW +

1

2
δΨt

+
1

2
δZb

L +
1

2
δZt

L + δZb
R − s

s − m2
b

(Σb
R(s) + δZb

R + Σb
L(s) + δZb

L)

− s + m2
b

s − m2
b

[Σb
S(s) − 1

2
(δZb

L + δZb
R) − δmb

mb
]} (9)

In the u-channel, we define

Iu
1L,R = e/q/′ǫ/PL,R Iu

2L,R = e/ǫ/PL,R (10)

and write

A =
∑

η

{Nu η
1 Iu

1η + Nu η
2 Iu

2η} (11)

4



with

Nu L
1 =

egs√
2sW (u − m2

t )
{1 + δZW

1 − δZW
2 +

1

2
δΨW +

1

2
δΨt

+
3

2
δZt

L +
1

2
δZb

L − u

u − m2
t

(Σt
L(u) + δZt

L)

− m2
t

u − m2
t

(Σt
R(u) + δZt

R) − 2m2
t

u − m2
t

[Σt
S(u) − 1

2
(δZt

L + δZt
R) − δmt

mt
]} (12)

Nu R
1 = 0 Nu R

2 = 0 (13)

Nu L
2 =

egsmt√
2sW (u − m2

t )
{1 + δZW

1 − δZW
2 +

1

2
δΨW +

1

2
δΨt

+
1

2
δZb

L +
1

2
δZt

L + δZt
R − u

u − m2
t

(Σt
R(u) + δZt

R + Σt
L(u) + δZt

L)

− u + m2
t

u − m2
t

[Σt
S(u) − 1

2
(δZt

L + δZt
R) − δmt

mt
]} (14)

The various counterterms have the following explicit expressions in terms of self-energies.

First, we have the divergent quark wave function renormalizations

δZb
L = δZt

L ≡ δZL = −Σb
L(m2

b) − m2
b [Σ

′b
L(m2

b) + Σ
′b
R(m2

b) + 2Σ
′b
S (m2

b)] (15)

δZb
R = −Σb

R(m2
b) − m2

b [Σ
′b
L(m2

b) + Σ
′b
R(m2

b) + 2Σ
′b
S (m2

b)] (16)

δZt
R = δZL + Σt

L(m2
t ) − Σt

R(m2
t ) (17)

Then, we have the finite wave-function renormalization required in the on-shell scheme and

unavoidable since we have both up and down type quarks in the process

δΨt = −{Σt
L(m2

t ) + δZL + m2
t [Σ

′t
L(m2

t ) + Σ
′t
R(m2

t ) + 2Σ
′t
S(m2

t )]} (18)

The similar terms for the W gauge boson are

δZW
1 − δZW

2 =
ΣγZ(0)

sW cW M2
Z

(19)

δZW
2 = −Σ

′γγ(0) + 2
cW

sWM2
Z

ΣγZ(0) +
c2
W

s2
W

[
δM2

Z

M2
Z

− δM2
W

M2
W

] (20)
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and

δΨW = −Σ
′WW (M2

W ) = −{Σ′WW (M2
W ) + δZW

2 } (21)

Finally, we list the mass counterterms

δM2
W = ReΣWW (M2

W ) δM2
Z = ReΣZZ(M2

Z) (22)

δmb =
mb

2
Re[Σb

L(m2
b) + Σb

R(m2
b) + 2Σb

S(m2
b)] (23)

δmt =
mt

2
Re[Σt

L(m2
t ) + Σt

R(m2
t ) + 2Σt

S(m2
t )] (24)

B. Vertex corrections and Box diagrams

The next two classes of diagrams are triangle-like vertices and box diagrams. A list of the

generic diagrams (i.e. diagrams with virtual particles left unspecified apart from their spin)

is shown in Fig. (2) as produced by FeynArts [4]. Schematically we can further subdivide

them as follows (q stands for b or t quarks, V for γ, Z, W , H for neutral or charged Higgses

or Goldstone particles, χ for chargino or neutralino):

1. Initial s-channel triangles connected to the intermediate b quark: (V qq), (Hqq), (χq̃q̃);

2. Final s-channel triangles connected to the intermediate b quark: (btV ), (HHq), (b̃t̃χ)

(V V q), (HV q), (V Hq), (btH), (χχq̃);

3. Up u-channel triangles connected to the intermediate t quark: (qqV ), (qqH), (q̃q̃χ),

4. Down u-channel triangles connected to the intermediate t quark: (tbV ), (tbH), (χχq̃),

(V V q), (V Hq), (HV q), (HHq), (t̃b̃χ);

5. Direct boxes: (b̃b̃t̃χ0), (bbtV ), (bbtH);

6. Crossed boxes: (qqV V ), (qqV H), (qqHV ), (qqHH), (q̃q̃χχ);

7. Twisted boxes: (ttV b), (ttHb), (t̃t̃χ0b̃).
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The notation corresponds to the clockwise ordering of the internal particles inside the

diagrams.

An essential step consists then in checking the cancellation of UV divergences. They

appear in the self energy functions Σ(k2), in the various counterterms and in the various tri-

angles. Box contributions are convergent. We have checked the cancellation when summing

all of these terms. This cancellation occurs in several independent sectors (gauge, Higgs,

SM, SUSY).

Having completed the first important check (cancellation of UV divergences) we now

move to the forthcoming issue of cancellation of IR divergences that will be treated in the

forthcoming discussion.

C. Cancellation of IR divergences

QED radiation effects are usually split into a soft part containing the potential IR singular

terms, and a hard part including the emission of photons with energy not small compared

to the process energy scale. In this brief section, we discuss the soft emission and the

detailed cancellation of IR divergences that occurs when it is combined with virtual photon

exchanges.

Let us denote by ABorn and A1loop any invariant helicity scattering amplitude evaluated

at Born or one loop level. Let us also denote by λ the photon mass acting as an IR regulator.

The IR cancellation between (soft) real radiation and virtual photon exchange holds in every

helicity channel separately and we have checked it numerically.

It reads
(
ABorn

)2
(
1 +

α

2π
δs

)
+ 2ABorn A1loop = finite as λ → 0 (25)

where, in the above expressions, δS is the correction factor taking into account the emission

of soft real photons with energy from λ up to Emax
γ <<

√
s. The explicit expression for δS

can be found, for instance, in [5].

In practice the above relation follows from the eikonal factorization

A1loop = −ABorn α

4π
δs + regular terms as λ → 0 (26)

It is possible to split further the above factorization property. Indeed, the singular part of
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the radiation factor has the form

δS = log
λ

Emax
γ

∑

i,j

δi,j
S + regular terms as λ → 0 (27)

where i and j runs over the initial/final charged particles, i.e. (bt), (bW), and (tW). There

are two types of contributions: the diagonal ones with i = j and the off diagonal ones with

i 6= j [5].

Now, the matching between the singular log λ in the l.h.s. and r.h.s. of Eq. (26) can be

checked in several independent steps as follows

1. the diagonal radiation terms i = j match the IR divergence in the counterterms

associated to the i-th external line [6].

2. the off-diagonal radiation terms i 6= j match the IR divergence in the diagrams which

are obtained connecting in all ways the i-th and j-th external lines with a virtual

photon. This operation produces both triangle and box diagrams.

As a final comment, we remark that gauge invariance is crucial to cancel all non factoring

contributions associated to the final W line as discussed in [7].

The next step in the treatment of QED effect is the calculation of hard photon emission.

We have left this subject to a dedicated study which shall be discussed separately [8].

III. SUDAKOV EXPANSION OF THE SCATTERING AMPLITUDES

Let us now consider the high energy behavior of the bg → tW helicity amplitudes Fλµλ′µ′ ,

where λ, µ, λ′, µ′ refer to the helicities λb, λg, λt, λW respectively. Several simplifications ap-

pear in the Born and in the one-loop contributions. When s ≫ m2
i (mi being the internal or

external involved masses), ignoring m2
i /s contributions, the non-suppressed Born amplitudes

reduce to F−−−−, F−+−+ for transverse W and F−++0 for longitudinal W .

The leading high energy Born helicity amplitudes are

F Born
−−−−

→ egs

sW

√
2
(
λl

2
)

2

cos θ
2

(28)

F Born
−+−+ → egs

sW

√
2
(
λl

2
)2 cos

θ

2
(29)
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F Born
−++0 →

egs

sW

(
λl

2
)

mt

MW

cos
θ

2
(
1 − cos θ

1 + cos θ
) (30)

Note that F−++0 is controlled by the top Yukawa coupling factor ∼ mt/MW . In fact the

amplitude F+−−0 also occurs but at a much weaker level as it is controlled by the bottom

Yukawa coupling factor ∼ mb/MW .

At one loop, these amplitudes receive logarithmic enhancements as discussed in several

papers, called Sudakov terms. These terms are separated into universal and into angular de-

pendent components. From the rules established in [9], one expects the following expressions

(there are misprints in the paper [2]; The correct equations are the following Eqs. (31-46)).

For transverse W amplitudes:

F Univ
−,µ,−,µ = F Born

−,µ,−,µ[
1

2
( cew(bb̄)L + cew(tt̄)L ) + cew(WT )] (31)

cew(qq̄)L = cew(q̃ ˜̄q)L = c(qq̄, gauge)L + c(qq̄, yuk)L (32)

c(dd̄, gauge)L = c(uū, gauge)L =
α(1 + 26c2

W )

144πs2
W c2

W

(n log
s

m2
W

− log2 s

m2
W

) (33)

c(dd̄, gauge)R =
α

36πc2
W

(n log
s

m2
W

− log2 s

m2
W

) (34)

c(uū, gauge)R =
α

9πc2
W

(n log
s

m2
W

− log2 s

m2
W

) (35)

where n = 3, 2 in SM and MSSM, respectively.

c(bb̄, yuk)L = c(tt̄, yuk)L = − α

16πs2
W

[log
s

m2
W

] [
m2

t

m2
W

yt +
m2

b

m2
W

yb] (36)

c(bb̄, yuk)R = − α

8πs2
W

[log
s

m2
W

] [
m2

b

m2
W

yb] (37)

c(tt̄, yuk)R = − α

8πs2
W

[log
s

m2
W

] [
m2

t

m2
W

yt] (38)
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where yt = 1, 2(1 + cot2 β) and yb = 1, 2(1 + tan2 β) in SM and MSSM, respectively.

cew(WT ) =
α

4πs2
W

[− log2 s

M2
W

] (39)

and for the longitudinal W−

0 amplitude:

F Univ
−,+,+,0 = F Born

−,+,+,0[
1

2
( cew(bb̄)L + cew(tt̄)R ) + cew(W0)] (40)

with, in SM:

cew(W0) =
α

4π
{ [− 1 + 2c2

W

8s2
W c2

W

log2 s

M2
W

]

+[log
s

M2
W

][− 15 − 42c2
W

72s2
W c2

W

+
3(m2

t − m2
b)

8s2
WM2

W

] } (41)

such that

F Univ
−,+,+,0 = F Born

−,+,+,0[
α

4π
]{ [− log2 s

M2
W

][
13 + 14c2

W

36s2
W c2

W

]

+[
1 + 2c2

W

2s2
W c2

W

− m2
b

2s2
W c2

W

][log
s

M2
W

] } (42)

whereas in MSSM :

cew(W0) =
α

4π
{[− 1 + 2c2

W

8s2
W c2

W

log2 s

M2
W

]

+[log
s

M2
W

][− 17 + 10c2
W

36s2
W c2

W

+
m2

b

4s2
W M2

W

(1 + tan2 β) +
3m2

t

4s2
WM2

W

(1 + cot2 β)]}

(43)

such that

F Univ
−,+,+,0 = F Born

−,+,+,0[
α

4π
]{ [− log2 s

M2
W

][
13 + 14c2

W

36s2
W c2

W

] } (44)

(in which all single logs cancel !).

For the electroweak angular terms we find:

F ang
−,µ,−,µ = F Born

−,µ,−,µ[−
α

2π
][log

s

M2
W

]{ [log
−t

s
][
1 − 10c2

W

36s2
W c2

W

] +
1

s2
W

log
−u

s
} (45)
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F ang
−,+,+,0 = F Born

−,+,+,0[−
α

24πc2
W

][log
s

M2
W

]{ [
4

3
log

−t

s
] − 1 − 10c2

W

s2
W

log
−u

s
} (46)

Note that the longitudinal W amplitudes satisfy the equivalence theorem which states

that, neglecting m2
i /s contributions, they should coincide with the amplitudes for the process

bg → tG−, G− being the charged Goldstone boson.

We have checked, by using the asymptotic expansions of the B, C, D functions appearing

in the self-energies, triangle and box amplitudes that our full one-loop result produces the

logarithmic contributions expected by the rules given above.

These resulting asymptotic expressions deserve several comments. In the case of trans-

verse W production, one checks that at Born and one-loop level and at next-to-leading

logarithmic accuracy in addition to trivial fermion chirality constraint λt = λb = −1/2

gauge boson helicity conservation [10] is preserved, both in SM and MSSM cases, i.e. only

µ = µ′ amplitudes survive. One then sees that the MSSM differs from the SM in the sin-

gle logarithm contributions, n = 2 instead of n = 3 for gauge terms and 2(1 + cot2 β) or

2(1 + tan2 β) Yukawa enhancements, especially large for large tanβ.

In the case of longitudinal W production, the Born amplitude is controlled by the Yukawa

mt/MW factor associated to fermion chirality violation λt = −λb = 1/2 and satisfies also

the rule λg +λb = λt which is an extension of the GBHC rule [10]. An additional remarkable

feature appears for the single log contribution, namely it totally cancels in the MSSM case.

Having successfully performed the ultraviolet, infrared and Sudakov tests, we hope that

our complete expressions will be correct. In this respect, we should add the following

comment: We do not expect that, at lower energies and for higher SUSY masses, the simple

features that we met in the light SUSY Sudakov description given in [2] retain their full

validity. Still, we would expect that, at least, some of the main features could survive. For

instance, for what concerns the slope of the invariant mass distribution, we could hope that

a simple modification at lower energies, or at lower energy/SUSY masses ratios, might be

the addition of a (possibly large) constant term at least in a moderate energy region not

too far from the asymptotic one, so that a smooth connection between the two regions is

achieved. In the following section we shall return on this point, but first we shall define and

examine those quantities that will be the realistic experimental observables.
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IV. PHYSICAL PREDICTIONS

We are now able to provide numerical predictions for the complete electroweak effect of

the MSSM at one loop on the realistic observables of the considered tW production process.

With this aim, we shall divide our presentation in two parts, that correspond respectively to

the consideration of unpolarized and of polarized quantities. Following a pragmatic attitude

i.e. assuming that only unpolarized observables will be measured in a first stage of the

experiments, we shall start our analysis with the former ones.

The first quantity that we shall consider is the invariant mass distribution, conventionally

defined as

dσ(PP → tW− + X)

ds
=

1

S

∫
cos θmax

cos θmin

d cos θ [Lbg(τ, cos θ)
dσbg→tW−

d cos θ
(s) ] (47)

where τ = s
S
, and Lbg is the parton process luminosity.

Lbg(τ, cos θ) =

∫ ȳmax

ȳmin

dȳ [ b(x)g(
τ

x
) + g(x)b(

τ

x
) ] (48)

where S is the total pp c.m. energy, and i(x) the distributions of the parton i inside the

proton with a momentum fraction, x =
√

s
S

eȳ, related to the rapidity ȳ of the tY system [11].

The parton distribution functions are the latest NNLO MRST (Martin, Roberts, Stirling,

Thorne) set available on [12]. The limits of integrations for ȳ depends on the cuts. We have

chosen a maximal rapidity Y = 2 and a minimum pT which we shall specify later.

Note that we are at this stage considering as kinematical observable the initial partons

c.m. energy
√

s, and not the realistic final state invariant mass MtW . The transition from

the first quantity to the second one can be performed using the available suitable event

generators, like for instance PYTHIA [13], as we did in a previous paper on top-antitop

production [14]. We expect from that experience a small (few percent) modification in the

transition from
√

s to MtW . This correction can be considered as a QCD effect, and as such

it will be consistently treated in a forthcoming paper [15] where this type of non electroweak

effects will be included. For what concerns the complete one-loop electroweak amplitude, we

can compute it for any choice of the MSSM parameters, but before doing this we want to show

some features of the simple Born approximation of the partonic amplitude that we consider

particularly relevant for an understanding of our following results. More precisely, the point

that we want to stress is that the partonic invariant scattering amplitude for the process, that
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represents the starting block of our calculations, turns out to be the sum of twelve different

helicity amplitudes, that have been defined already in Section III. For large values of
√

s,

i.e. for
√

s sufficiently larger than the masses of all the particles and sparticles involved

in the one-loop description of the process, we expect that only three helicity amplitudes

remain dominant, more precisely those that have been defined in Section III as F−−−−,

F−+−+, F−++0 (the third and fourth index specifies the top and W helicity). The remaining

helicity amplitudes vanish asymptotically i.e. for s → ∞ like 1/s with possible logarithmic

corrections at one loop, and in our preliminary paper [2] they were systematically neglected

in the region of that was considered, corresponding to a) energies in the 1 TeV range and

b) light SUSY masses scenario. For the realistic analysis that we can now carry on, both

assumptions will be abandoned. In particular:

a) The possibility of identifying the final (t, W ) signal must face the serious competition

of a background, mostly due to events coming from the copious top-antitop and WWj pro-

duction.This problem has been already exhaustively discussed in a previous paper [3], where

it has been shown that the introduction of suitable b-tagging cuts will allow to extract the

signal at reasonable (20 fb−1) luminosities. A priori, one would expect that the background

contamination should be under control for c.m. energies below a qualitative background

threshold of approximately, say, 400-500 GeV, and increase in the higher energies region.

Keeping this limitation in mind, we have nonetheless analyzed in this paper the full energy

region from threshold to 1 TeV, although at this final energy value the identification of the

signal might be difficult. The reason of this (optimistic) choice is that we do not have yet

at disposal a rigorous experimental analysis of the realistically expected size of the signal

at variable energies, as we had in the preliminary top-antitop paper [14]. This analysis is

being already performed, and will be included in the already mentioned forthcoming work.

b) The SUSY scenario that we shall investigate is the conventional mSUGRA one. In

particular, we shall consider a number of benchmark points that are nowadays available,

trying to choose those that show a definite difference in the values of the various SUSY

masses, and of tanβ. We insist on the fact that we could perform its calculation for any

choice of the parameters, but for obvious reasons we have limited the presentation of Figures

in this paper.

After these preliminary remarks, we now show in Fig. (3) the comparison (treated in Born

approximation) of quantities that we consider particularly worth of being considered, i.e. the
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parton c.m. angular dependences of the differential cross section in various helicity channels.

We have chosen four c.m. energy values,
√

s = 300, 500, 1000, and (academically) 2000 GeV

and retained for sake of comparison the full angular range −1 ≤ cos θ ≤ 1 (possible angular

cuts will be considered separately). We have only retained those terms that are numerically

meaningful, leaving aside the invisible ones. In the Figure, for simplicity, we show only the 5

amplitudes which are leading at high energy. These are the three asymptotic ones generated

by the helicity amplitudes previously defined and two extra ones, corresponding to F−−−0

and F−++−. The important points to be noticed are the following ones:

1. The relative relevance of the different helicity differential cross sections changes dras-

tically with the scattering angle for the two lower energy points. As one sees, the

scattering in the nearly backward region is totally dominated for
√

s = 300−500 GeV

by the two non asymptotic quantities; the weight of the asymptotic differential cross

sections becomes dominant when θ moves to the forward direction, where the overall

numerical size is, though, smaller than that of the backward region.

2. Although less evidently, these features survive also at the next energy point
√

s =

1 TeV. More precisely, the size of the F−−−0 distribution remains essential in the

backward region.

3. One might start doubting about the validity of our asymptotic assumptions. To show

that this is not the case, we have plotted the distributions in the last sub-figure, for

the (academic) point
√

s = 2 TeV. As one sees, the features at this energy are those

that would expect at (sufficiently!!) high energies:the largely dominant contribution

is that of two of the asymptotic quantities, more precisely F−++0 and F−−−−.

In conclusion, we see that the contribution of the non asymptotic helicity amplitudes, for

which no Sudakov expansion has to be expected, is essential for realistic (i.e., qualitatively

< 1 TeV) energies. A proper asymptotic behavior seems to eventually set in, but only at

higher energies (say, ∼ 2 TeV), where the possibility of detecting the signal appears, least

to say, debatable.Although these features were derived by an analysis performed in Born

approximation, we expect that the complete results that will follow will be consistent with

these preliminary impressions.
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V. RESULTS

The successful results of our previous tests have encouraged us to prepare with a reason-

able amount of confidence a numerical C++ code that contains the complete tested one-loop

expression of all the components of the considered process. This program has been called

MINSTREL and is nowadays working and available. Thanks to this code we are now able

to provide numerical predictions for the complete electroweak effect of the MSSM at one

loop on the realistic observables of the associated tW− production.

With this aim, we have returned to Eq. (47) and have considered a set of SUSY bench-

mark points that appeared to us suited for our analysis. More precisely, we have retained

representative points whose SUSY masses values are not light ( but not even dramatically

large) and also points whose masses are, conversely, light (in our language, lighter than, say,

400-500 GeV). Also, we have used points whose only essential difference is the value of tan β,

that is allowed to become definitely large (50) in one of the two cases and still appreciable

(10) in the second one. In this way, we should be able to compare the complete results with

those that we found in the light SUSY Sudakov approximation. For practical reasons, we

will only show the results of our analysis for a choice of four representative points. Two

of them are the ATLAS DC2 SU1 and SU6 points [16]; the remaining two are two points

whose spectrum has been evaluated by the code SUSPECT [17] and that we have called

LS1, LS2 where LS stands for Light SUSY. To make the reasons of our choice evident, we

have given in Tab. (I) the values of the various SUSY masses, and of tanβ, that correspond

to the four choices. One sees that the first two points correspond to a not light choice, with

two different values of tanβ; for the last two points, a light SUSY scenario is assumed, with,

again, two different tan β values. Two final technical points have to be now added:

a) Our calculations have been performed with a value of pT,min = 15 GeV.

b) In the calculations, we have included a QED soft photon contribution, computed

assuming an upper value of the soft photon energy ∆E = 0.1 GeV. As we anticipated,

the full treatment of the essentially Standard Model hard photon emission will be

contained in a dedicated paper [8].
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A. Unpolarized observables

1. Effects in the distribution dσ/ds

We can now show the first results of our calculations. In Fig. 4 we have drawn the

relative effect at one loop of the MSSM, and also of the SM alone, for the four choices of

benchmark points. The calculation stops at
√

s = 1 TeV as we announced. From a glance

at the different Figures, a number of (preliminary) conclusions can already be drawn. In

particular:

a) The genuine SUSY effect, i.e. the difference between the MSSM and the SM, remains

systematically small (a relative few percent) for all choices of the benchmark points in

the considered (realistic) energy region. In this sense, a measurement of the invariant

mass distribution of the process does not appear to be a promising way of detecting

genuine SUSY effects in the MSSM with mSUGRA symmetry breaking (this conclu-

sion could be not valid for different supersymmetric models or symmetry breaking

scenarios).

b) The relative effect of the considered MSSM is not, though, negligible. As one sees, it

varies from positive to negative values in the lowest part of the region, remaining sys-

tematically negative for larger energies and reaching a common value of approximately

ten percent around 1 TeV. This large energy negative shift from the Born level calcu-

lation appears a characteristic property of the considered MSSM model, independent

of the values of the parameters that were assumed in our analysis.

2. Ratios of partially integrated cross sections: a proposal

Since there is a wide energy region where the one loop effects are appreciable, i.e.
√

s &

500 GeV, we can split it in two parts, compute the associated integrated cross section, and

evaluate the ratio R of the two partial cross sections. This investigation is motivated by the

following remarks concerning general properties of R:

a) It should be free of several systematic experimental errors;

b) It should be free of several QCD effects (same pdfs, same virtual corrections);
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c) It should be essentially unaffected by photon radiation effects.

To give an explicit numerical example, we have considered the scenario SU6, and have

split the high energy region in two parts:

Ethreshold ≡ mt + mW <
√

s < 400 GeV,
√

s > 400 GeV. (49)

We call σ− and σ+ the integrated cross section
∫

(dσ/ds) ds in the two regions, and define

R = σ+/σ−.

We denote by ε± the relative MSSM effect on the two cross sections. We also denote by

N± the expected number of events associated to the two regions. Of course, N± = L σ±,

where L is the luminosity. If we call ∆MSSMR and ∆statR the MSSM and statistical shifts

on R we have

∆MSSMR = R(ε+ − ε−), ∆statR = R

(
1√
N+

+
1√
N−

)
. (50)

In our test case, the Born value is R ≃ 0.58 and the difference ε+−ε− gives a shift 0.57 → 0.60

of about 3.5 %. the purely statistical error computed with a luminosity L = 10 fb−1 gives

∆statR ≃ 0.002, i.e. a shift about 10 times smaller than the MSSM effect.

We conclude that radiative effects in ratios like R are beyond the statistical noise. Of

course, systematic errors are expected to dominate over statistical ones. Thus, a detailed

dedicated experimental study of the process reconstruction will be crucial to assess R as a

realistic observable and a potential precision test of the electroweak sector of the considered

MSSM.

3. Sudakov-like parameterizations

To conclude the unpolarized session, we have tried to give an effective parametrization of

the full one loop effect in the spirit of the logarithmic Sudakov expansion. As we remarked,

a straightforward comparison with the results described in Sec. III is hampered by a variety

of problems, that we now emphasize:

a) Box diagrams are functions of the Mandelstam invariants t, u beside s. At small or

large angles, these can be small (compared to the internal squared masses and s) and

spoil the validity of the Sudakov approximation.
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b) At high but moderate energies (below 1 TeV) there are several subleading helicity

channels which are relevant and non negligible. These channels certainly admit a

Sudakov expansion. However this is not as simple as that of the leading channels. The

coefficients of the expansion for these amplitudes have not been investigated before

and could or could not turn out to be simple combination of quantum numbers and

couplings as in the leading case.

c) In the MSSM, we have sparticles with masses around 300-400 GeV, even in the lightest

considered scenario LS2. The extent to which they can be regarded as small can only

be determined by an explicit numerical comparison of the two calculations. Indeed, by

a careful inspection of the various involved diagrams one sees that box diagrams can

display a rather delayed asymptotic behavior. In practice, if the typical virtual masses

are of order m, there are box diagrams with asymptotic behavior ∼ log(
√

s/m′) where

m′ can be 4-5 times larger than m, depending in particular on the scattering angle.

This large effective scale contributes a large energy independent constant shift in the

difference between the Sudakov and the one loop calculations. Also, since we always

require
√

s ≫ m′, it pushes forward the energy range where the expansion is accurate.

As a consequence of these remarks, the difference between the full one-loop MSSM effect

and the Sudakov approximation is expected to be a small, slowly varying function of the

energy, at least in the considered energy range. On the contrary, in the Standard Model,

all masses are quite light compared to the typical 500-1000 GeV parton energy and we can

hope to observe a better accuracy of the Sudakov expansion.

All these expectations are confirmed by actual calculations. As an illustration, we show in

Fig. (5) the comparison between the full one loop and the Sudakov calculations of the effect

in the distribution dσ/ds. The left panel shows the Standard Model case. The right panel

shows the LS2 MSSM scenario, which is the lightest considered. For purpose of comparison,

we have switched off QED radiation and set Mγ = MZ . We have computed the effects up to

unrealistic values (2 TeV) of the energy, just to emphasize the convergence at high energy.

The Sudakov approximation is evaluated with a common scale M̃ in the double and single

logarithms. The best value of M̃ is an important issue and will be discussed below. The

main features of the figure are the following.

a) In the Standard Model, we choose M̃ = MW . We observe a remarkable agreement.
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The expansion is rather accurate down to energies
√

s ≃ 500GeV . The relevant

scale is the electroweak breaking one ≃ MW and there are no large constant (energy

independent) contributions.

b) In the LS2-MSSM case, we adjust M̃ in order to have the same slope in the two curves.

We have found the optimal value M̃ = 120 GeV. With this choice, there is a large

but constant shift of about +6% with respect to the Sudakov calculation as shown

in the upper right panel where we show the two curves. To emphasize the energy

independence of the shift, we show in the lower right panel the same one loop curve

together with a shifted version of the Sudakov one which has been moved upward by

a constant +6%. The agreement is again remarkable, exactly like in the Standard

Model case.

In principle, these features could be useful if one were interested in preparing a complete

NLO parametrization of the process, that includes QCD effects and decay simulation by

Monte Carlo. The expected smoothness of the radiative effects beyond thresholds can be

exploited to replace the full calculation by simple (model dependent) interpolating expres-

sions. This is particularly relevant in the SM case where the Sudakov-like parametrization

of the process is fixed and does not depend on any model parameter, but only on the kine-

matical cuts.

This remark concludes our presentation of the unpolarized effects. We move now to the

discussion of the possible polarized observables of the process.

B. Polarized observables

1. Final top asymmetry: one loop effects in ALR

A special property of the tW− production process is the fact that, in principle, the

polarization of the final top quark and/or W boson can be measured. This fact, that was

first considered in a previous reference [18], leads to the introduction of new observables, that

we shall try to list and to discuss in what follows. The first possibility is that of measuring

the final top polarization. In the process that we are considering, the final top can have in

principle both helicities, as one can see from the expressions of the helicity amplitudes given
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in Section 3. In correspondence to the two possible choices, we shall define two different

differential cross sections, that we shall define as dσL,R/ds, that are the analogues of Eq. (47)

where only the contributions from the two types of final top have been retained. Plotting

these quantities at variable
√

s, as we did for the total unpolarized cross section, would

lead to conclusions that do not much differ from those already given in the previous part

of this Section: the genuine SUSY effect is still rather modest. Again, the overall MSSM

effect is, though, not small. This could be seen in the plots of the two distributions, but

from our previous discussion we believe that it might be preferable to consider, again, ratios

of cross sections. With this aim, we have defined the ratio of the integrated cross sections

asymmetries, i.e. the quantity

ALR(s) =
σL(s) − σR(s)

σL(s) + σR(s)
, with σL,R(s) =

∫ s

E2

threshold

dσL,R

ds′
ds′. (51)

Figures (6,7) shows the values of ALR at variable
√

s. One sees that, considering a realistic

value e.g.
√

s = 500 GeV, the one-loop effect on the asymmetry reaches in all considered

SUSY scenarios an absolute value of slightly less than 1 %. This number should be compared

to the realistic overall uncertainty. For the reasons that we have discussed previously, we

expect essentially a dominance of the purely statistical experimental error, whose size will

depend on the available integrated luminosity. Lacking a dedicated experimental analysis

(in preparation), we can use as a guidance the preliminary quoted value (for a different

single top production process, the t-channel one) of [18], that is a (mainly statistical) four

percent.

2. Final W asymmetry: one loop effects in ATL

In the tW− production process, the final W− is real. Therefore one can, in principle,

measure the primary W polarization. Assuming that this is the case, we have defined two

quantities that are the analogues of Eq. (51) and, starting from them we have introduced

the transverse-longitudinal asymmetry, defined as

ATL(s) =
σWT

(s) − σWL
(s)

σWT
(s) + σWL

(s)
, with σWT,L

(s) =

∫ s

E2

threshold

dσWT,L

ds′
ds′. (52)

The numerical values of ATL are shown in Figs. (8,9). In all cases the one-loop effect at the

point
√

s = 500 GeV has an absolute value of about 0.5 %. We do not have yet at disposal
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a suitable experimental analysis for this asymmetry, that is in fact being carried on [15].

VI. CONCLUSIONS

In this paper, we have performed the first complete electroweak one-loop analysis of

the associated tW production process in the MSSM with mSUGRA mechanism of SUSY

symmetry breaking. This has been done using a numerical program, MINSTREL, that

satisfies the three constraints of cancellation of ultraviolet and infrared divergences and of

reproduction of asymptotic Sudakov expansions. We have considered various experimental

potential observables, both for unpolarized and for polarized production. We have found a

relatively small genuine SUSY effect for the representative SUSY benchmark points that we

have selected, and a possibly appreciable, mostly of SM origin, overall one-loop effect. We

have proposed a number of new observables, in general ratios of experimentally measurable

quantities, that would be essentially free of disturbing theoretical QCD and experimental

systematic uncertainties. For these quantities, the predictions of the MSSM would be rather

precise, making them appear as possible precision tests of the involved genuine electroweak

content of the model.The extension of our results to a different MSSM scenario or to differ-

ent SUSY models would be straightforward. The still missing corresponding experimental

analysis of the various proposed observables of the process is being carried on, and will

appear in a more complete forthcoming paper [15].
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SU1 SU6 LS1 LS2

m0 70 320 300 300

m1/2 350 375 150 150

A0 0 0 -500 -500

tan β 10 50 10 50

µ/|µ| 1 1 1 1

α -0.110 -0.0212 -0.109 -0.015

M1 144.2 155.8 60.1 60.6

M2 270.1 291.3 114.8 115.9

µ 474.4 496.6 329.7 309.3

H± 534.3 401.7 450.4 228.9

H0 528.3 392.5 442.5 211.1

h0 114.6 115.7 111.4 110.8

A0 527.9 392.5 443.4 212.0

χ±

1 262.8 289.3 108.0 111.1

χ±

2 495.3 514.8 350.1 329.4

χ0
1 140.1 153.0 57.38 58.92

χ0
2 263.1 289.4 108.5 111.3

χ0
3 479.2 501.0 335.3 315.8

χ0
4 495.4 514.0 348.7 326.5

SU1 SU6 LS1 LS2

l̃L 253.3 412.3 321.0 321.2

l̃R 157.6 353.4 308.7 308.7

ν̃e 241.0 404.8 311.3 311.3

τ̃L 149.6 195.8 297.1 078.1

τ̃R 256.1 399.2 323.8 282.5

ν̃τ 240.3 362.5 308.4 243.6

ũL 762.9 870.5 459.8 460.2

ũR 732.9 840.7 451.9 452.3

d̃L 766.9 874.0 466.4 467.0

d̃R 730.2 837.8 452.8 453.2

t̃L 562.5 631.5 213.3 223.6

t̃R 755.8 796.9 462.9 431.3

b̃L 701.0 713.7 380.6 304.0

b̃R 730.2 787.6 449.1 401.7

θτ 1.366 1.133 1.091 1.117

θb 0.3619 0.7837 0.184 0.653

θt 1.070 1.050 1.016 0.9313

TABLE I: Table of spectra for the various benchmark points. All entries with the dimension of a

mass are expressed in GeV. The spectra have been computed with the code SUSPECT [17].
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FIG. 1: Born diagrams for the process bg → tW−.
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FIG. 2: Generic diagrams for the process bg → tW−. We list only the vertex corrections and the

box diagrams. The labels S, F, and V denote generic particles with spin 0, 1/2, and 1.
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FIG. 3: We show the energy and angular dependence of the 5 helicity amplitudes which are leading

at high energy. Of course, these include the three amplitudes which are not mass suppressed. In

addition, we show the next relevant amplitudes which are the mass suppressed ones F−−−0 and
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