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A study is made of the kinetic features of the method of electron cooling of beams in heavy particle storage rings. In the
first part of this work, Landau's collision integral for Coulomb interactions is used to obtain a kinetic equation for a
beam of particles passing periodically through an accompanying stream of electrons. Apart from collisions with electrons,
account is taken of scattering on coherent fluctuations (of nonthermodynamic origin) of the space charge of the electron
beam, and on atoms of residual gas. The final kinetic equation is the Fokker-Plank equation in action variables.

In the second part, an investigation is made on this basis into the effect on the kinetic process of deviations in the
electron stream from a state of thermodynamic equilibrium (in the accompanying system). A qualitative investigation is
made into the dependence of attenuation speed and of the stabilized values of angular and energy spread on the velocity
distribution of electrons and on the spatial inhomogeneity of the electron beam in the radial direction. An evaluation is
made of the permissible level of coherent noise in the electron stream. A solution is obtained for the kinetic equation in
the region of small angles (Bp < Be)' An important theorem is established concerning the sum of decrements of the
oscillations. An investigation is also made into the nature of the solution in the region of large amplitude.

INTRODUCTION

As is known, synchrotron radiation, which is used
in storage rings of electrons and positrons for ob­
taining dense beams, is practically absent in the case
of heavy particles. G. Budker has proposed the
method of "electron cooling" for particle beamsin
storage rings of heavy particles,' based on the
heat -energy transfer from the beam to an electron
stream with lower temperature. In the first ap­
proximation, the kinetic process can be described
as the usual relaxation of a two-component
ptasma.':" If the electron current is continuously
renewed, then at complete equalization of tempera­
tures the angular and the relative energy spread for
protons (antiprotons) is decreased by (Mjm)1/2
times with respect to the electron spread. The
"relaxation" time at electron density n = 108 em - 3,

proton energy W = 1 GeV, initial angular spread
() p ~ ()e = 3·10- 3 and the orbit filling factor for the
electron beam 1J = 0·1 and for a Maxwellian
distribution of free particles is about 100 sec.

The kinetics of electron cooling is actually much
more complex since one cannot consider the
focused proton beam moving in the vicinity of a
closed orbit as a free particle gas. On the other hand,

t The work was performed in 1968 (Preprint INP No. 255
(1968); CERN Trans. 69-18).

an electron beam cannot, strictly speaking, be
considered as a thermostat, as the possible (and
partially inevitable) deviations from the thermody­
namic equilibrium state in an electron current will
not damp (in contrast with the closed system) and
affect the kinetic process.

The kinetic equation enabling a correct account
of the features of the electron-cooling kinetics
is derived in the first part of the present work. In
Section 1 on the basis of the Landau collision
integral? and its relativistic generalisation," an
expression is obtained for the collision term of pair
collisions of protons with the beam electrons and
atoms of the residual gas in terms of phase-action
variables. In Section 2 the derivation is performed
for the "coherent" part of a collision term describing
the particle diffusion from fluctuations of non­
thermodynamical origin in the electron stream. In
Section 3, a basis is given for averaging the equa­
tion coefficients over the phases; after that the
kinetic process is described by the Fokker-Plank
equations in the space of the action variables.

In the second part of this work, a study is made,
on this basis, of the effect of "nonideal" features of
the electron stream on the damping rate of the
momentum spread and its stabilized width. In
Section 1, a qualitative study is made of the part
played by deviations in electron distribution in the
accompanying system from the Maxwellian. It is
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shown that Coulomb collisions may cause anti­
damping in the oscillations of individual degrees of
freedom if the energy of orderly motion of the
electrons exceeds the thermal energy. As a result
of the coupling of radial and longitudinal motion in
accelerators, the kinetic process is also quite
sensitive to spatial inhomogeneity of the beam of
electrons. In Section 2, an evaluation is made of the
permissible values of the gradients of the average
velocity, density and temperature. of the electrons,
above which the proton oscillations become un­
stable. In Section 3, an evaluation is made of the
permissible level of coherent noise in the electron
current and an examination is made of other
questions. The solution of the kinetic equation in
the range of small angles fJ p < fJ e (fJe is the electron
angular spread) is obtained in Section 4. In addi­
tion, an important theorem is. established con­
cerning the positiveness of the sum of decrements of
the oscillations, and its nondependence on the
gradients of electron distribution in the phase
space (p, r). Finally, an investigation is made in
Section 5 into the nature of the solution in the range
fJ p > fJe and the dependence of the damping rate
on the cross section of the electron beam.

PART I THE KINETIC EQUATION

It is appropriate to rewrite the collision integral
in terms of p, r variables with respect to a moving
system, where the interaction of protons and
electrons is Coulombian (the relative velocities are
nonrelativistic). Since the distribution function isa
relativistic invariant," there is no need to include a
special designation for it in this system.

The right-hand side (1.1.1) can be represented
in the form 5 ,6

div i == [eqJc; f] + div ist
where qJc is the potential of the self-consistent field
of the system of charges and ist is the collision
current proper.

A contribution to ist is given, not only by the
collisions with electrons, but also by the collisions
of protons amongst themselves and with atoms of
the residual gas. An assessment of the interaction
between protons is beyond the scope of the present
work. In any case, we shall assume that the density
of the beam of protons is sufficiently small for us
to be able to ignore their collisions during the time
of damping.

Let us first examine collisions with electrons. In
the Landau approximation.v'':" in the usual
momentum space has the well-known form:

f u2<5 - u u. _ 2 2 ,2L d 3 , ap a pI« - ne e P 3
U

(1.1.5)x (af f' - f af ,'),
app app

where e and e' are the particle charges, f(p, r, t)
and f'(p', r', r) are distribution functions, U ==
v - v' is the relative velocity and L == In(Pmax/Pmin)
is the Coulomb logarithm. For the expression
(1.1.5) to be correct it is necessary that L ~ 1.
Pmin is represented by the impact parameter at
which the momentum transfer during the collision
is ~p' "-' p': Iee' I/Pmin == IlU2(1l is the reduced mass).
With a relative angular spread in the laboratory
system of 10- 3 - 10- 2 , Pmin "-' 5(f3y)-2. (10- 9 ­

10- 7)cm. The parameter Pmax may be represented
by the Debye radius of the electron "plasma" d,
the cross-sectional dimension of the beam b, or
the impact parameter Po "-' To<IU I), which is
determined by the time-of-flight of the proton
through the beam To:

Pmax "-' min{d, b, Po}. (1.1.6)

For typical parameters of the electron beam,
Prrtax "-' 0.1 - 1 em. In this case, L ~ 20..The large

(1.1.2)

(1.1.3)
. i, ae i

Ji == -a--'
Pa

a aji
at f(C, t) = - ec;

The components j, are linked with j, by the usual
rule of vector transformation:

Collision Integral

The kinetic equation for the distribution function of
interacting particles in an external field has the
following general form

a ~)-a f(p, r, t) + [~; f] == - -a' (1.1.1
t Pa

where ~ is the Hamiltonian of a particle in the
external field, i is the particle current in the phase
space resulting from the interaction. If a trans­
formation is made in the equation from the usual
momenta and coordinates to canonical integrals
of motion in the external field (for example, action­
phase) the Poisson bracket drops out of the equa­
tion:
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a = K(V - v~)r + K-l {v~(r')dr' == KU H + K-lr~(r).

(1.1.8)

In order of magnitude, Ir~(r)1 ~ PL. In the range
KPL ~ 1 the small values of r are substantial
(WL r ~ 1); in this case (J = xur, This means that
the contribution of this range of impact para­
meters (K = p- 1

) has the form (1.1.5) where L =
L 1 = In(PL/Pmin), u = v - v'. In the range KPL < 1
the second term in the expression (1.1.8) can be
ignored, which corresponds to the substitution
U -+ UH = V - v~. Thus, for this range, ist can also
be written in the form (1.1.5), where

L = L 2 = In(P;:X)' U = v- v~,

value of L makes it possible to use (1.1.5) even when
spatial inhomogeneity is considerable.

The electron beam can be focused with a longi­
tudinal magnetic field H in order to "compensate"
the space charge. If the mean Larmor radius of the
electrons PL proves to be much less than Pmax'
the expression (1.1.5) will, generally speaking, be
unusable, as it is necessary to take into account the
Larmor rotation of electrons (with regard to the
protons we shall assume that the distortion of their
trajectories in the region of beam interactions can
be ignored). In this case, it is necessary to use the
general expression L, which takes into account
the effect of the external field on the collisions.6,

7

In the case of a homogeneous (or slightly inhomo­
geneous) magnetic field, ist can be written in the
form:

Ja = e
2e,2 fd ' p'd3

K f:oodr exn[nc {Uo dr']

x K a K (of f' _ f of') (1.1.7)
K 4 apr ap~ ,

where Pr, p~ are the particle momenta in the mag­
netic field as a function of time with an initial
condition of Po = P, p~ = p'. Integration over K is
contained within the limits of P~;x and Pmi;.

It is convenient to break up p~ for electrons
into components which are longitudinal and
transverse to the magnetic field:

p~ = p~ + p~(r).

The phase of the exponent in (1.1.7) is

where

(1.1.14)
a

Fe = - avU(v, r),

In the physical sense, Fe is the mean momentum
transferred to the particle by the medium in a unit
of time, if no account is taken of scattering (to
which corresponds M ~ (0). As a result, the force F
is referred to as the dynamic frictional force.":"
The tensor of diffusion dap , on the contrary, cor­
responds to the interaction with infinitely heavy
moving Coulomb centres. The true mean force is
equal to <l1p). As can be seen from (1.1.12), the
force Fe has a potential in velocity space:

For a current i1' when U = v - v', tp; as a func­
tion of the velocity v has the form of a potential of

2ne2e'2 f (a u) 4ne2e'2
U(v, r) = -m-- L d 3

p' av' ~ = -m-- t»;

(1.1.15)

where

<APa)e = F: + ~ o~p <ApaApp)e (1.1.11)

Fe = i fd 3p ' Up of' .2ne2e'2L (1.1.12)
av U ap'p

t Below in our work we shall not deal in detail with the
effects connected with magnetic field and take H = O. For
careful study of the magnetic field effect on the cooling kinetics
further investigations will be required.

2 2 f 3 U2bap - UaUp
<I1Pa l1pp)e == d~p = 4ne e' L d p'f U 3 .

(1.1.13)

This structure of ist has a simple physical mean­
ing: in the range KPL .~ 1 the collisions occur adia­
batically in relation to the Larmor rotation of
electrons and the degrees of freedom which are
transverse to H do not contribute to the momentum
and energy exchange. (More accurately speaking,
the condition of adiabaticity is KUH ~ WL; if
1;H ~ VT' then PL in (1.1.9) must be replaced by
PI = U/WL)t).

For future use, it is convenient to write (1.1.5) in
the form

(1.1.9)Pmax ~ PL·
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velocity in the laboratory system, we will obtain

2 Scattering on Coherent Fluctuations of the
Space Charge

(1.1.18)

as must be the case.
It .is sufficient in the expression <~p II >0 to take

into account only the electron component, in view
of the electron's small mass. The scattering, on the
contrary, occurs mainly on the nuclei.

«~PII)2)0 == <~Pa~PP)Oa*fJ == 0

(p1- == {pr' Pz} ) (1.1 .19)

Coulomb scattering may not be the only mechanism
of diffusion (or "heating") of the proton beam in an
electron current. Apart from the basic stationary
part, it is also necessary to take into account in the
space-charge field an irregular "random" part which
is associated with collective fluctuations in density
and velocity, caused by sources of an "external"
origin (oscillations in the controlling voltage,
cathode scintillation, etc.).

We shall first make a formal derivation of the
expression of the corresponding collision term,
departing in (1.1.4) from the stationary part of the
potential ({Jc == ({Jc(r) + ({Jc(r, t) and the Coulomb
collisions. In accordance with the theory of dis­
turbances, we shall expand f(p, r, t) into a series by
degrees of

f == f(O) + f(l) + t'" + ... . (1.2.1)

Since the coherent fluctuation times may not be
small in comparison with the period of movement
in the external field, it is convenient to change im­
mediately in the kinetic equation to the C,variables:

a -- f + [V; fJ == o.at
If we insert here the expansion (1.2.1), we will

obtain:

a -at f(1) + [V; foJ == 0;

If we take, for the particles of residual gas, the
distribution function in the form fa ==
na 6(p' + vm; Vol, where Vo is the mean proton

== _ fd 3p
' j"({Ju ,

u

. 4 ~ 2 f 2' ( af f aj~)
Ja = 2ne ~ ZaLa d p SaP OPp fa -. OPp ,

where Z; is the charge of type "a" particles, La is
the corresponding Coulomb logarithm, SaP is the
collision matrix, for which a cumbersome expres­
sion covering the general case is given in Ref. 4.
In our case, we can obtain a simple expression for
SaP if we take advantage of the small velocity of the
protons v in relation to the velocity of the gas v' and
eliminate in SafJ the members of the order vlt'; vic
and higher,

_ v'26ap - v~vp O(~~)
SaP - '3 + ".v1

V C

attraction, created by the distributed Coulomb
sources:

This analogy, thanks to its familiarity, can
conveniently be used for practical calculations and
evaluations.

For a current j2' when u == v - v~, ({Jv has no
Coulomb analogue:

~L' = ~ fd2pj'(O~~ ::)

- ~ v2 fd 3p I r
2 1- uk
Vl. a ,

- - - ({JH (1.1.17)
2 8vl. '

where ({JH is the potential (1.1.16) created by a 6­
type distribution in a direction transverse to the
magnetic field

1'{p~, r) = b{p~) fd2p~ 1'{p', r).

Let us now obtain jg for collisions with atoms of
resid ual gas. Its influence should be in lateral
scattering of protons on nuclei and deceleration
(entrainment in the accompanying system) on
electrons. As the relative velocities of protons and
atoms may be relativistic, it is necessary to use the
expression jst obtained in the relativistic case by
Belyaev and Budker:4
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The average speed of variation of f(C, t) is

(:t f) = (:t f(2))
= ([V;[f o: V(C, t')dt';fJJ), (1.2.2)

The mean <...> in (~.2.5) is, by definition, a
correlation function of fluctuations in the field
X cxp(rIr', t/t'). Provided there is a spatial and
temporal homogeneity, X cxp is a function of the
difference of the arguments and may be expressed by
the spectral density of the fluctuations :9.11

K,W

(1.2.10)

(1.2.11 )

F = 22 '2 '"' KcxKfJ Jd3 ' aj"
a eeL ~4 ,2 P ,

K. W K I (~II lap IJ

X J(w - KV')<5(W - KV)

dcxlJ == ne2 I (E~Et)~'.(I)J(w - KV),
K.W

(1.2.6)

(E~Et)~.(I)· J(w - w')

= Jd3K'<E~(K', W')Et(K, w)ei(K'-K)r (1.2.8)

X~p = L IE, Et)K. co exp[il((r - r') - iw(t - t')].

x cxp[nctr - r.) + iwr]Af!, (1.2.9)

where Af! is the expression in curved brackets in
(1.2.5).

As we know," the integral of paired collisions
(1.1.10) can also be obtained in the spirit of the
general method for composing the Fokker-Plank
equation, taking into account the frictional force
calculated from the undisturbed movement of the
charge, and scattering on thermodynamic fluctua­
tions of the field of the medium. In the case of a
homogeneous plasma the expressions F and dcx fJ '

which take into account dynamic polarization of
the medium by interacting particle, have the form

K,W

In this case

In the spatially inhomogeneous case, x'cx/J is not a
function only of the difference r - r'. The form of
notation of (1.2.6) and (1.2.7) can be retained if the
"local" spectral density is introduced:

(the correlation of Fourier harmonics is now not
proportional to b(I( - 1(/)). The diffusion tensor in
the space of integrals C, can thus be written in the
form:

Di K = <[V~ C;][S~ CK] + [V~ CK][S; CiJ>.
Di K can be expressed explicitly by fluctuations in
the' electrical field:

~Ci = [S; CiJ.
If, as usual, we change over from time averaging

to probability averaging, the scattering tensor in
(1.2.4) can be written in the form

J
t ec.:

= e ~ L\E(rt " t')dt'
- x. (/Pt'

since by definition

(:t f(1)) = [<V); f] = 0.

We shall introduce the designation

S = f X! V(C, t')dt'

and transform (1.2.2), using the characteristics of
the Poisson brackets:

/a ) Id __
\at f = 2dt <[S; [S; f]]) + CUe; f], (1.2.3)

where U, = ![V ~ S] is the correlative potential. 10

The last term in (1.2.3) is the usual Poisson
bracket and does not contribute to diffusion: the
potential Uc can be considered as a minor cor­
rection to the regular part of eqJc : If we use the
notation of the Poisson brackets in the form of a
divergence of the current vector in the phase space
we will obtain the diffusion equation

a 1 a /d - - ) a
at f - 2 aC

i
\dt (LlCLlCK ) aC

K

f = 0, (1.2.4)

where
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where

i.e. it exceeds the themodynamic equilibrium
value9 , 1 3 (at the same time, if the representation
concerning the waves is to be applicable, it is
necessary that «~E)2> ~ nT, i.e. when the waves
are taken into account, there must be no variation
in the "gross" characteristics of the medium). The
diffusion rate increases accordingly. The rate of the
Coulomb losses

3 Averaging over Phases

Let us now write, in Cli variables, a full kinetic
equation which takes into account collisions with
electrons of the beam, residual gas and scattering
on coherent noise,

a > a ( > 1 a j') _0 ( 1)atf+acQjf-"2DiKacK -,1.3.

where

aci acK e 0 - (3 2)DiK = -a -a (dap + dap) + Di K • 1..
Pa Pp

As canonical integrals of motion we shall take
three pairs of conjugate variables, action l , and

and

Let us now discuss certain special features of an
interaction with coherent noises which are related
to the specific problem. In an isolated volume of
plasma, the spectral density of the waves is con­
centrated in the range K ~ d - 1, where a develop­
ment of instabilities is possible, while in the range
K ;<:' d - 1 the waves are quickly attenuated. Con­
sequently, the coherent part of the spectrum
iE, Et)K, W is sharply separated from the thermo­
dynamic part (interaction with "plasmons'TP
In our case, when the time-of-flight of the proton
through the beam may be comparable with the
period of Langmuir oscillations d/vT, and the
beam and "waves" in it are constantly being re­
newed, the spectral density may be substantially
different from (1.2.12) also in the range K ;<: d - 1,

since there is not enough time for the waves to be
attenuated. For the same reason, possible plasma
instabilities cannot playa substantial part either,
since their times are normally r ~ d/vT' The'
fluctuations caused by an "external" source may
only be deformed substantially when spreading
occurs in the electron current. Another special
feature is due to the oscillatory character of proton
motion near the equilibrium orbit.: slow variations
in current and density in the beam with frequencies
of W ~ oi, (Wi are the partial frequencies of proton
oscillations) are adiabatic in relation to the os­
cillation of protons and do not lead to an increase in
amplitude. For a given spectral density, this is
automatically achieved by the structure of the
tensor diffusion (1.2.9).

(1.2.13)- 2 J;,
«~E) > ;<: d"

_(dd~) = -Fo v

practically does not change, since the action of the
particle on the medium is due principally to paired
collisions, on which the presence of "weak:'
coherent noise does not have any significant
influence. In this way, the coherent fluctuations
raise the' final temperature of the proton beam,
without affecting the damping rate. However, if
cooling is to take place at all, it is essential that the
maximum value of Coulomb losses exceeds the
diffusion rate:

* T _ 2Ka K
p fd3' >'X( ~ ')(EaEP)K,W - 41' 12 p'j u W KV,

1rK c"
(1.2.12)

and cll(K, w) is the electrical permeability.v-v'? The
factor IB"I- 2 takes into account Debye screening
(IBIII'" 1 + (Kd)-2). (1.2.10) and (1.2.11) coincide,
with logarithmic accuracy, with (1.1.12) and (1.1.13).

It can be seen ·from a comparison of (1.2.9) and
(1.2.11) that (1.2.9) may be a general expression of the
tensor of diffusion through the total spectral den­
sity, including both (1.2.12) and an "epithermal"
part.

In the case of a thermodynamically stable plasma,
when <EaEt>K,W = (EaEt)~,w, taking into account
the absorption of the energy of the fluctuation
field leads to thermal equilibrium of test particles
(protons) with the medium: Tp = Te. But if waves
with random phases (coherent fluctuations) are
now induced in the plasma, the spectral density.
may considerably exceed (1.2.12). Physically, this
means that the energy of the waves is comparable
with or much greater than the Debye energy of the
Coulomb interaction of charges of the plasma:
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L(t) = L + L(t),

apply to (1.3.1) the averaging method, and write
the equation in the following form, for shortness:

The operator L(t), as a function with a line­
spectrum, can be represented in the form

(1.3.5)
o A 1~
ot f + Lf + 2 [LM]f = 0,

rM = Ldt'.
to

where [LM] is the commutator of the operators L
and M, where M is given by

o A 0 (- 1 - 0 )at f = -Lf = - aC
j

QJ - 2. D;" ac" f .

(1.3.6)

The condition At ~ 1 means that the relaxation
time r ~ To since At 1"0,.1 To L, and L 1"0,.1 r - 1, in a
physical sense. An averaging of the coefficients of
the kinetic equation for the time "on the trajectory"
with this condition provides the basis for so-called
anti-diffusion approximation. 1 0

In practice, averaging over time can almost
always be replaced by averaging over phases t/Ji.
The operator L as a function of phases can be

o ~
-0 f + L(t)! = O.t .

where L.represents the mean value of L over the
period To ""' W i- 1 and L is its oscillating part. (By
the period To we should understand a sufficiently
large period of time such that

TOll f+T Ldt'l ~ L.

If the third term in (1.3.5) represents a minor
correction (M ~ 1), taking it into account cannot
change the nature of the solution even over great
lengths of time, since the solution of the kinetic
equation with time either tends to a stable stationary
state or diverges. It is sufficient to use the equation

In this sense, the operator L can be treated as a
periodic function of time, with a mean value equal
to zero.) The averaged equation, which gives the
correct change in the function f over the period To
with an accuracy up to terms of the second order, is

Here, es = wst, P = yf3MC, 2nR are respectively,
the azimuth, momentum and length of the orbit of
the equilibrium particle, f,. and fz are Floquet
functions, t/J is the forced solution of the equation

or p
r = rb + r.: Pr = oe Ii

R fI, . erb = p '.}2 fr(O)eXP[IVr + CPr] + c.c.,

yRt/J(e)p II
r =--~

e P

R fIz
z = p '.}2 i(O)exp[ivzO + cpz]+ c.c..

(1.3.3)
p oz

pz = Roe

8 = e- es = 1ge + 9b :

.9
b

= (t/J arb/ao - rb d~J/dO)

R

I~~ I~ IEll I~ 1.
I P I

and P II is the longitudinal momentum in the ac­
companying system. In the absence of an rf field
PII = Ie, d3e/de 1"0,.1 Pilip = const, but for the
bunched beam

phase (fJi, through which radial, axial and longitu­
dinal deviations of the coordinates and momenta
from the equilibrium phase trajectory are expressed
as follows :14

d2 t/J R
d02 + [1 - n(O)]t/J = R(O)'

ole
~=PII·

(1.3.4)

Together with the coordinates and momenta of
particles, the coefficients of the kinetic equation
(I.3.1) are periodic functions of "fast" phases
t/J = co, t + ip, When considered as functions of I,
and (fJi, they oscillate with time, in which case
the oscillations generally cannot be considered
small. It is, however, possible to replace (1.3.1) by a
much simpler equation with coefficients which are
not time-dependent, if the variation of f(C~ t) over
a time of the order w i- 1 is small. For this we shall
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represented by a Fourier series

LU, 1/1) = L: L1mP)eXP[i L mit/Ji]'
{m} i

The frequencies of variation with time in the
harmonics are

W{m} = L m.co..
i

Apart from the "zero" harmonic, m, = 0, which
represents simply the mean value for the phase L,
when averaging for time is effected, nonzero con­
tributions to L may also come, generally speaking,
from harmonics with frequencies of

W{m} ~ r- 1. (1.3.7)

Formally speaking, it is always possible to select a
combination of {m} such that w{m} can be made as
~mall as desired. However, the condition (1.3.7) can
In the general case be justified only for quite high
m, if consideration is made of the fact that oi, r ~ 1.,
and the frequencies Wi' as a rule, do not form,
among themselves, rational relations of a low order.
Consequently, the values of such harmonics will be
small enough to be ignored. In reality, it is necessary
to consider also the nonlinearity of particle oscilla­
tions, which leads to the dependence of frequencies
on .a~plitudes. In spite of the relatively small
vanation of frequency with amplitude:

lL1w.1= !L11KaWil:< .
I aI ~ W"

I K I

this dependence leads to violation of the "re­
sonance" condition (1.3.7) when, under the effect of
collisions, I receives an increment L11. such that

lL1w{m} I > r- 1
•

This circumstance is particularly important .when
estimating the part played by resonating harmonics
of a low order, which may be comparable in size
with the zeroth harmonic. An exception to this
may be those cases when the resonance condition is
maintained by self-phasing, which occurs as a
result of an "external" disturbance, for example, the
electron-beam field. In the case of nonlinear re­
sonances, this phenomenon may be ignored if the
phase volume inside the separatrix of the resonance
is relatively small.

Thus, provided that t ~ To, it may almost
always be considered that the kinetic coefficientso. and 15iKdo not depend on the phases <Pi' This
makes it possible to change over to a much simpler

equation for the function of three variables t.,
after having integrated equation (1.3.6) for phases:

a > a {- 1 - a }
at.f + a]; QJ - 2. D;K aC

K
f = O. (1.3.8)

The sign ( - ) now indicates averaging for phases of
transverse and longitudinal oscillations, and for
the azimuth on the equilibrium proton orbit.

The equation (1.3.8) can be conveniently written
in the standard form of Fokker-Planck V"!"

a. a{ 1a }at.f + aJ
i

<M;>f - 2. aJ
K

<M;l1JK>f = 0,

(1.3.9)

where

(1.3.10)

(1.3.11)

. In the physical sense <L11i) d = Qi gives the speed
I on account of dissipative processes (Q; is the
"pow~r". of the frict~onal force) and <L11 i).f t

~escrIbes the average Increment of I, in a unit of
ttme on account of absorption of the energy of the
fluctuation field of the "medium." In the oscillation
condition, when I, defines the energy of the oscil­
lator, the values of <L1Ii) characterize, for a group of
particles with close values of I;., the direction of the
kinetic process as a whole. In the case of infinity of
motion, when l .> Pi' the moments of(1.3.11) also
are important in this sense.

The coefficients aIJapa, which are necessary for
composing (1.3.10-1.3.11), can be found directly
from the expressions (1.3.3-1.3.4) by making use of
the characteristic of canonical transformation of
(aIJaPa) = (aqajat/Ji)' Let us, furthermore put for­
ward the usual expressions of <L11 i) in terms of the
moments <L1]Ja) and <L1PaL1pp) (these are, naturally,
identical to (1.3.10)). Taking (1.3.3) into account we
obtain

<Mr> = <I1Pr> aJr + <I1PII> aJr
apr apil

1 «L1Pr)2) a2Ir 1 «~P\\)2) a2Ir
+-2 a 2 +- 2. Pr 2 apil

<~Pr~PII) a2I r+ a a" (1.3.12)
Pr PII
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where 9 == 4ne 4 nL.
daa can also be easily evaluated:

As has been pointed out (1.1.14)-(1.1.16), the
frictional force F'(v) is the analogue of the field of
attraction created by a distribution of Coulomb
sources f'(v). From this we can immediately
obtain the behaviour of F'tv) when the distribution
in the accompanying system is close to the Max­
wellian .fT(V):

<M.> = <i1~z> {)/z + -2
1 <(L~Pz~2>2 {)2/z (1.3.13)

- pz pz

<Me> = <i1PII> Ole + ~ «i1p,1f; {)2/e (1.3.14)
8PII 2 8PII

The amplitude of the radial betatron oscillations

a, ,....., fl., as can be seen from (1.3.12), changes
under the effects of impacts not only in a radial, but
also in an azimuthal direction, since the position of
equilibrium, determined by the. total energy (mo­
mentum) of the proton, changes, in this case, by
successive jumps (in contradistinction to the
adiabatically slow oscillations in synchrotron
motion).

PART'II THE KINETICS OF ELECTRON
COOLING

V

l,3
V < VT

Fe~ -g ~T

m v

v3 v > VT,

(11.1.4)

(11.1.5)

Using Eq. (1.3.9), we shall now investigate the basic
characteristics of the kinetic process associated
with deviations from thermodynamic equilibrium
in an electron current. Here the most important
factors seem to be the dependence of attenuation
rate and equilibrium distribution on the shape of
the electron velocity distribution and spatial in­
homogeneity of the beam of electrons, and heating
of the proton beam by coherent "noise" in the
electron current.

The "Monochromatic" Instability

Let us first establish the general nature of the
dependence of the attenuation rate and stabilized
mean amplitudes on the velocity distribution of
electrons.

For greater clarity, we shall disregard scattering
on coherent noise and residual gas, and consider
the electron current as being spatially homogeneous.
We shall also ignore, for simplicity, the azimuthal
inhomogeneity ofproton focusing ( I/,.I == const, If=1
== const).

In these conditions, the expressions of the kinetic
coefficients (1.3.12)-(1.3.14) take the form:

- 1-
<111z) == PzF~ + 2d~z, (11.1.1)

(11.1.3)

v

The stabilized value of v; is found from the con­
dition

v? ~ (~)V2
I M T'

as must be the case.
Let us now examine the case where the Max­

wellian distribution is "shifted" in the accompany­
ing system by <v') == A: f' == fT(V' - A) (the error
in the mean velocity ofthe electrons). If 11 < VT,then
(11.1.4) and (11.1.5) remain correct, since the mean
value of the frictional force <F) == gA/mvj, does
not contribute to o. (the shift 11 < VT does not alter
the characteristic of the friction which determines
the decrement of the attenuation).

A quite different situation occurs if 11 ~ VT' Let
the error A be directed along the normal degree of
freedom 1. Let us find the mean power of friction on
this degree for small oscillations:

- ~ _gM /Vl(VI -i1))~2gMVi>0
Ql m \I v l - i1j3 m i13

(11.1.6)

Thus, Q1 reverses sign, and the oscillations start
to increase for this degree. The "transverse"
degrees of freedom remain stable:

9<111i).r t ,....., ~. (11.1.7)

The reason for the appearance of the instability
in the direction A (here it is an important fact,
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F(v)

---.I-------+------...-t---------....v

FIGURE 1 Graph of the frictional force, corresponding to the
distribution .f(v) "- exp[ - (Vi - A)2lv'll The power Q1 =

~ is positive for all amplitudes v? < ~.

however, that A is directed along the normal
degree of freedom) is that when there is a large
shift in the mean velocity .6 > VT, small oscil­
lations enter into the region where the character­
istic friction is negative, and a build-up of oscilla­
tion energy occurs (Figure 1). In spite of the evalua­
tion (11.1.6) being based upon the condition
~ ~ r T ~ it is clear that for the occurrence of the
instability of small oscillations, it is sufficient that
the sign of the characteristic of friction changes
when the shift takes place. For degrees of freedom
which are lateral to L\, the appearance of an error is
equivalent to a rise in the temperature of the elec­
tron beam in the relation (~/VT)2, whereas the
characteristic of friction remains positive.

In the condition ~ ~ VI', if small oscillations
(v < ~) are considered, the nonmonochrornaticity
of the electron beam may be ignored. The instability
which occurs then has a simple interpretation: there
is a pendulum around which flows a "wind,"
the frictional force having a negative characteristic
and being small in relation to the elastic force. The
oscillations then occur around an almost unchanged
position of equilibrium (X == 0), but become un­
stable: the energy build-up over the half-period of
movement "with the wind exceeds the losses
during movement "against it."

Let us note that from (11.1.6) and (11.1.7) it follows
that the sum of oscillation decrements is zero if they
are defined as T;- 1 == - 12;//;:

TIl + T2 1 + T3 1 ~ (-g-)(-2 + 1 + 1) == O.
Mln~3

(11.1.8)

This approximate result is a specific instance of the
general theorem established in Section 4.

Let us now evaluate the stabilized mean amp­
litudes. As can be seen from Figure 1 t he buildup
continues, in any case, until the amplitude value of
the velocity a approaches ~:

~ - a l'j,
--~~-i~l~

VT ~

(as shown below, U.l "'-' vT ).

As the amplitude continues to grow, the phase
section for which a sin l/J; > ~ starts to give a
contribution to power in which- the frictional force
has a different sign, and, when averaged, compen­
sates the section for which a sin t/J 1 < ~. In the
range Ia - & I ~ V1" power varies within the limits
"'-' ± IQImax' turning to zero at a certain point
as> L1,as - L1 ~ VT'

One can evaluate IQImax in order of magnitude:

IQI "'-' asIF lmaxM <:5 t/J == (~.) fl. (.~2,)1/2
max 2 g. .2 A

t: »1 VT L\

= g M JL1 ~
111V1' V1'

where <:5t/J "'-' (V1'/~)1/2 is the time spent by a particle
in the region Ii' - ~ I "'-' VT' This value is confirmed
by model calculations given in the appendix.

Thus, in the region Ia - asI ~ VI' oscillation
amplitudes damp to as with decrement

<:5 ~ IQlmax ~ g
M2V1'~ 11'lMvj'(VT~)1/2'

The diffusion rate of electrons is of the order of
magnitude

( M
2 ~~2)rt ~ (~Y(?£2)ft ~ %:~ ~ (G~)l i

and for the equilibrium spread of amplitudes we
obtain

2 1 (da 2

) (111) 2«a - as) ) = J Cit fl ~ Ai VTo

Thus, when detuning takes place, the oscillator
equilibrium distribution is concentrated close to
the amplitude as ~ L\with the same absolute spread
of amplitudes as that at thermodynamic equil­
ibrium. Since the relative spread is small,

«a _. aJ2) 111 vi-
a2 ,......., -M ~2'

s



KINETICS OF ELECTRON COOLING II

and

whence

The mean probable value of the frictional force 111ay

t This condition justifies, in fact the designation or
instability.

~~ More correctly, are decreased L times as compared with
the case for the Maxwellian distribution.

The occurrence of instability in the case of a
distribution of the form", exp[ - (v' - A)2Ivj.J is a
specific characteristic of oscillatory motion. If the
motion is infinite (absence of self-phasing in
synchrotron motion), instability does not occur, but
there is an entrainment of a proton beam by
electrons.

Although we have considered here the case in
which the mean velocity of the electron current in
the accompanying system is different from zero,
this is not necessary for the occurrence of in­
stability. For example, if we take .('(v') in the forrn
of two extended Maxwellian distributions
exp[ - (v' ± A)2Iv}], then <v') == 0, but the char­
acteristic of friction, when v == 0, in the direction of
the shift will be negative if ~ > Vr, which leads to
instability. In general, for the occurrence of in­
stability it is essential that the energy of orderly
motion in the electron current exceeds the thermal
energy,r i.e. the distribution must be qualitatively
different from the Maxwellian. An important
characteristic here is that the stabilized value of the
energy of the oscillator is Mlin times greater in
order of magnitude than the energy of "orderly
motion of the electron," since there is an equaliza­
tion of speeds, but not of temperatures: a;, ~ ~ 2 .

Belyaev and Budker" also pointed out the case of
spherical distribution

./'(v) -- VA 16(v2
- v~).

In this case, the frictional force and ITIOnlentuITI
transfer are equal to zeroj if v < Va (field of a
charged sphere) and heating of the proton beam
occurs. This case clearly demonstrates the char­
acteristics of the Coulomb interaction. although it
appears, in practice, to be exceptional.

Let us also evaluate the attenuation rate in a
case which is important in practice, when the error
A oscillates with time. The oscillations may, for
example, be due to oscillations in the accelerating
voltage. Let ~v(A) be the distribution of probability
of error:

(l1.1.Jl)

<a;) 111

--~r- -- M

For the lateral degrees of freedom, practically
the same amplitudes are established as in the case of
thermodynamic equilibrium.

Let us now consider the case in which A has
projections of the same order of magnitude on two
or three normal degrees of freedom. For small
oscillations,

Q ~ _g M /v~(va =flol)
~ J11 \ Iv - A /3

M ~2 - 3~2 __
_ g _ . ;x v2

< 111 ~5 a

This feature distinguishes dissipative "heating'
from thermal heating. Energy is transferred to the
oscillator, not from the thermal motion of the
electron current, but from its orderly motion.
Consequently, the amplitude distribution is also
concentrated in a narrow range near the mean
value.

For oscillations in a direction transverse to ~,

The appearance of an error in the other degrees of
freedom may thus compensate instability in the
degree of freedom considered, since it is equivalent
in its action to the increase in the temperature of the
electron gas, as was pointed out above. The char­
acteristic of force remains positive if 3~; < ~ 2

, in
spite of the fact that ~; > vj,. At the same time, the
sum of the decrements, as can be seen from (11.1.11),
remains equal to zero. In reality, as will be shown
later, when there is a large error ~2 ~ vj" it is
difficult to avoid the instability (although theoretic­
ally this is possible) but if A exceeds VT in an in­
significant manner (but in such a way that the small
oscillations lie in the region where the characteristic
is negative, if A is directed along the normal degree
of freedom), then all of the oscillations will be
attenuated on condition that ~l ~ ~2 ~ ~3' This
anisotropy of attenuation in the direction A is
explained by the existence of discrete directions of
normal oscillations (nondegenerate three-dimcn­
sional oscillator).
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If we assume focusing to be homogeneous, we
obtain, with the aid of expressions (1.1.13), (1.3.2)
and (1.3.5):

where j~ is a distribution of the Maxwellian type
with a temperature T(r), and the error A(r)does not
exceed in order of magnitude the velocity Vr:

(11.2.5)

(11.2.4)

(11.2.3)

(11.2.2)

(11.2.1 )

VIIr ==--
c oi, v;

IAI < Vr'

o, == -arv.r», sin t/Jr'

j" == fT(V' - A(r))n(r),

r == r, + l~b'

Qr ~ + At(vrF r + eUsfbFII)

v;:n 2 a n8
~ - T 3/2 - wsrb ar T 3 /2

v;n
Qr ~ - T 3 / 2 ;

where

In this case, the frictional force for low proton
velocities v < JT has the form (see It 1.4)

g v - A
F(v, r) ~ - - -3-'

m VT

In the longitudinal direction, it is sufficient to
obtain a force F II averaged for betatron oscillations:

v II - L\
0 a ( nL\ )

F jj ~ - T 3 / 2 n + r c ar T 3 /2 ' (11.2.6)

where 8 0 == 8 Iz = 0 (in working conditions without
an rf field it is necessary to assume L\0 == 0, since the

dition is necessary but not sufficient. A strict
necessary and sufficient condition is the formal
requirement of negativity (equality to zero) of the
characteristic of friction in the direction of a
normal oscillation.

2 Effects ofSpatial Inhomogeneity

Let us now examine the effect of a spatial inhomo­
geneity of the distribution of electrons .['(p', r) on
the damping rate of small amplitudes. We will
define spatial inhomogeneity by the gradients of the
average velocity, temperature and density in the
electron current, assuming that in the absence of
gradients .the proton motion is attenuated (in the
moving system). For this, it is sufficient to represent

(E = m~'2}

where (-) designates the averaging for the "in­
stantaneous" distribution and for. time. This con-

be written in the form:

g J v - A - v'
<F) = - - I A '1 3 j'(V')lI'(il) d3v' d3il ,

m v - - v

(11.1.13)

where j"(v') is the velocity distribution of the elec­
trons with regard to the mean velocity (v') == A,
which is close in form to the Maxwellian: (V'2) ~
v}. The case (L\ 2

) ~ v} is of interest to us. If the
oscillations occur in three dimensions then, 0 b­
viously, for all degrees of freedom this is equivalent
to an increase in thermal spread of the electrons up
to a value of (82

) . (It is assumed that the distribu­
tion 11'(8) is bellshaped.) In the case of one-dimen­
sional oscillations directed along.a normal degree.
for small oscillations of protons

- At vi
Ql ~ -g --;;; <il2 ) 3/2 '

The characteristic of friction thus remains
positive although the effective temperature of the
electron beam increases just as in the case of three­
dimensional oscillations. For the remaining degrees,

- At' v;
(Qah ~ -g--;;; v}<il 2 ) 1/2 '

This result is explained simply: in view of the sharp
dependence of the "lateral" frictional force on the
error ~ L\- 3, the basic contribution to the power is
given by the section for which 8 ~ VT ~ the fraction
of the time "passed" by the error on this section is
equal to vTI(82 ) 1/2 .

Let us note that for l5-type oscillations (H'(A) ==

(L\o/2)l5(A-L)l5(L\} - L\6)), the' integral in (11.1.13)
gives the previous result (11.1.6), i.e. an instability,
as must be the case.

Thus, the appearance of a variable error with a
distribution l1'(A) in the case (82

) ~ v}, is equival­
ent to the establishment of a stationary distribution
of electrons w(v') (in the case of one-dimensional or
two-dimensional oscillations the electron spread
which is lateral to them remains equal to VT')
Bearing this analogy in mind, we may extend the
above qualitative criterion of instability (or warm­
ing up) also to the case of non-stationary velocity
distribution of electrons
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equilibrium velocity is determined from the con­
dition F II = 0).

Taking (11.2.5) into account, the expressions
(11.2.4) and (11.2.6) take the form

- 2[(------;;;-) 1 0 ( nA )JQr '" -v~ T3f2 + v;w';ir T3Ti (11.2.7)

F II '" -vI{(T~/2) - v;~s ~r (;~2)J(11.2.8)

In this way, the axial oscillations are always
damped if the condition (11.2.2) is fulfilled, where­
as in (11.2.4) and (11.2.6), terms appear which
are proportional to the gradient F II in a radial
direction on the equilibrium orbit. These terms are
due to the coupling of radial and longitudinal
motion, or, as is said, to the fact that the equilibrium
orbit is closed, and produce decrements of damping
which are identical in value but of different sign.
From a comparison of (11.2.7) and (11.2.8), the
condition of stability can be obtained

Although the influence of spatial inhomogeneity
disappears if ~ == 0, the condition I~I > VT, is not
at all essential for the occurrence of a "gradient"
instability, as in the case of "monochromatic"
instability which was examined above. Let, for
example %r(n/T 3

/
2

) = O. Then, it follows from
(11.2.9) that instability is possible on condition that

l
o~ 1 2 _ dVII(r)or > vr t», - dr' (11.2.10)

where v II (r) is the azimuthal velocity as a function of
the radial deviation on the trajectory of the proton.
If vII < VT' then (11.2.10) and (11.2.2) may be com­
patible, since intrinsically (11.2.10) denotes that
I~ I > IVIII. In the case of ~ = const, the condition
of instability is

I~I > 1(;~/2)1 :r(T;~2)1~;1 == b, ~;I,
(11.2.11 )

where b, is the dimension of inhomogeneity if the
relative variation £5 In(n/T 2

/
3

) ~ 1. If the last two
conditions are united, a general qualitative criterion
of gradient instability can be formulated: on the
dimension of radial inhomogeneity, the mean­
radius value of the error ~ must exceed the variation
of vll(r). If there is no rf field, instability may arise

A = {O, ~II ' O}.

only if there is a mean velocity gradient; for the
bunched beam the gradients of density and
temperature also contribute to the decrements if
there is an error in velocity on the equilibrium orbit.
It would appear in practice that the velocity gradient
is the most dangerous.

Let us evaluate the maximum amplitudes
achieved with gradient instability. For this, without
assuming the smallness of Iv - AI/VT' we shall take
the force F in the form

If the motion is infinite, the "anti-damping"
ceases when the radial deviation exceeds the dimen­
sion of the beam:

v; ~ <~TI)'

In this case it is not essential that ~ TI < v}. In the
case of instability of the synchrotron motion

F li ~ -(VII - ~II)[(vlI - ~1I)2 + V}J3/2,

~II _ ~o + VII o~II
- II v2 uJ a;:-

c s

Let us take, for concreteness,

where ro is the radial dimension of the beam.
Bearing in mind the conditions (11.2.1 0)and (11.2.11),
we may conclude that the stabilized amplitude
a, > r° is determined in the general case by the
equality

If the radial betatron oscillations are unstable, we
may consider that vIT ~ v}, since the longitudinal
motion will be damped (let ~~ < VT). Then,

Qr ~ -«v; + wsro~II)(~TI + v; + V})-3/2),

° o~11
~II ~ ~II + roa;:-

IVIII ~ ro v;w s •

For the bunched beam, the oscillations build
up indefinitely. This is obvious if ~~ = 0 and the
condition (11.2.10) is fulfilled. If, however o~II/or =
0, the condition (11.1.11) is then fulfilled for all
amplitudes since the energy buildup occurs only at
"small" velocities IVIII < I~III, when the particle
trajectory passes through the beam.

~
r: == -2-. (11.2.9)

v;co;I:r (;:~2)I< (T~/2),
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(11.3.1 )

3 The Critical Level of Coherent Fluctuations and
other Questions

Let us evaluate the permissible level of fluctuations
of the space charge of an electron beam, starting
from the condition that the diffusion growth of the
amplitude does not exceed the maximum power of
Coulomb losses:

where

<~l;)fl == !«~p;)2)~ Q; == p.F,

Let us consider scattering on the fluctuations of
an electric field (in the moving system), the cor­
relation time of which is Te < W;-l, and the spatial
dimension (wavelength) is K- 1 > VTo, where v is the
velocity of the protons and To == 1/f3c is the time
taken by the proton to pass through the section of
the orbit occupied by the electron beam. "Collisions"
then occur instantaneously in relation to the per­
iodic motion of the protons and the scattering
cross section does not depend on the momentum.
In a single passage, a proton gathers the momentum

~p == e~E· To

whence

«L1pJ2) = e2[(L1:~)2]r6,

where [(~Ei)2] denotes the statistical mean.
As the frictional force in the region v > VT,

decreases as v- 2, the maximum IQi Iis reached when
v ~ VT and in order of magnitude is equal to

IQImax ~ (4ne4nL;:ro).
mVT 0

For a relative fluctuation, we obtain

The type of fluctuation under consideration is
apparently the most dangerous as far as the size of
the scattering cross section is concerned.

Let us also make here an evaluation of the critical
value of the density of the residual gas n.' scattering
on which can be included in the over-all "fluctua­
tion background," (1.1.18):

( cr) (LMnTo)
no d ~ L

z
mZ 2 y3{}e '

where Z is the charge of the nucleus, L, the cor­
responding Coulomb logarithm and the densities
refer to the laboratory system.

For the condition without an rffield, the question
may arise as to whether deceleration on the elec­
trons of the residual gas will not prevail over the
"entrainment" of the protons by the electron beam.
With the aid of the expression for the force of
friction on the residual gas (1.1.18), it is simple to
obtain the relation

[
(nt' )f ZJ ~ ( zmLz )

(nt')d {}eLe M '

where L, is the Coulomb logarithm for scattering
on the electrons of the gas. In practice, this relation
does not differ markedly from unity.

Finally, let us also make an evaluation of the
lifetime of the protons with regard to the process of
recombination (formation of atoms) in the electron
beam. The relationship of Tree to the relaxation time
T is equal to:

Tree m (fR m
-~-L-~- L

T M (free M

x {a(yM)2 In[ I + C;eYJr 1, (11.3.2)

where.rrR is the Rutherford cross section for wide­
angle scattering:

n == 108 cm- 3, V == 3.103 crrr'.

We then have (~E/E)er ~ 5 x 10- 3
.

where L is the Coulomb logarithm, (}e the angular
spread of electrons in the laboratory system, )' the
relativistic factor, and 11 and V are the density and
volume of the electron beam. Let us take, for example.
the numerical values

4r2
(J ~ __e_

R - (yf3{})4'

(Jree is the total recombination cross section for all
levels of the hydrogen atom, {} is the relative angular
spread of particles in the laboratory system, and
a is the fine-structure constant. Equation (11.3.2) is
an interpolation formula 1

7 and gives the correct
behaviour for small velocities yf3{}/a ~ 1 and large
ones 1 < (yf3{)/a)2 ~ 1O. For example, for {} ==
3 x 10- 3, Y == 2,

T
~ ~ 3.104

T

y == 2,L ~ 20,
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4 The Kinetics ofSmaii Amplitudes

We shall now investigate the solution of the kinetic
equation (1.3.9), assuming the condition that the
total diffusion rate is much less than the critical
level at which attenuation does not occur at all.
Let us first consider the region of low velocities
v < VT' assuming also that the spatial inhomo­
geneity for the corresponding range of amplitudes
can be characterized with a high degree of accuracy
by the gradient f(p, r). As the characteristic scale of
variation of the friction force F(v, r) is of the order
of VT, the latter can be expanded in the series

) (OF(/. ) (OF(/.)
Fa(v, r = (Fa)O + ov 0 v + or.l r.l'

We shall make a similar assumption for the
quadratic fluctuations

Here

r ' 1/1 '(1/1 dj~ j' dt/J)s == Vrjr 0/ - 1 0/ de - r de .

The physical meaning of the coefficients u, is
clear from the relation <111 i>f t == !OD iK/o1K , whence
<111i>f t == /li' In the condition without an rf field,
it is necessary to take D" == 2/l" ' since I II == PII •

The values of Ai represent damping decre­
ments of the phase-space volume for normal de­
grees of freedom. Equation (11.4.4) coincides with
the usual determination of the decrement and for
the coasting beam

The energy spread, however, is attenuated in this
case at twice as fast a rate as in the oscillation
condition

(11.4.6)

t This relation, all considered, on the whole is valid with an
accuracy up to terms due to Coulomb-logarithm dependence
on the relative particle velocity.

This difference has a simple physical meaning:
the specific heat of the oscillators is twice that of the
free particles.

The decrements of radial and longitudinal mo­
tion include terms which are proportional to the
derivative of F II with respect to the velocity and
coordinate in the radial direction. The influence of
the terms ~ 0F II/or has been discussed in detail
above. The appearance of the terms ~aFII/ovr is
associated with the modulation of the velocity v, by
synchrotron motion, in the case of azimuthal
inhomogeneity of focusing and curvature of the
equilibrium orbit. Qualitatively, their role may be
important, provided the error 11 has nonzero
components I1r ~ 11

11
~ VT'

As can be seen from the expressions for the de­
crements, the sum Ar + AII does not depend on the
coupling of radial and longitudinal motion. We also
know of a similar result for decrements of radiation
damping in the theory of accelerators.!" For the
full sum, a remarkable relation occurs']

1 8n 2e4L -
Ar + AII + Az == - 2M div v F == mM fo,

(11.4.5)

(11.4.4)

(11.4.2)

(11.4.3)

where (see 1.3.3)

Ar = 2~ [ -(~)O + ~s (0;11)0

+ Y ~~ e~~I)J

All = - 2~[~ + ~s e~lI)

+ y ~~ e~~)J
A~ == __1 (OFz )

- 2M avz

11= = ~ I f;· 1
2<(Ll py > + ~ !(I2<(.IlPII)2>

+ ylm(l:() <l1pr I1p II>0

Qi == 2Ai1i (11.4.1 )

Ifwe confine ourselves in these expansions to terms
of the lowest order that make a nonvanishing
contribution when Qi and DiK are averaged over
phases, we obtain after averaging
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(1.1.14)-(1.1.6) where To is the mean value of the
distribution function of the electrons f(v, r) on the
equilibrium trajectory of protons.

Thus the sum of decrements does not depend on
the "orientation" of the anisotropic velocity dis­
tribution and is determined only by its size. This
conclusion is general irrespective of the value and
sign of the value and sign of the individual decre­
ments and the shape of f(v, r).

For an isotropic spatially homogeneous dis­
tribution of electrons

A == A == A == A == 8n
2e4

L j' '" 8n
2e4

L n
r II z 3mM 0 - 3mM v~ ,

(11.4.7)

which corresponds to the usual formula for the
relaxation time of the plasma, when the velocities of
the ions v are less than those of the electrons VT. 1-3

From (11.4.6) in particular, it follows that all Ai
can remain positive even if the error [\ ~ VT. In
this case, however, their value becomes quite
small, since it is proportional to the "tail" of the
distribution. Thus, for the Maxwellian distribution
L Ai '" exp( - [\2Iv}). This conclusion agrees with
the results of the approximate investigation per­
formed in Section 1.

Let us also note that in conditions of spatial
homogeneity, the values of the decrements cannot,
exceed the value (11.4.7) in order of magnitude.
But in the case of a strong spatial inhomogeneity, as
follows from the results of Section 2, the value
IAr - AII I can become much greater than A.
Naturally, the frictional power cannot in any
circumstances exceed the maximum value (11.3.1).

Let us construct a solution of the kinetic equation

a a ( a )-a .f - L -a 2A-il i j ' + u.t, -a f == 0, (11.4.8)
t i Ii I,

assuming the condition that all the Ai > O. By the
method ofseparation ofvariablesf == ni /;(1 i)e- -:
we obtain the equation (for brevity we shall leave
out the index i)

d ( . dl )x! + dI 2Alj + III dI == 0,

which, by means of the substitutions I == (1l/2A)X~

j' == ye- X is brought to the equation for Laguerre
polynomials r "

xy" + (1 - x)y' + exy =- O~

X
ex == 2A == n == 0, 1, 2, ....

The normal solution of the equation (11.4.8) is

j{n} == nL; (x;)exp( -Xi - 2niAit).
i

The general solution can be expressed by the
fundamental solution or by the Green's function

G(III', t) == ngi(Xilx ;, r),
i

where
00

- - x \""" L ( )L ( ') - 2 n;.j tgi - e ~ n Xi n Xi e
n=O

exp( - XiI-=-X~=::i:it) (~)
I - e"-Vit . 10 sh(2

i
t) ' (11.4.9)

where lois the Bessel function of imaginary
argument.

The general solution is then

f(I, t) = Jd 31'G(I11', t)f(I', 0).

A direct check will confirm that

g(x Ix', 0) == c5(x - x'), g(x Ix' ~ 00) == e- x

Jg(xlx', t) dx' = 1.

The equilibrium distribution and evolution of
the mean amplitudes can also be obtained directly
from (11.4.8):

j~t == nexp( - Il:)~
I IS

d
- <I·) == -2)~·I· + u.dt I I I r I ~

as must be the case.
In the condition without an rf field, the solution

of the equation for .l(p II)~

. d ( . dj' )
XII.! + -d- 2)"11 PII j + Ilil -d == 0:

PII P"

PII == (1l11/)"")x

is I, == e- X 2Hn(x),18 where H; is a Hermite poly­
nomial. The fundamental solution 19 is

g(xlx', t) == «:: L Hn(.x)Hn(x')e - 2)cnt

1 [ " [(X - x'e- 2At)2]
== C. Jcth(At)exp - -4Al

2y'TC 1 - e

" ((X + X')e-
2 Al

) ]+ Jth(At)exp - I _ e- 4 At .

(11.4.10)
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The equilibrium solution is «:". and the evolution
of (VTI) is determined by the equation

d 2 2
dt (VII) == -4A(VII) + 2tlll·

Knowledge of the fundamental solution makes it
possible, if necessary, to obtain directly the evolu­
tion from the initial distribution to a state of
equilibrium. Let us take, for example,

f(I, 0) = Fa 1 exp( - :J.
If we integrate f(I, 0) with the Green function
(11.4.9), we obtain 19

f(I, t) = r 1(t)exp( - I;t)}
I (r) == Ii1 - e - 2 At) + I 0 e - 2 At,

i.e., the shape of the distribution is retained, and
only (I) is changed. A similar result is obtained by
means of (11.4.10) in the case of the initial dis­
tribution

f(PII' 0) = (j2npO)-l exp( - ;:~}

f(PII' t) = (j2np(t)-l exp( - 2~t)}

V2(r) == ~ (1 - e - 4 AII t) + V6e - 4A II ',
All

5 Evaluation o.f a Solution in the Region of'
Large Amplitudes

By the term "large amplitudes" we shall understand
the general case, when the kinetic coefficients can­
not be linearized in the variables L ,This may be due
basically to the nonlinear behaviour of the fric­
tional force at velocities v > VT or to a strong
spatial inhomogeneity of the electron beam (for
exarnple, when the amplitudes of the oscillations
exceed the lateral dimension of the beam).

We shall first examine the nature of the kinetic
process in conditions of spatial homogeneity,
ignoring the azimuthal inhomogeneity of focusing.
In the range v2 > v}, the coefficients Qi decrease as
V-I (or faster, ""' vr/v 3

, if vr ~ v2
) . In the presence of

a fluctuating background (we shall assume the
diffusion speed on this to be constant (~Ii)f t ==
const == tl,) which considerably exceeds the ther­
modynamic level of fluctuations in the electron

beam, for sufficiently large amplitudes

IQil < tli'

and the particles are not captured in the damping
conditions. Let us evaluate the region of captured
amplitudes in the condition IQImax ~ u. For one­
dimensional oscillations,

IQi I ~ 4nLe4n(vo Isin t/J 1)- 1

2 VT - (vo)~ - - IQ Imax . In -
n Vo VT

where Vo is the amplitude of the velocity,

IQlmax ~ 4ne
4LnM

'0.
mVT To

Thus,

(V~) ~ ~ IQImax In(1 QImax).
VT n tl tl

For two- or three-dimensional oscillations the
expression in the integral when averaging for
phases has no singularities. Consequently

(~~) ~ (IQ~max}

Accordingly, the time taken to pass through the
region of large amplitudes in the damping con­
ditions VT < Vo < v~ is equal to

T
!(1) ==

In(vin/vT)

in the one-dimensional case ~ also

2
-<X<l
tt

for the two-dimensional case, if vln == vrn' where

r == (mMV~n To)
24nLe4

and Vin ~ VT is the initial amplitude of the velocity
along one degree of freedom. In the three-dimen­
sional case !(3) also differs from! by a numerical
factor which is close to unity.

The over-all picture of the movement of the
amplitudes, which is described approximately by
the equations

dI i -
dt == Qi + u, == (~Ii)'
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amplitudes I < I per), if IQImax ~ J.1. The "equili­
brium" distribution is found from the equation

FIGURE 2 Trajectory of movement of amplitudes

--- 2 .......
......

<,

/
/

/
/

The solution can be found in the general form, if
J.11 == J.12 == J.13 == P, and if advantage is taken of the
property of the frictional force F == - (%v)U
(1.1.14). As Vi == (~/M)sin t/Ji' then in the con­
ditions considered here,

Q- . == _ Pi au == 2' 0-
l ~ - MIi~ U.

ou, VIi

If we assume i. == 0, we obtain the equations

au . of
2M~ f + J.1~ == 0,et, VIi

which have a joint solution

(11.5.1 )
is fairly complex, but accessible to a qualitative
analysis. The nature of the process is illustrated by
Fig. 2, showing the trajectories of two-dimensional
movement

( dIs ) (dI 2 )

<I1Is> == <1112>
when 13 is constant (or equal to zero). The dotted
curves 1 and 2 correspond to the equations <111.1 >
== 0 and <1112>== O. A simultaneous damping of the
amplitudes occurs only in the region of D which
is bounded by these curves. The curves T 1 and F 2

bound the region of captured amplitudes.As can be
seen from the diagram, when there is a strong
excitation of one degree in the region of capture the
other degree at first "warms up," after which the
trajectory passes into the region D where both
amplitudes are damped. The points Sand S cor­
respond to the stable and unstable positions of
equilibrium. When the third degree of freedom is
"switched on," the figure can be considered as a
projection of the three-dimensional picture on to
a plane. The region D is transformed into a "co­
coon," and the over-all nature of the movement is
unchanged.

Strictly speaking, a stationary distribution does
not exist, since the region of captured amplitudes is
limited. It is, however, possible to talk of a quasi­
stationary distribution and life of the particles in
the region of capture (or in the region of permissible

. (2MD)j == C exp - -J.1- .

In accordance with what has been said above,
this solution cannot be normalized, since U ~

const at infinity. Its use has a meaning if, in the
interval 0 :::; I :::;. I pen the large majority of the
particles are concentrated in the region I ~ I per'

The index of the exponential can be written in the
form

_ 2M U = 21Q1max JUT),
J.1 J.1 \ u

where u == Iv - VI I, and <...>denotes averaging
over the distribution of the electrons. If the dis­
tribution is close to Maxwellian, the solution in the
region v < Vr is

f '" exp[ - ~ (I 1 + I 2 + I 3)J
where A coincides with the expression (11.4.7). The
"normalized" solution when IQlmax ~ J.1 has the
form

I> (~r eX{2IQ~max': - ~~)J(11.5.2)

The solution (11.5.2) can in fact be used for
evaluating the "tail" of the distribution even when
the J.1i are sharply different in value, if we simply
assume for degrees of freedom with small J.1i that
Vi == O.
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(Q(1st) == 0).

Let us note that from (11.5.1) it follows that, in
accordance with the evaluation in Section 1, when
an error I~ I > VT is present, the distribution near
1 == 1st is Gaussian:

f - ex{ -(1 - Ist)2(~~)sj2IsJ

It is easy to evaluate that «1 - 1st )2) ~ 1;1' i.e., the
distribution in the case of "monochromatic"
instability is concentrated in the proximity of 1st .

Finally, let us discuss the dependence of the
damping rate on the transverse dimensions of
the electron beam. Let the beam be situated sym­
metrically in relation to the equilibrium orbit
of the protons. In the case of excitation of two­
dimensional betatron oscillations, a decrease in
the transverse dimensions bn bz always proves to
be advantageous, since the power, here, "builds up"
independently of the dimensions, at velocities
IVi I "" vw, and the product of the density nand
the fraction of the phases, when the particles are
situated in the beam, does not, in any case, decrease.
Consequently, at a fixed current, the integral time
of attentuation decreases with reduction of the
dimensions.

For one-dimensional oscillations Vo ~ VT, when
the dimension is reduced in the direction of the
oscillations from a value b == a (oscillation
amplitude) to a certain b < a, the power decreases
in the ratio In(VO/v T), since at small velocities
Iv I "" V T which give the basic contribution for
b ~ a, the particle is outside the beam

(v == - Vo sin tjI, r == a cos tjI).

The situation is different when synchrotron
motion is excited. For the coasting beam, the
effect of bypassing the beam is manifest when
synchrotron deflection of the radius exceeds b.,
This effect leads to a sharp decrease in the power
Q(' in the condition of oscillations too since
r; "" vII. It can easily be evaluated that for ampli­
tudes of Vo ;5 VT' the power decreases in the
relation '1 "" r;/b; when b, is reduced from the
value b; == r;. If,

then

V~ b;
'1 == "2 === > 1.

VT r;

The radial dimension of the beam of electrons must
thus be kept at a level of b; "" r;.
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Appendix

Let us find a mean (for an oscillation period)
frictional power in the presence of "the proton
and electron mean velocities detuning." The
frictional-force dependence on the velocity is
taken in the form

F(v) = _! (v - A)
m [(v - A)2 + V}J3/2·

Let us consider a situation when detuning A is
directed along one of three normal (and space­
orthogonal degrees of freedom). Then, for in­
vestigation of an equilibrium state of a proton
beam, one can take the proton velocity transverse
to A to be small in comparison with VT:

and for degrees of freedom in the direction A

-2
1

/dd
t

Ma2) == 9 Ja V - ~
\ - nm -a [(v - ~)2 + V}J3/2

vdv 9
X == -- J. (A-I)

Ja 2
- v2 nm

We are interested in the case la - ~I ~ ~. Bearing
in mind this condition, one can substitute for the
integral in (A.1) an approximate one:

Introduce a designation ~ == (a - ~)/VT and re­
write J in the form

(A J~ xdx
J = - V~· -00 (x2 + l)3/2~'

For the final evaluation of the integral it is con­
venient to transform it to the form

(A [(00 xdx

J = V~ J~ (x 2 + l)3f2~

f.
~ x2dx

-2
o (x2 + 1)3/2J~2 - x2

x(~+~)
(A.2)

It is clear that at ~ == 0, J ~ 1, while at ~ ~ 1

J ~ f£ (A f~ 00 ~~ - fi l~ ~:)
~ -J(a ~A)3 In ~ < O.

At the same time, maximum values of each integral
in (A.2) lie in the region ~ ~ 1 and in order of
magnitude are 'equal to 1. That means, that the
power Q in this region varies within the range

~ ±(gM/m)J~/v~ and its derivative at the point
Q(~) == °is equal to

dQ '" _ IQlrn~x '" gM J'~
da VT mv} VT·




