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Abstract

We study string realizations of split extended supersymmetry, recently proposed in
hep-ph/0507192. Supersymmetry is broken by small (ǫ) deformations of intersection an-
gles of D-branes giving tree-level masses of order m2

0 ∼ ǫM2
s , where Ms is the string

scale, to localized scalars. We show through an explicit one-loop string amplitude com-
putation that gauginos acquire hierarchically smaller Dirac masses mD

1/2 ∼ m2
0/Ms. We

also evaluate the one-loop Higgsino mass, µ, and show that, in the absence of tree-level
contributions, it behaves as µ ∼ m4

0/M
3
s . Finally we discuss an alternative suppression of

scales using large extra dimensions. The latter is illustrated, for the case where the gauge
bosons appear in N = 4 representations, by an explicit string model with Standard Model
gauge group, three generations of quarks and leptons and gauge coupling unification.
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1 Introduction

Implementing the idea of split supersymmetry [1] in string theory is straightforward [2]. The

appropriate framework is type I theory [3] compactified in four dimensions in the presence of

constant internal magnetic fields [4, 5], or equivalently D-branes intersecting at angles [6, 7]

in the T -dual picture. However, in simple brane constructions the gauge group sector comes

in multiplets of extended supersymmetry, while matter states are in N = 1 representations.

In Ref. [8] we showed that these economical string-inspired brane constructions reconcile with

unification of gauge couplings at scales safe from proton decay problems, and provide a natural

Dark Matter candidate.

Indeed a simple way to break supersymmetry in the above context is by deforming the

intersection angles of the Standard Model branes from their special values corresponding to a

supersymmetric configuration. A small deformation of these angles by ǫ breaks supersymmetry

via a D-term vacuum expectation value (VEV), associated to a magnetized abelian gauge group

factor in the T -dual picture, 〈D〉 = ǫM2
s with Ms the string scale [4, 9]. This leads to mass shifts

of order m2
0 ∼ ǫM2

s for all charged scalar fields localized at the intersections, such as squarks

and sleptons, while gauginos (and Higgsinos) remain massless. Alternatively supersymmetry

breaking can be communicated to the scalar observable sector by radiative corrections from a

supersymmetric messenger sector, withD-breaking triggered by a magnetized abelian subgroup,

or a non-supersymmetric sector with large extra dimensions. In all cases all previously massless

scalars in the observable sector are expected to acquire large masses by radiative corrections

and a fine-tuning is needed in the Higgs sector in order to keep the hierarchy between the

electroweak scale and m0, as required in split supersymmetry.

On the other hand fermion (gaugino and Higgsino) masses are protected by a chiral R-

symmetry and the magnitude of radiative corrections depends on the mechanism of its break-

ing. In fact R-symmetry is in general broken in the gravitational sector by the gravitino mass

but its value, as well as the mediation of the breaking to the brane (Standard Model) sector,

is model dependent and brings further uncertainties. Here we will restrict ourselves to possible

sources of fermion mass generation due to brane effects described by open string propaga-

tion within only global supersymmetry, assuming that gravitational (closed strings) corrections

are negligible. Indeed, R-symmetry is in general broken by α′-string corrections and gaugino

Majorana masses can be induced by a dimension-seven effective operator which is the chiral

F -term [10]:
∫
d2θW2TrW 2, where W and W are the magnetic U(1) and non-abelian gauge
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superfields, respectively. Its moduli dependent coefficient is given by the topological partition

function F(0,3) on a world-sheet with no handles and three boundaries 1. From the effective

field theory point of view, it corresponds to a two-loop correction involving massive open string

states. Upon a VEV 〈W〉 = θ〈D〉, the above F -term generates Majorana gaugino masses that

are hierarchically smaller than the scalar masses and behave as mM
1/2 ∼ m4

0/M
3
s .

In models where the gauge bosons come in multiplets of extended supersymmetry, there

exists the possibility of generating Dirac gaugino masses that do not require the breaking of

R-symmetry. Such a mass can be induced at one-loop via the effective chiral dimension-five

operator [11, 8]:
∫
d2θWTr(WA), where A denotes the N = 1 chiral superfield(s) containing

the additional gaugino(s). Upon the D-auxiliary VEV 〈W〉 this term generates Dirac gaugino

masses that scale as mD
1/2 ∼ m2

0/Ms, and are thus much higher than the Majorana masses

mM
1/2. In Ref. [8], we studied the renormalization group evolution and showed that this scenario

is compatible with one-loop gauge coupling unification at high scale for both cases where the

gauge sector is N = 2 and N = 4 supersymmetric.

The low energy sector of these models contains, besides the Standard Model fields, just

some fermion doublets (Higgsinos) and eventually two singlets, the Binos, if the corresponding

corrections to their Dirac mass vanish. In fact, the Higgsinos must acquire a mass, µ, of order

the electroweak scale in order to provide a Dark Matter candidate. This can be induced by

the following dimension-seven operator, generated at one loop level [10, 8]:
∫
d2θW2D

2
H̄1H̄2,

where H1,2 are the two N = 1 Higgs supermultiplets. It follows that the induced Higgsino mass

is of the same order as the gaugino Majorana masses, µ ∼ mM
1/2 ∼ m4

0/M
3
s .

The appearance of gauginos in multiplets of extended supersymmetry is common in previous

attempts to embed the Standard Model in intersecting brane constructions [12]. There are

several examples in the literature of such models with gauge sectors forming multiplets of

either N = 4 [13] or N = 2 extended supersymmetry [14].

In this work we describe the general string framework realizing the above scenario of split

supersymmetry with extended supersymmetric gauge sector and perform an explicit one-loop

computation of the dimension-five and seven effective operators needed to produce Dirac gaug-

ino and Higgsino masses, respectively. The relevant world-sheet diagram is the annulus involv-

ing two D-brane stacks on its boundaries (or three in the case of Higgsinos). We find that both

Dirac gaugino and Higgsino masses are in general non-vanishing when the two brane-stacks

are parallel in one of the three internal compactification planes. The leading behavior in the

1Two of them correspond to W and W gauge groups while the third one can be an orientifold.

2



supersymmetric limit, m0/Ms → 0, gives the coefficient of the corresponding effective operator,

which thus receives non-trivial contributions only from N = 2 supersymmetric sectors. More-

over we find that in this limit the result simplifies and becomes topological; the non-zero mode

determinants cancel and the effective couplings depend only on the momentum lattice of the

plane where the two brane-stacks are parallel. In the Higgsino case the two fermions should

come from an N = 2 supersymmetry preserving intersection, localized in the remaining two

internal planes.

Finally, for concreteness, we present an explicit string construction with the Standard Model

gauge group, precisely three generations of quarks and leptons, and sharing the desired features

described above. Moreover, it emerges from an SU(5) grand unified group and thus satisfies

gauge coupling unification, realizing a particular D-brane configuration proposed in Ref. [2].

Standard Model particles live in the intersection of supersymmetric branes while there is a

non-supersymmetric brane such that particles living in its intersection with the observable

branes are non-chiral and act as messengers of gauge mediated supersymmetry breaking. In

this case the hierarchy between the string scale and the masses of supersymmetric partners can

be triggered by extra dimensions hierarchically larger than the string length.

Our paper is organized as follows. In Section 2, we describe the general framework of su-

persymmetry breaking in D-brane models intersecting at angles. In Section 3, we perform the

one-loop computation of the induced Dirac gaugino masses and extract the coefficient of the

relevant dimension-five effective operator by evaluating the behavior in the supersymmetric

limit. In Section 4, we perform a similar computation for the Higgsino masses and the corre-

sponding dimension-seven effective operator. In Section 5, we present an explicit construction

of the Standard Model spectrum in this framework with the desired features. Our conclusions

are drawn in Section 6 and finally some relevant formulae are presented in Appendix A and

some technical computational details about the bosonic correlation function of Higgsinos in

Appendix B.

2 Supersymmetry breaking from intersecting branes

We will consider a set of intersecting stacks of branes that can be divided into two subsets:

the first one, denoted as O (for observable), gives rise in its light spectrum to the observable

sector, i.e. a supersymmetric version of the Standard Model with the gauge sector in N = 2 or

N = 4 representations. The second subset, which we denote as M (for messenger), provides
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the supersymmetry breaking messengers through its intersections with the branes in O.

In order to perform explicit computations, we consider a compactification on a six torus

factorizable as T 2
1 ⊗ T 2

2 ⊗ T 2
3 with appropriate projections and orientifold planes to provide

the desired supersymmetric framework. A basis cycles [a(i)] and [b(i)] of the corresponding

homology classes is defined for every torus T 2
i . Every stack a of D6-branes in type IIA wraps

a 3-cycle [Πa] factorizable into the product of 1-cycles:

[Πa] =
⊗

i

[Π(i)
a ] =

⊗

i

(
n(i)

a [a(i)] +m(i)
a [b(i)]

)
(2.1)

and forms angles 2 with the cycles [a(i)] given by:

tan θ(i)
a =

m
(i)
a R

(i)
2 /R

(i)
1 + n

(i)
a cotϕ(i)

n
(i)
a

(2.2)

where R
(i)
1 and R

(i)
2 are the radii along the horizontal X(i) (a(i)-cycles) and vertical Y (i) (b(i)-

cycles) axes, respectively, and ϕ(i) is the angle of the tilted torus T 2
i .

In the presence of an orientifold plane along the X(i)-axis, the angle ϕ(i) is fixed to either

cotϕ(i) = 0, which corresponds to rectangular tori, or to cotϕ(i) = R
(i)
2 /2R

(i)
1 which corresponds

to tilted tori (see Fig. 1). In these cases, we can write the angles θ
(i)
a as
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Figure 1: Rectangular (left panel) and tilted (right panel) tori.

tan θ(i)
a =

m̃
(i)
a

n
(i)
a

R
(i)
2

R
(i)
1

(2.3)

2Here we choose −π/2 ≤ θ
(i)
a ≤ π/2.
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where we define m̃
(i)
a = m

(i)
a + bi n

(i)
a and bi = 0 (bi = 1/2) for rectangular (tilted) tori. From

here on and for simplicity we will remove the tilde from m̃
(i)
a . Given a generic couple (a, b) of

stacks of branes they intersect with angles πθ
(i)
ab in the i-th torus:

θ
(i)
ab =

θ
(i)
a − θ

(i)
b

π
(2.4)

Of special importance is the number of such intersections as it measures the number of chiral

fermions. It is given by

Iab = [Πa] · [Πb] =
∏

i

(
n(i)

a m
(i)
b −m(i)

a n
(i)
b

)
(2.5)

and it corresponds in the T -dual picture to the index theorem for compactification with internal

magnetic fields. In the special case where the brane stack b is the image of a under the orientifold

action (b = a∗), the chiral states given by this formula fall in two categories: they transform

either in the antisymmetric (A) or in the symmetric (S) representation of the gauge group, due

to the orientifold projection. Their respective multiplicities are given by:

IA,S
aa∗ =

(
∏

i

2m(i)
a

)
1

2

(
∏

j

n(j)
a ∓ 1

)
. (2.6)

In simple toroidal compactifications, states arising from open strings with both ends on the

same stack of branes form representations of N = 4 supersymmetry. For more complicated

compactifications, part of these states can be projected out and one remains with representa-

tions of lower supersymmetry. In this work, we will focus on the cases where these states are

in N = 4 or N = 2 multiplets as already stated.

Open strings stretching between two non-parallel stacks of Na and Nb branes give rise to

states in the bifundamental representation (Na, N̄b) of U(Na) ⊗ U(Nb). The lightest modes

contain, in addition to massless fermions, scalars with masses:

m2
ab,1 =

−|θ(1)
ab | + |θ(2)

ab | + |θ(3)
ab |

2
M2

s

m2
ab,2 =

|θ(1)
ab | − |θ(2)

ab | + |θ(3)
ab |

2
M2

s

m2
ab,3 =

|θ(1)
ab | + |θ(2)

ab | − |θ(3)
ab |

2
M2

s

m2
ab,4 =

(
1 − |θ(1)

ab | + |θ(2)
ab | + |θ(3)

ab |
2

)
M2

s (2.7)
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For parallel branes the first three states become the N = 4 scalar partners of the gauge vector

bosons. On the other hand, if some of them are massless there is a boson–fermion degeneracy

that indicates that part of the original supersymmetry is preserved. Moreover, if any of the

θ
(i)
ab angles vanishes, a supersymmetric mass ℓiMs can be generated through separation of the

branes by a distance ℓiM
−1
s in the corresponding torus. Finally, the last mass in (2.7) contains

the contribution of a massive string oscillator that could become the lightest state for some

values of the angles.

There are three cases corresponding to three different kinds of intersections that must be

discussed:

• The case where branes a and b are in the observable set O with intersections giving rise to

chiral N = 1 multiplets. The lightest states φab are identified with quarks, leptons and their

supersymmetric partners. This can be achieved with the choice

m2
ab,1 = |γ2|M2

s

m2
ab,2 = |γ1|M2

s

m2
ab,3 = 0

m2
ab,4 = (1 − |γ3|) M2

s (2.8)

which is such that for generic values of γ1 and γ2 the system only preserves one supersymmetry.

For simplicity, we are using here the notation θ
(i)
ab = γi and choosing |γ3| = |γ1| + |γ2|.

• The case where branes a and b are in the observable set O, and states in their intersection

give rise to N = 2 supermultiplets which are identified with supersymmetric pairs of Higgs

doublets. This corresponds to Eq. (2.8) with γ1 = 0, i.e.

m2
ab,1 = |γ2|M2

s

m2
ab,2 = 0

m2
ab,3 = 0

m2
ab,4 = (1 − |γ2|) M2

s . (2.9)

We assume that nH Higgs chiral multiplets remain light while the other N = 2 multiplets

get large (∼ Ms) supersymmetric masses. Actually, this is not the only way to obtain Higgs

multiplets. One of the two doublets may emerge from a chiral intersection together with the
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leptons, say between a U(2) and a U(1) brane, while the other one could arise as a chiral

“anti-doublet” from the intersection of U(2) with the mirror of U(1) brane.

• The case where brane a is in the observable set O and brane b in sector M. The states φab

living at such intersections are assumed to be non-chiral and we will call them “messengers” for

reasons that will be apparent below. They are non-supersymmetric because of mass splitting

between fermionic and bosonic modes. Through loop effects, they will induce supersymmetry

breaking to the observable sector. We will use here the notation θ
(i)
ab = αi and choose again

|α3| = |α1|+ |α2|. Two different kinds of models can arise at this level. They correspond to the

following two possibilities:

i) The first possibility is that the states in the intersection φab originate as a perturbation

around an N = 2 supersymmetric solution. In fact, in order to have a scale of supersymmetry

breaking hierarchically small compared to the string scale we perform a tiny deformation of the

intersection angles (preserving N = 2 supersymmetry):

|αi| → |αi| + ǫi. (2.10)

In one of the tori, chosen to be the first one, the branes should remain parallel and separated 3

by a distance ℓ1M
−1
s , i.e.

α1 = ǫ1 = 0

α2 + α3 = ǫ 6= 0 (2.11)

leading to the localized scalar masses:

m2
ab,1 ≃

(
|α2| + ℓ21

)
M2

s

m2
ab,2 ≃

(
−ǫ + ℓ21

)
M2

s

m2
ab,3 ≃

(
ǫ + ℓ21

)
M2

s

m2
ab,4 ≃

(
1 − |α2| + ℓ21

)
M2

s (2.12)

These states will induce at one-loop Dirac masses for gauginos and Higgsinos, as we will show

in next sections. For instance the Dirac gaugino masses turn out to be

mD
1/2 ≃

α

4π
ǫMs (2.13)

3Note that this supersymmetric mass will prevent the appearance of tachyons for scalars in (2.12) and will
make the configuration stable.
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where α is the gauge coupling. This provides a stringy realization of gauge mediated super-

symmetry breaking in the absence of R-symmetry breaking.

Scalars localized at supersymmetric intersections, as those discussed in (2.8), can be given

a small supersymmetry breaking through another tiny deformation of the corresponding angles

by ǫ. This can be described at the effective field theory level as a Fayet-Iliopoulos D-term

breaking corresponding to the presence of an anomalous U(1) factor 〈D〉 ∼ ǫM2
s [4, 9]. As a

result, scalar masses in the observable sector can acquire different masses depending on whether

matter is charged under this U(1) or not. In particular:

• If the observable sector is charged, bosons of the matter multiplets acquire tree-level

masses, m2
0 ∼ ǫM2

s .

• Otherwise the bosons of the observable sector receive masses at the two-loop level [15]

m2
0 ≃

( α
4π

ǫMs

)2

. (2.14)

In both cases the transmission of supersymmetry breaking to the gaugino and Higgsino

sector is mediated through the “messengers” since the quark and lepton sectors are chiral (and

do not contribute at this order) while the Higgs sector (with masses tuned to remain in the

TeV range) will contribute negligibly. Note that the brane b does not have to be necessarily in

sector M. It could also be part of the “observable” sector. Consider for instance the example

where chiral quark doublets come from the intersection of a U(3) and a U(2) brane stack. Non

chiral antiquark doublets, coming from the intersection of U(3) with the orientifold image of

U(2) can play the role of messengers generating Dirac gaugino masses for both U(3) and U(2)

gauge groups. Moreover, the image of U(2) may have non trivial intersection with another U(1)

stack producing leptons, and thus it is part of sector O.

ii) The second possibility corresponds to the case where a supersymmetry is preserved by

the subset of branes in O for some choice of the compactification moduli, but will never be

conserved by the whole set of branes O ⊕ M. This is for instance the case for the toroidal

compactification discussed in Section 5 below. Let us denote by ci = ±1 the relevant coefficients

that define in (2.7) the supersymmetry preserved by the observable sector. The intersection

between the O and M branes leads to states φab with a supersymmetry breaking mass

m2
ab ≃

1

2π

∑

i

ci

∣∣∣∣∣arctan

{
m

(i)
a R

(i)
2

n
(i)
a R

(i)
1

}
− arctan

{
m

(i)
b R

(i)
2

n
(i)
b R

(i)
1

}∣∣∣∣∣M
2
s ≡ ǫM2

s (2.15)
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Keeping the branes (a, b) parallel in one of the tori allows to use again the states φab at their

intersection as messengers to produce gaugino and Higgsino Dirac masses, as in Sections 3

and 4. However now the desired suppression of ǫ will be generated by the presence of a large

hierarchy between the size of the compact dimensions. More precisely for

R
(i)
2

R
(i)
1

≪ 1 (2.16)

one can obtain an ǫ parameter hierarchically smaller than one

ǫ ≃ 1

2π

∑

i

ci

∣∣∣∣∣
m

(i)
a

n
(i)
a

− m
(i)
b

n
(i)
b

∣∣∣∣∣
R

(i)
2

R
(i)
1

(2.17)

where the sum obviously goes over the tori where branes intersect. In the absence of tree level

supersymmetry breaking, superpartners in the observable sector will acquire two-loop mass

splitting given by (2.14). A toy model based on these ideas will be presented in Section 5.

3 String computation of the Dirac mass

As the gauginos lie in representations of extended supersymmetry (N ≥ 2), they come in copies

that can pair up to receive a Dirac mass at one-loop order in the string genus expansion. The

corresponding world-sheet has the topology of a cylinder stretching between two stacks of Na

and Nb branes, respectively (see Fig. 2). The vertex operators V (1) and V (2) associated with

the gauginos are inserted on one boundary, for example that corresponding to the Na branes.

The mass is given by the integrated two-point correlation function of the relevant vertex

operators:

A(1, 2) =

∫
dz

∫
dw〈V (1)(z)V (2)(w)〉 (3.1)

where the integrals are along the boundary of the annulus.

The N = 2 supersymmetry which relates the gauge vector and gauginos is chosen to be

associated with the supercharges that preserve the (undeformed) N = 2 preserving brane

intersection (see Eq. (2.12) with ǫ = 0). These supercharges are given by

(Qα,−++, Q
α̇
,+−−) (Qα,−−−, Q

α̇
,+++) (3.2)

where ± denotes helicities in the internal directions and α, α̇ are Weyl spinor indices in four

dimensions. The supercharges have been grouped into Majorana spinors in four dimensions.

9



θ

Figure 2: Non-supersymmetric states stretching between the two-branes induce at one-loop
masses for the gauginos on each brane.

As the gauginos of N = 2 supersymmetry have the same internal helicities as the super-

charges (3.2), the vertex operators in the −1
2
-ghost picture are given by:

V
(1)

− 1
2

(z) = goλ
1e−

φ
2 e

i
2

~S· ~He
i
2
(H1+H2+H3)eik1·X(z)

V
(2)

− 1
2

(z) = goλ
2e−

φ
2 e−

i
2

~S· ~He−
i
2
(−H1+H2+H3)eik2·X(z), (3.3)

together with their CPT conjugates which are obtained by simply reversing helicities in the

internal directions and flipping the space-time chirality. Here φ is the bosonized two-dimensional

reparametrization ghost field, Xµ are the target space coordinates, k1 = k2 = 0 are the space-

time momenta, Hi arise from bosonization of the spin fields and ~S is the helicity vector in four

dimensions which is constrained by the GSO projection to be either

~S = (+,+) or ~S = (−,−) . (3.4)

Also go is some normalization constant and λi are Chan-Paton factors of the associated gauge

group factor.

On the cylinder, the total φ-charge must vanish. Therefore, we must use picture-changing

to transform one of the vertex operators to the +1
2

picture. This is done by operating with the
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BRST charge:

V
(2)
1
2

(w) = lim
z→w

eφTF (z)V
(2)

− 1
2

(w) , (3.5)

where TF (z) is the world-sheet supercurrent:

TF (z) = i

√
2

α′
(∂Xµψµ +

∑

i=1,2,3

1√
2
(∂Z iΨ̄i + ∂Z̄ iΨi)) . (3.6)

The fields ψµ are real world-sheet fermions while in the second and third terms of (3.6) we have

used complex coordinates for the internal directions:

Z i = X(i) + iY (i) Z̄ i = X(i) − iY (i) i = 1, 2, 3 (3.7)

and analogously for Ψi and Ψ̄i. Note that ΨiΨ̄i = i∂Hi.

After picture-changing, the vertex operator V
(2)

− 1
2

contains several terms, but only one of

them contributes to the two-point function 〈V (1)(z)V (2)(w)〉. Indeed, the internal helicities

must cancel between the two vertex operators to yield a non-vanishing correlator. For the

choice made in (3.3), TF must induce a flip of the sign of H1. We can therefore set

V
(2)
1
2

(w) → i
1√
α′
g0λ

2e
φ
2 e−

i
2

~S· ~He−
i
2
(H1+H2+H3)eik2X∂Z1 (3.8)

Inserting these operators into a path integral on the cylinder, with k1 = k2 = 0, leads to

〈V (1)(z)V (2)(w)〉 = i
1√
α′
g2

otr(λ
1λ2)Nb [BC] × [FC] (3.9)

where the factor Nb comes from the trace over the Chan-Paton degrees of freedom of the second

boundary of the cylinder. The factors [BC] and [FC] denote, respectively, correlation functions

of world-sheet bosons and world-sheet fermions together with the associated ghosts of opposite

statistics. They are given by

[BC] = 〈I〉bc〈I〉Xµ〈∂Z1〉Z1〈I〉Z2〈I〉Z3 (3.10)

and

[FC] =
∑

a,b

C

[
a
b

]
〈e−φ

2 e
φ
2 〉〈e i

2
~S· ~He−

i
2

~S·H〉
∏

i=1,2,3

〈e i
2
Hie−

i
2
Hi〉 (3.11)

where I is the identity operator. In the bosonic correlator, 〈· · · 〉Zi denote bosonic path-integrals

over the complex coordinates Z i while 〈· · · 〉bc is a path integral over the parametrization bc-

ghosts. In the fermionic correlation function the sum is over the spin structures for which we

use the same notation a, b as for brane stacks but the difference is obvious for the reader.
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3.1 The bosonic correlator

The one-point functions of identity operators are given by the appropriate piece of the partition

function on the cylinder for the two stacks of intersecting D6-branes. The bc-ghosts cancel

exactly the path-integral over two of the four space-time coordinates Xµ, and we are left with

the simple expression: 4

[BC] =
1

η(it)2
〈∂Z1(w)〉Z1

η(it)

ϑ

[
1
2

+ α2
1
2

] η(it)

ϑ

[
1
2

+ α3
1
2

] (3.12)

where α2, α3 are the non-vanishing intersection angles of the D6-branes in the Z2 and Z3 planes.

Here, t is the open string proper-time parametrizing the world-sheet annulus.

To compute the correlation function of ∂Z1(w), consider the coordinate domain of the

annulus to be a square parametrized by two coordinates (τ, σ) with ranges 0 ≤ σ ≤ π, 0 ≤ τ ≤
2πt and the identification τ ∼ τ + 2πt. The operator Z1 is located on the boundary, thus

〈∂Z1(w)〉 = Tr
(
e−2π(t−τ)H∂Z1(τ, 0)e−2πτH

)
(3.13)

where H is the hamiltonian for the Z1 coordinate field. Only the zero-modes of the mode

expansion of Z1 contribute to the trace in (3.13) and, therefore, if the branes would intersect

with a non-trivial angle in the Z1 plane, the correlation function would vanish. We therefore

need to impose

α1 = 0 (3.14)

as anticipated in (2.11). This is also a necessary condition for the D-brane intersection to

preserve the supercharges (3.2).

As the two stacks are parallel in the first torus, they can be separated at a distance 2πℓ.

For simplicity, this separation is taken along the X(1) direction. The mode expansions read:

X(1) = x
(1)
0 + 2α′p(1)τ − i

√
2α′
∑

n 6=0

α
(1)
1,n

n
einτ cosnσ

Y (1) = y
(1)
0 + (2nR

(1)
2 + 2ℓ)σ +

√
2α′
∑

n 6=0

α
(1)
2,n

n
einτ sinnσ (3.15)

4The definitions of the various modular theta functions appearing in this section are given in the Appendix.
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where n is the winding number. The momentum p(1) is quantized in units of 1/R
(1)
1 . Using the

expression for the Hamiltonian,

H = α′(p(1))2 +
1

4α′
(2nR

(1)
2 + 2ℓ)2 +

∑

n>0,i=1,2

α
(1)
i,−nα

(1)
i,n − 2

24
(3.16)

shows, as stated above, that the oscillators in (3.15) do not contribute to the trace:

〈∂Z1(τ, 0)〉 = 2iα′
∑

m,n

(
m

R
(1)
1

+

(
ℓ

α′
+
nR

(1)
2

α′

))
e
−2πα′t


 m2

R
(1)2
1

+

(
nR

(1)
2

α′
+ ℓ

α′

)2



1

η(it)2
(3.17)

The sum over the quantized momenta does not contribute either, since the different terms cancel

pairwise. However, the sum over windings is non-vanishing provided that the two stacks are

non-coincident, i.e. ℓ 6= 0. Inserting (3.17) into (3.12) yields the complete bosonic correlator:

[BC] =
2iα′

η2ϑ

[
1
2

+ α2
1
2

]
(0)ϑ

[
1
2

+ α3
1
2

]
(0)

∑

n

(
nR

(1)
2

α′
+

ℓ

α′

)
e
−2πα′t

(
nR

(1)
2

α′
+ ℓ

α′

)2

(3.18)

3.2 The fermionic correlator

To compute the fermionic correlator, we will make use of the elementary two-points functions:

〈eφ
2 e−

φ
2 〉 =

(
ϑ1(z − w)

ϑ′1(0)

) 1
4 η

ϑ

[
a
b

]
( z−w

2
)

(3.19)

〈e i
2
HJe−

i
2
HJ 〉 =

(
ϑ′1(0)

ϑ1(z − w)

) 1
4

ϑ

[
a
b

](
z − w

2

)
1

η
J = ξ, 1 (3.20)

〈e i
2
Hie−

i
2
Hi〉 =

(
ϑ′1(0)

ϑ1(z − w)

) 1
4

ϑ

[
a+ αi

b

](
z − w

2

)
1

η
i = 2, 3 (3.21)

where ξ labels the two non-compact complexified space-time dimensions and a, b ∈ {0, 1
2
}. The

difference between (3.20) and (3.21) comes from the fact that in the Z2 and Z3 planes, the brane

intersection angles α2 and α3 are non-vanishing. The z − w dependence was determined for

instance in Ref. [16] and the correct normalization is inferred by matching the short distance

limit z → w on both sides. For example, from the operator product expansion (OPE) of

bosonized fermions we have

〈e i
2
Hξe−

i
2
Hξ〉 → 1

(z − w)
1
4

〈I〉 =
1

(z − w)
1
4

ϑ

[
a
b

]
(0)

η
(3.22)
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as the correlator of the identity operator is the spin-structure dependent partition function

of a complex fermion. Taking the same limit on the right-hand side of (3.20) and comparing

with (3.22) allows to check that the dependence on the cylinder modulus is correctly reproduced.

Inserting (3.19)-(3.21) into (3.11), we obtain:

[FC] =
1

η(it)4

ϑ′1(0)

ϑ1(z − w)
Σ (3.23)

where

Σ =
∑

a,b

C

[
a
b

]
ϑ

[
a
b

]2(
z − w

2

)
ϑ

[
a + α2

b

](
z − w

2

)
ϑ

[
a+ α3

b

](
z − w

2

)
. (3.24)

The coefficients C

[
a
b

]
can be obtained by the same method as the one used above to deduce

the normalization of the elementary correlators. From the OPE we deduce that the fermionic

contribution [FC] has a pole in z−w whose residue, being the correlator of the identity, should

be the full fermionic partition function on the annulus:

[FC] → 1

(z − w)
ZF = (3.25)

1

z − w

∑

a,b

ηa,be
−2πib(α2+α3)

ϑ

[
a
b

]2

(0)

η2

ϑ

[
a+ α2

b

]
(0)

η

ϑ

[
a+ α3

b

]
(0)

η

where as usual η0,0 = η 1
2
, 1
2

= −η0, 1
2

= −η 1
2
,0 = 1. Comparing with the limit z → w of the

right-hand side of (3.23), we obtain

C

[
a
b

]
= ηa,be

−2πib(α2+α3) (3.26)

The spin-structure sum in Σ can now be performed by using the Riemann theta-identity (A.10).

To apply this identity we must first use the rearrangement

ϑ

[
a+ α
b

]
(z) = e2πi(b+z)αq

α2

2 ϑ

[
a
b

]
(z + αit) (3.27)

to put the theta functions in the appropriate form. The αi-dependent phase factor in C

[
a
b

]

then cancels out. After applying the Riemann identity, we can use (3.27) again to put α2 and

14



α3 back into the argument of the theta function. The result is:

Σ = 2ϑ

[
1
2
(1 + α2 + α3)

1
2

]
(z − w)

ϑ

[
1
2
(1 − α2 + α3)

1
2

]
(0)ϑ

[
1
2
(1 + α2 − α3)

1
2

]
(0)ϑ

[
1
2
(1 − α2 − α3)

1
2

]
(0) (3.28)

We can now expand this result around the N = 2 supersymmetric configuration of D-branes

using ǫ = α2 + α3. Expanding (3.28) to lowest order in ǫ gives

[FC] = −8π2ǫη2ϑ

[
1
2

+ α2
1
2

]
(0)ϑ

[
1
2

+ α3
1
2

]
(0) (3.29)

where we made use of the identity ϑ′1(0)2 = 4π2η6.

3.3 The two-gaugino amplitude

Inserting (3.18) and (3.29) into (3.9) we see that, to lowest order in ǫ, all contributions from

the string oscillators cancel and only the classical part of the correlation function remains. This

piece is independent of z−w and the integrals over the locations of the vertex operators in (3.1)

only contribute a factor (2πt)2. The result is then simply

A(1, 2) = 64π4t2
√
α′ǫg2

0tr(λ
1λ2)Nb

∑

n

(
nR

(1)
2

α′
+

ℓ

α′

)
e
−2πtα′

(
nR

(1)
2

α′
+ ℓ

α′

)2

(3.30)

From this we can can obtain the two-gaugino amplitude as

A(1, 2) =
1

4

V4

(8π2α′)2

∫ ∞

0

dt

t3
A(1, 2) (3.31)

where the integration measure has been obtained by comparing with the partition function

for intersecting D6-branes. The infinite volume factor V4 arises from momentum conservation.

Had we chosen k1, k2 6= 0, it would be replaced by a δ-function, V4 → (2π)4δ(4)(k1 + k2). The

normalization g0 can in principle be determined. However for our purposes we only need to

know that g0 is proportional to the open string coupling and therefore g2
0 ∼ gs, where gs = eϕ

is the closed string coupling, determined by the VEV of the string dilaton ϕ. For the Dirac

mass of the gauginos we then obtain the final result:

mD
1/2 ∼ gsǫN2

∫ ∞

0

dt

t

∑

n

(
nR

(1)
2

α′
+

ℓ

α′

)
e
−2πtα′

(
nR

(1)
2

α′
+ ℓ

α′

)2

(3.32)
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By a Poisson resummation, it can easily be checked that the integral is finite. Note also that

in the limit where ℓ→ 0, the mass vanishes.

To interpret the meaning of this result, we consider the mass spectrum of open strings

which stretch between the two stacks of D-branes. In the limit where ǫ → 0, these string

modes form N = 2 hypermultiplets. The mass of the lightest multiplet is given by α′m2 = ℓ2

α′
.

When ǫ is non-vanishing, supersymmetry is completely broken and there is a mass splitting

between fermions and scalars. The lightest fermions remain at α′m2
F = ℓ2

α′
, while their scalar

superpartners have their masses lifted to α′m2
S = α′m2

F + 1
2
ǫ. The result (3.32) then implies the

relation, in the limit ℓ <<
√
α′:

mD
1/2 ∼ gsǫ

ℓ

α′
∼ gs

m2
S −m2

F

M2
s

mF , (3.33)

where M2
s = 1/α′ is the string scale. For string size brane separation, such that ℓMs ∼ 1, we

recover the anticipated behavior (2.13).

4 Computation of the Higgsino mass

Consider two stacks of D6-branes: the first stack of Na branes aligned with the horizontal X(i)

axes 5 and the second stack of Nc branes intersecting the horizontal axes in the three tori at

angles θ
(i)
c = βi, i = 1, 2, 3. For β1 = 0 and β2 = β3, this configuration preserves N = 2

supersymmetry and the lightest string modes on the intersection describe hypermultiplets.

They are made of two N = 1 chiral multiplets, identified as two Higgs bosons and their N = 1

superpartners, the Higgsinos.

A simple way to generate a mass term for these Higgsinos is to separate the branes in the

first torus where they are parallel. This corresponds to switching on a vacuum expectation

value for a particular scalar that parametrizes the location of the brane in the direction X(1).

The mass is then given by the tension times the minimal length of the string, which is just

the brane separation. This mass generation is not always possible, as for specific constructions

such as orbifold models, the corresponding scalar is projected out of the light spectrum.

In this section we will investigate the possibility that the Higgsino mass is generated at one-

loop in a way similar to the Dirac gaugino mass. The appropriate string amplitude corresponds

to a world-sheet with the topology of an annulus. On the first boundary two vertex operators

that create the Higgsinos are inserted. The Higgsinos arise from open strings with the two

5This can be achieved by a rotation of the subgroup U(1)3 ⊂ SO(6).
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Figure 3: Higgsinos are localized at the intersection of branes a and c. Non-supersymmetric
states stretching between the branes (a, b) and (c, b) induce at one-loop masses for the Higgsinos.

endpoints located on different stacks of D-branes. This means that part of the first boundary

of the annulus lies on the stack of Na branes and the other part lies on the other stack of

Nc branes (see Fig. 3). This change of boundary conditions is implemented by the insertion

of twist fields σβi
and σ1−βi

. The other boundary of the annulus must be located on a third

stack of Nb branes. The two stacks Nb and Na intersect at angles αi. As this additional stack

must preserve the same supersymmetries as the other stacks, we will start from the simplest

possibility αi = 0 and make a small deformation of the angles to break supersymmetry, as

described in Section 2. The generalization to αi 6= 0 is straightforward.

The vertex operators of the Higgsinos in the −1
2
-ghost picture are:

V
(1)

− 1
2

(z) = goλ
1e−

φ
2 e

i
2

~S· ~He
i
2
H1e−i(β2−

1
2
)H2e−i(β3−

1
2
)H3σ1−β2σ1−β3e

ik1·X(z)

V
(2)

− 1
2

(z) = goλ
2e−

φ
2 e−

i
2

~S· ~He
i
2
H1ei(β2−

1
2
)H2ei(β3−

1
2
)H3σβ2σβ3e

ik2·X(z)

Note the similarities with the vertex operators of the gauginos (3.3). The helicities have been

shifted by the intersection angles. In addition we have inserted the bosonic twist operators

as world-sheet superpartners of the operators e±i(βi−
1
2
)Hi . In the limit where βi → 0, we

recover precisely the gaugino vertices since in this limit the bosonic twists become the identity

operators. Since the annulus has vanishing ghost-charge we need again to transform one of the

operators to the 1
2
-picture. This is done precisely in the same way as in Section 3. To obtain

a non-vanishing correlator, the world-sheet supercurrent TF (z) must be used to flip the sign of
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H1 in one of the exponents. The result is

V
(2)
1
2

(z) → g0λ
2e

φ
2 e−

i
2

~S· ~He−
i
2
H1ei(β2−

1
2
)H2ei(β3−

1
2
)H3σβ2σβ3e

ik2X∂Z1 . (4.1)

Inserting the vertex operators at zero momentum in the correlator leads to an expression of

the same form as (3.9),

〈V (1)(z)V (2)(w)〉 = i
1√
α′
g2

otr(λ
1λ2)Nb[BC] × [FC] (4.2)

where now

[BC] = 〈I〉bc〈I〉Xµ〈∂Z1〉Z1〈σ1−β2σβ2〉Z2〈σ1−β3σβ3〉Z3 (4.3)

[FC] =
∑

a,b

C

[
a
b

]
〈e−φ

2 e
φ
2 〉〈e i

2
~S· ~He−

i
2

~S· ~H〉〈e i
2
H1e−

i
2
H1〉

×
∏

i=2,3

〈e−i(βi−
1
2
)Hiei(βi−

1
2
)Hi〉 (4.4)

Because of the factor 〈∂Z1〉Z1 in [BC] (which was computed in section 3), we must impose that

α1 = 0 and that the branes are separated by a distance ℓ 6= 0 in the X(1) direction in order to

obtain a non-vanishing contribution.

4.1 The fermion correlator

The computation of the fermion correlator is similar to the one in Section 3.2. The correlator is

computed for general α2, α3 then expanded around the (N = 4) supersymmetric configuration

αi = 0. A slight generalization of (3.21) is given by:

〈eiaHke−iaHk〉 =

(
ϑ′1(0)

ϑ1(z − w)

)a2

ϑ

[
a + αk

b

]
(a(z − w))

1

η
; k = 2, 3 (4.5)

with a, b ∈ {0, 1
2
}. The remaining elementary correlators are unchanged and are given in (3.19)

and (3.20). Inserting these in (4.4) we obtain

[FC] =
1

η4

(
ϑ′1(0)

ϑ1(z − w)

)1−β2(1−β2)−β3(1−β3)

× Σ (4.6)

where

Σ =
∑

a,b

C

[
a
b

]
ϑ2

[
a
b

](
z − w

2

)
ϑ

[
a + α2

b

](
(β2 −

1

2
)(z − w)

)
ϑ

[
a+ α3

b

](
(β3 −

1

2
)(z − w)

)

(4.7)
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The coefficients C

[
a
b

]
are given as before by (3.26). Using the Riemann identity (A.10) al-

lows to perform the spin-structure sum and put Σ into a simpler form. After imposing the

supersymmetry condition β2 = β3 ≡ β, one finds:

Σ = 2ϑ

[
1
2
(1 + α2 + α3)

1
2

]
(β(z − w)) × ϑ

[
1
2
(1 + α2 − α3)

1
2

]
(0)

× ϑ

[
1
2
(1 − α2 + α3)

1
2

]
(0) × ϑ

[
1
2
(1 − α2 − α3)

1
2

]
((1 − β)(z − w)) . (4.8)

This can now be expanded around the supersymmetric configuration αi = 0. For simplicity, we

take α2 = 0 and α3 = ǫ, and expand in powers of ǫ:

Σ = −2ϑ

[
1
2
1
2

]
(β(z − w))ϑ

[
1
2
1
2

]
((1 − β)(z − w))ϑ′1(0)2ǫ2 . (4.9)

4.2 The bosonic correlator

The correlator of world-sheet fermions, Eq. (4.9), is already of order ǫ2. Since we are interested

only in the leading ǫ behavior, for the purpose of computing the bosonic correlation function

[BC], we can keep the leading order corresponding to αi = 0. Most pieces of [BC] have already

been computed in Section 3. The additional complication is the appearance of correlators of

bosonic twist fields. These have been studied for instance for arbitrary genus and any number

of twist fields in Ref. [17]. The complete calculation is presented in Appendix B where only the

relevant results will be quoted. In fact using Eq. (B.23) in (4.3), leads to

[BC] = i
R

(2)
1 R

(3)
1

α′
(2iα′)

∣∣∣∣
ϑ1(z − w)

ϑ′1(0)

∣∣∣∣
−2β(1−β)

1

detW (β)

1

η8

×
∑

n

(
nR

(1)
2

α′
+

ℓ

α′

)
e
−2πtα′

(
nR

(1)
2

α′
+ ℓ

α′

)2

×
∑

v
(2)
1 ,v

(2)
2

e
−Scl

(
v
(2)
1 ,v

(2)
2

)

×
∑

v
(3)
1 ,v

(3)
2

e
−Scl

(
v
(3)
1 ,v

(3)
2

)

, (4.10)

where W (β) is defined as in (B.5) for the twist β and v
(i)
1,2 are defined in Eq. (B.16).
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4.3 The Higgsino two-point correlation function

Finally inserting (4.6), (4.9) and (4.10) into (4.2) gives for the two-point function:

〈V (1)(z)V (2)(w)〉 = 32iπ3
√
α′ǫ2g2

0tr(λ
1λ2)Nb

R
(2)
1 R

(3)
2

α′

∑

n

(
nR

(1)
2

α′
+

ℓ

α′

)
e
−2πtα′

(
nR

(1)
2

α′
+ ℓ

α′

)2

f(z − w) (4.11)

where

f(z − w) =
ϑ1(β(z − w))ϑ1((1 − β)(z − w))

ϑ1(z − w)η3

1

detW (β)

×
∑

v
(2)
1 ,v

(2)
2

e−Scl(v
(2)
1 ,v

(2)
2 ) ×

∑

v
(3)
1 ,v

(3)
2

e−Scl(v
(3)
1 ,v

(3)
2 ) (4.12)

The Higgsino mass µ is proportional to the two-Higgsino amplitude obtained upon integra-

tion of the correlation function (4.11) over the position of the vertex operators and inserting

the result into (3.31). Since the correlator depends only on z−w, one of the integrals is trivial

and contributes simply a factor 2πt. The final result reads

µ ∼ gsǫ
2N1

∫ ∞

0

dt

t

∑

n

(
nR

(1)
2

α′
+

ℓ

α′

)
e
−2πtα′

(
nR

(1)
2

α′
+ ℓ

α′

)2

I (4.13)

where

I =
1

2πt

∫ 2πt

0

dxf(ix) (4.14)

and it is of order ǫ2 as expected.

5 A toy model

In this section we will present a simple model as a framework to implement the realization of the

extended split supersymmetry scenario described above with gauge bosons in representations

of N = 4 supersymmetry. It consists on a toroidal orientifold based on the factorized six-

dimensional torus
⊗

i T
2
i with an orientifold plane along the X(i) axes. This implies for each

D6a-brane with wrapping numbers (na, ma) the presence of the image braneD6a∗ with wrapping

numbers (na,−ma).
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The minimal setup is given by three intersecting stacks of D6-branes giving rise to the gauge

group

U(Na1) ⊗ U(Na2) ⊗ U(Nb) ≡ U(5) ⊗ U(1) ⊗ U(Nb) (5.1)

The branes D6a1 , D6a2 and their images, with supersymmetric intersections, provide the ob-

servable set O while the brane D6b and its image stand for the (messenger) sector M. The

Standard Model gauge group is embedded in U(5) in the following way:

• Open strings localized at the intersection of D6a1 and D6a∗

1
describe three generations

transforming as 10 of SU(5). Their massless modes transform according to the antisym-

metric representation and come in three generations, i.e.
∏

i

n(i)
a1

= 1, Ia1a1∗
= 3 (5.2)

It is easy to see that an odd number of generations requires the use of tilted tori as those

described in Fig. 1.

• Open strings localized at the intersection of D6a1 and D6a∗

2
provide three generations of

5, i.e.

Ia1a2∗
= −3 . (5.3)

• The D6a2 brane being parallel to the D6a1 in one torus, the massless modes at their inter-

sections will be identified with N = 2 hypermultiplets that contain the Supersymmetric

Standard Model Higgs doublets.

The supersymmetry breaking messengers arise from strings stretching between brane D6a1 and

D6b∗ on one side and between D6a2 and D6b on the other side. These branes are parallel

(and separated) along the second and first torus, respectively, and their intersections contain

non-chiral matter with non-supersymmetric masses.

We will discuss here a simple example given in Table 1 where the wrapping numbers of

different D6I-branes (I = a1, a2, b) in the three tori are listed. It is easy to see that the

conditions for cancellation of RR-charge tadpole are satisfied.

The association of any stack of branes D6I (I = a1, a2, b) with its orientifold image D6I∗

preserves one of the four supersymmetries, that we label as Sα with α = 1, · · · , 4, if the angles

θ
(i)
I satisfy one of the corresponding relations:

S1 : θ
(1)
I + θ

(2)
I + θ

(3)
I = 0 S2 : −θ(1)

I + θ
(2)
I + θ

(3)
I = 0

S3 : θ
(1)
I − θ

(2)
I + θ

(3)
I = 0 S4 : θ

(1)
I + θ

(2)
I − θ

(3)
I = 0 (5.4)
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NI (n
(1)
I , m

(1)
I ) (n

(2)
I , m

(2)
I ) (n

(3)
I , m

(3)
I )

Na1 = 5 (1, 1/2) (1,−1/2) (1,−3/2)
Na2 = 1 (1, 1/2) (1,−5/2) (1, 5/2)

Nb n
(1)
b n

(2)
b n

(3)
b = 10 n

(1)
b (1, 1/2) n

(2)
b (1, 1/2) n

(3)
b (1, 1/2)

Table 1: Wrapping numbers for the three stacks in the model.

It is easy to check that none of these equations can be simultaneously satisfied by the three set

of branes. Instead, we will look for ratios of radii

Ai =
R

(i)
2

R
(i)
1

, (i = 1, 2, 3) (5.5)

that allow one of the relations, chosen to be S1, to be satisfied by the stacks a1, a2 and their

images. This fixes two of the ratios as functions of the third one. For instance, in the limit of

small ratios Ai ≪ 1, the supersymmetric conditions read as

A1 ≃ 5

2
A2 (5.6)

A3 ≃ 1

2
A2 (5.7)

As a result, the intersections a1 ∩ a∗1, a2 ∩ a∗2 and a1 ∩ a∗2 preserve S1, the intersections a1 ∩ a2

and a∗1 ∩ a∗2 preserve S1 ⊕ S2, the intersections a1 ∩ b preserve S3 ⊕ S4, and finally the other

intersections involving b and/or b∗ do not preserve any supersymmetry. At these intersections

the lightest states have supersymmetry breaking masses of order:

ǫM2
s ∼ A2M

2
s (5.8)

In particular, the states at the intersection a1 ∩ b∗ could act as messengers (a number of 5 + 5̄

of SU(5)) to generate at one-loop level Dirac masses for fermions, gauginos and Higgsinos, and

at two-loop supersymmetry breaking masses for bosons of the observable sector.

Note that the gauge symmetry U(5) can be broken to the Standard Model one by a discrete

or continuous Wilson line without introducing extra fields. Unification of gauge couplings is

thus guaranteed in such particular constructions. Actually, this model realizes the particular

D-brane configuration of Ref. [2], in which the U(5) stack is replaced by two separate brane

collections, U(3) and U(2), describing strong and weak interactions. Moreover, the hypercharge

is the linear combination Y = −Q3/3 + Q2/2 of the two corresponding U(1) factors Q3 and

Q2. The antisymmetric representation of SU(5) is then decomposed in terms of the quark
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doublets, the up antiquarks and the right-handed lepton, the latter arising as antisymmetric

representations of U(3) and U(2), respectively. Imposing now I32 = IA
33∗ = IA

22∗ = 3, the absence

of symmetric representations
∏

i n
(i) = 1 for the two groups, as well as the absence of antiquark

doublets I32∗ = 0, one finds that the strong and weak branes are parallel in all three planes and

thus correspond to a Wilson line breaking of the GUT group U(5) studied above 6.

6 Conclusions

Small ǫ deformations of the brane intersection angles provide a simple mechanism to break

supersymmetry, which in the T -dual picture corresponds to the introduction of appropriate

combinations of magnetic fluxes. At the effective field theory level, this can be described as

Fayet-Iliopoulos D-term breaking corresponding to the presence of anomalous U(1) factor(s).

Charged scalars localized at their intersections acquire tree-level masses of order m2
0 ∼ ǫM2

s .

Scalars in non-chiral sectors can transmit supersymmetry breaking to the observable sec-

tor through gauge mediated loop corrections. However, since the D-term does not break R-

symmetry no gaugino Majorana masses are expected (at least to the lowest order). Phenomeno-

logically interesting models can appear when the gauge sector has an extended supersymmetry

in which case gauginos can get Dirac masses. A phenomenological application of this scenario is

given in Ref. [8] where a minimal model based on extended split supersymmetry was shown to

be consistent with unification and the presence of Dark Matter. Dirac masses for gauginos and

Higgsinos where obtained from the D-breaking assuming the presence of some effective higher-

dimensional operators. Even if such operators are absent at tree-level, the present work shows

how they arise at one-loop. The precise string calculation points out important features of the

messenger sector in the simplest realization. In particular, the fact that the messengers arise

from strings stretching between branes that are separated in one direction. They correspond

to deformations of N = 2 sectors.

A simple toroidal compactification, with an orientifold along one direction, does not allow

non-trivial supersymmetric intersecting branes. A vacuum to be considered as starting point for

the above mentioned ǫ deformation is then missing, so we instead propose a different scenario.

We identify a subset of supersymmetric intersecting branes with the observable sector. The

other branes lead to some non-supersymmetric intersections. The matter living at such non-

6Other constructions of a similar model with or without extended supersymmetric gauge sector are given in
Ref. [18].
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chiral intersections will, as in the previous scenario, play the role of the supersymmetry breaking

messenger sector. In order to obtain masses hierarchically smaller than the string scale, small

ratios of radii are required and they make all intersection angles small. We have presented a

GUT model to illustrate this possibility.

Finally note that for both scenarios there are two possibilities from the phenomenological

point of view: (i) To introduce an ǫ deformation breaking supersymmetry in the observable

sector at tree-level. (ii) To keep the observable sector supersymmetric at tree-level. Non-

supersymmetric branes such that the matter living on their intersection with the observable

branes are non-chiral will transmit supersymmetry breaking by gauge interactions. In case (ii)

both gauginos, squarks, sleptons and Higgses have masses of the same order of magnitude (as

in the usual gauge mediated models) opening up the possibility of having a supersymmetric

spectrum in the TeV range. This will give rise to a rich phenomenology accessible at LHC

energies.
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A Appendix A: Theta functions

In this short appendix, we establish our conventions for the modular theta functions and list a

few useful properties. The theta functions are defined by:

ϑ

[
a
b

]
(z, τ) =

∞∑

n=−∞

eπi(n+a)2τ+2πi(n+a)(z+b) (A.1)

where τ is the (complex) modular parameter of the torus, not to be confused with the world-

sheet coordinate used in the text. On the cylinder, this parameter is purely imaginary and in

the main text we use the definition τ = it.
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Alternatively, the theta functions can be defined as an infinite product:

ϑ

[
a
b

]
(z, τ) = ei2πa(b+z)q

1
2
a2
∏

n≥1

(1 + qn+a− 1
2 e2πi(b+z))(1 + qn−a− 1

2e−2πi(b+z))(1 − qn) (A.2)

where q = e2πiτ . They satisfy the following periodicity conditions:

ϑ

[
a
b

]
(z + 1, τ) = −e2πi(a− 1

2
)ϑ

[
a
b

]
(z, τ) (A.3)

ϑ

[
a
b

]
(z + τ, τ) = −e−2πi(b− 1

2
)e−πiτ−2πizϑ

[
a
b

]
(z, τ) , (A.4)

which is the reason why they are well suited to describe correlators on the torus. Defining

ϑ1(z) ≡ ϑ

[
1
2
1
2

]
(z, τ) (A.5)

we can see from the product representation that

ϑ1(z) = −2ei π
4
τsin(πz)

∞∏

m=1

(1 − qm)(1 − zqm)(1 − z−1qm). (A.6)

In particular

ϑ1(z) = zϑ′1(0) + · · · , (A.7)

a fact that was used repeatedly in the main text.

We also need the Dedekind eta function, which is defined as

η(τ) = q
1
24

∏

n≥1

(1 − qn) (A.8)

It is related to the function θ1(z) by the simple identity

θ′1(0) = −2πη(τ)3 (A.9)

Finally, the theta functions satisfy the following Riemann identity:

∑

a,b

ηa,bϑ

[
a
b

]
(z1)ϑ

[
a
b

]
(z2)ϑ

[
a
b

]
(z3)ϑ

[
a
b

]
(z4) = 2ϑ

[
1
2
1
2

]
(z′1)ϑ

[
1
2
1
2

]
(z′2)ϑ

[
1
2
1
2

]
(z′3)ϑ

[
1
2
1
2

]
(z′4)

(A.10)

with

z′1 =
1

2
(z1 + z2 + z3 + z4) z′2 =

1

2
(z1 − z2 + z3 − z4)

z′3 =
1

2
(z1 − z2 − z3 + z4) z′4 =

1

2
(z1 + z2 − z3 − z4)
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B Appendix B: Bosonic correlator for Higgsino mass

Let us consider the correlator on the torus with twists of an arbitrary angle θ. This correlator

has a quantum piece Zqu and a classical piece which takes into account the contributions from

world-sheet instantons:

〈σ1−θ(z1)σθ(z2)〉 = Zqu

∑

i

e−Scl(i) , (B.1)

where the sum is over classical solutions of the equations of motion. Both pieces are expressed in

terms of the so-called cut-differentials, which are holomorphic one-forms on a branched covering

of the punctured torus. When expressed as functions of the torus coordinate z, they become

multi-valued with branch-cut singularities at the location of the punctures. In the present

context, where the torus has only two punctures corresponding to the insertions of the two

twist fields, these cut-differentials are simply given by:

ω(z) = ϑ1(z − z1)
−θϑ1(z − z2)

−(1−θ)ϑ1(z − z2 − θ(z1 − z2)) (B.2)

ω′(z) = ϑ1(z − z1)
−(1−θ)ϑ1(z − z2)

−θϑ1(z − z1 + θ(z1 − z2)) (B.3)

and satisfy

ω(z + 1) = ω(z + τ) = ω(z) ω′(z + 1) = ω′(z + τ) = ω′(z) (B.4)

where τ is the complex modulus of the torus. The singularities at the insertions zi depend on

the twist-angle θ.

From these cut-differentials, we construct a “period matrix” W i
a defined as

W 1
a =

∫

γa

dz ω(z) W 2
a =

∫

γa

dz̄ ω̄′(z̄) (B.5)

where the paths γa, a = 1, 2, denote the canonical homology basis of the torus. From [17] we

obtain the quantum part of the correlation function:

Zqu =
1

detW
|ϑ1(z1 − z2)|−2θ(1−θ) (B.6)

To determine the classical part of the correlator, we need to evaluate the action for all possible

classical solutions of the equations of motion. Each contribution will have the form

Scl =
1

4πα′

∫
d2z (∂Zcl∂̄Z̄cl + ∂̄Zcl∂Z̄cl) (B.7)
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where Zcl and Z̄cl are classical solutions, i.e. Zcl solves ∂∂̄Zcl = 0 on the punctured torus with

appropriate boundary conditions (i.e. branch cut singularities) at the location of the punctures.

In particular, under parallel transport along the canonical homology basis of the torus, Zcl is

expected to shift as

∆aZcl =

∫

γa

dz∂Zcl +

∫

γa

dz̄∂̄Zcl = va , (B.8)

where va are given complex numbers. For instance for a toroidal compactification Z = X1+iX2

with

X1 ∼ X1 + 2πR1 X2 ∼ X2 + 2πR2 (B.9)

when Zcl is transported along a closed loop on the world-sheet torus, it must return to its

original value modulo a lattice vector of the space-time torus. This implies

v1 = 2π(m1R1 + in1R2) v2 = 2π(m2R1 + in2R2) , (B.10)

where the integersmi and ni correspond to the winding numbers of the closed string propagating

in the loop.

The classical part of the correlator is written as

Zcl =
∑

v1,v2

e−Scl(v1,v2) (B.11)

where Scl(v1, v2) is now expressed in terms of the period matrix (B.5):

Scl =
i

4πα′
vav̄b

(
(W̄−1)b

1W̄
1
dM

ad + (W−1)a
2W

2
cM

bc
)

(B.12)

The two-point correlation function of twist fields on the torus is then given by

〈σ1−θ(z1)σθ(z2)〉T =
1

detW
|ϑ1(z1 − z2)|−2θ(1−θ)

∑

v1,v2

e−Scl(v1,v2) (B.13)

where the sum over the vi corresponds to a sum over all possible winding modes.

The case we are interested here, the annulus two-point correlation function, is obtained

from (B.13) by taking the “square root” and replacing the complex modulus τ by τ → it. As

a result, the twist correlator on the annulus takes the form

〈σ1−θ(z1)σθ(z2)〉A = K(τ)
1

det
1
2 W

∣∣∣∣
ϑ1(z1 − z2)

ϑ′1(0)

∣∣∣∣
−θ(1−θ) ∑

v1,v2

e−Scl(v1,v2) (B.14)
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where now

Scl =
i

8πα′
vav̄b

(
(W̄−1)b

1W̄
1
dM

ad + (W−1)a
2W

2
cM

bc
)

(B.15)

and K(τ) is a normalization factor which can depend on the modulus. It is now understood

that the twist fields are located on one of the boundaries of the cylinder, zj = iyj with yj real.

The values of va must also be appropriately modified. Instead of (B.10), we now have

v1 = 2πR1m v2 = i4π(R2n+ ℓ) (B.16)

where R1, R2 are the compactification radii of the space-time torus and ℓ is the separation

between the D-branes along the X2 direction.

Taking the limit y1 → y2, allows to check that this expression is correct and to determine

the normalization constant K(τ). In this limit, the operator product expansion of the twist

fields behaves as:

〈σ1−θ(z1)σθ(z2)〉 → 1

(z1 − z2)θ(1−θ)
〈I〉 (B.17)

=
1

(z1 − z2)θ(1−θ)

1

η2

∑

m,n

exp

(
−2πα′t

(
m2

R2
1

+

(
nR2

α′
+

ℓ

α′

)2
))

where we have used that 〈I〉 is the partition function on the annulus of the complex boson Z.

The factor 1/η2 is the contribution of the oscillators while the sum is over the momentum and

winding modes of the string. The same result should be obtained by taking the limit z1 → z2

on the right-hand side of (B.14).

The expression (B.3) for the cut-differential implies that

ω(z) → 1 ω′(z) → 1 (B.18)

In this limit the components of the period matrix and its inverse can be explicitly evaluated :

W =

(
W 1

1 W 1
2

W 2
1 W 2

2

)
=

(
it 1
−it 1

)
W−1 =

1

2it

(
1 −1
it it

)
(B.19)

Inserting this in the action (B.15) leads to

Scl = − π

2α′t
R2

1m
2 − 2πt

α′
(R2n+ ℓ)2 (B.20)

so that the classical piece of the correlator becomes

∑

v1,v2

e−Scl =
∑

m

exp

(
−πR

2
1

2α′t
m2

) ∑

n

exp

(
−2πtα′

(
ℓ

α′
+ n

R2

α′

)2
)

=

(
2α′t

R2
1

) 1
2 ∑

m,n

exp

(
−2πα′t

(
m2

R2
1

+

(
nR2

α′
+

ℓ

α′

)2
))

(B.21)
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where the second equality is obtained by a Poisson resummation.

Using (A.7) and (B.19), the limit z1 → z2 of the quantum part is

Zqu =
K(τ)

|z1 − z2|θ(1−θ)

(
1

2it

)1/2

. (B.22)

Inserting (B.21) and (B.22) into (B.1) and comparing with (B.18) shows that both expressions

agree to each other provided that K(τ) = (iR2
1/α

′)
1/2

1/η2.

The final result for the correlation function of twist-antitwist on the annulus is

〈σ1−θ(z)σθ(w)〉 =

(
iR2

1

α′

) 1
2 1

η(it)2

1

det
1
2 W

∣∣∣∣
ϑ1(z − w)

ϑ′1(0)

∣∣∣∣
−θ(1−θ) ∑

v1,v2

e−Scl(v1,v2) (B.23)

where v1 and v2 are given in Eq. (B.16).
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