
LHCb-2005-101
December 12th, 2005.

LHCb VELO software alignment
Part I: the alignment of the VELO modules in their half boxes

S. Viret, C. Parkes, D. Petrie

University of Glasgow

Abstract

Software alignment of the Vertex Locator (VELO) is a critical stage of the LHCb alignment strat-
egy. This note presents a demonstration of a potential algorithm to satisfy the requirements of this
stage. A fast track-based software alignment procedure is described. This method is based on non-
iterative least squares fitting. The first step of the algorithm, the alignment of the VELO modules
in their half-boxes, is fully described and results obtained with simulated events are presented and
discussed. The approach described in this document, and the tools developed, are also applicable to
the alignment of the other LHCb sub-systems and the global relative alignment of the sub-detectors.

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1

Date: December 12, 2005

Document Status Sheet

1. Document Title: A procedure for LHCb VELO online alignment

2. Document Reference Number: LHCb-2005-101

3. Issue 4. Revision 5. Date 6. Reason for change

Draft 1 December 5, 2005 First version of the internal alignment box.

Contents

1 Introduction . 5

2 The VELO Alignment Context . 5

2.1 VELO Geometry . 5

2.2 Proposal for the VELO Alignment Procedure 5

2.2.1 Software Alignment Procedure 6

2.3 VELO systems Test - Alignment Challenge and Detector Calibration 6

2.4 Construction and Assembly Precision 7

2.5 Misalignment Studies . 7

3 General Introduction to Alignment Methods 8

3.1 Introduction . 8

3.2 Alignment by Tracks: Iterative versus Non-Iterative Methods 8

3.3 Introduction to Millepede . 10

4 VELO Alignment Algorithm . 11

4.1 Introduction . 11

4.2 VELO Residuals and Global Parameters 12

4.2.1 Position of Hits in the VELO Half-Box Frame 12

4.2.2 Relative position of the half-boxes in the VELO frame 14

4.3 Internal Alignment . 14

4.3.1 Track selection . 14

4.3.2 Feeding Millepede with (X,Y,Z) space-points 15

4.3.3 Constraining the internal alignment within Millepede 15

4.4 Algorithm implementation within the GAUDI framework 16

4.4.1 Initialization . 16

4.4.2 Execution . 17

4.4.3 Finalization . 17

4.4.4 CPU requirements . 17

4.4.5 Planned improvements for possible online utilization 17

page 2

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1

Date: December 12, 2005

5 Results . 17

5.1 Principle of the study . 17

5.2 Internal alignment . 18

5.2.1 Effect on misalignments . 18

5.2.2 Backward areas . 19

5.2.3 Effect on residuals . 19

5.2.4 Effect of track statistics . 19

5.2.5 Crosscheck of Constraints . 20

6 Conclusion . 20

7 References . 22

page 3

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1

Date: December 12, 2005

List of Figures

1 General view of the VELO . 23

2 Detailed view of one VELO box. 23

3 The basic alignment problem . 24

4 The basic principle of an iterative alignment technique. 24

5 φ correction for non (r, z)-linear tracks 25

6 Internal alignment results using track obtained with an un-tuned pattern recognition. . . . 26

7 The different types of linear transformations. 27

8 Internal alignment on an internally aligned box 28

9 VELO alignment in GAUDI . 29

10 Alignment algorithm computing time . 30

11 Internal alignment effect on dx misalignments for one particular sets of misalignments. . . 31

12 Internal alignment effect on dy misalignments for one particular sets of misalignments. . . 32

13 Internal alignment effect on dγ misalignments for one particular sets of misalignments. . . 33

14 Internal alignment robustness tests (1/5) 34

15 Internal alignment robustness tests (2/5) 35

16 Internal alignment robustness tests (3/5) 36

17 Internal alignment robustness tests (4/5) 37

18 Internal alignment robustness tests (5/5) 38

19 Track residuals summary . 39

20 Track residuals (1/2) . 40

21 Track residuals (2/2) . 41

22 Pulls of track residuals. 42

23 Effect of number of events on internal alignment performance: Z rotation example. 43

List of Tables

1 Alignment precision expected from the construction and assembly of the VELO [6],[7] . . . 7

2 Misalignment scales for internal alignment studies 18

page 4

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
2 The VELO Alignment Context Date: December 12, 2005

1 Introduction

This note describes a fast track-based software alignment procedure to align the LHCb vertex locator
(VELO) modules into their respective RF boxes. This method is based on a non-iterative least squares
fitting method which utilizes a C++ implementation1 of the ’matrix-crushing’ algorithm Millepede [1].
An overview of the stages in the alignment procedure for the VELO detector are presented in section
2 alongside with the precision expected from the system metrology measurements and construction
precision. The choice of a non-iterative alignment method for the track-based software alignment
of the VELO is motivated and an introduction to the Millepede package provided in section 3. The
proposed alignment method, and the results obtained thus far, are then described in detail in sections
4 and 5. Perspectives, summary, and conclusions are given in section 6.

2 The VELO Alignment Context

2.1 VELO Geometry

The VELO consists of 23 stations placed along the z (beam) axis, parallel to the x-y plane. Two of these
stations are primarily used for the L0 VETO trigger. Each station consists of two ’modules’ which are
separated and placed in opposite ’VELO-halves’ allowing the detectors to be retracted during LHC
beam injection. Each of the 42 standard modules consists of a pair of r and φ measuring sensor which
are bonded to the same substrate. The four VETO modules consist of a single r-measuring sensor and
the alignment of these is not considered here. Figures 1 and 2 describe how the modules are located
within the VELO. Details of the VELO detector design can be found in [3, 4].

2.2 Proposal for the VELO Alignment Procedure

The alignment of the LHCb VELO will proceed in a number of stages, which might be divided as
proposed below:

1. Precision Mechanical Assembly: The modules will be accurately assembled and mounted onto
high precision base supports. The expected tolerances are given below in section 2.4.

2. System Metrology: The individual modules will be surveyed with a SmartScope and co-ordinate
measuring machine at the time of construction. The mounted modules on the VELO-half box
mechanical frames will be surveyed with a co-ordinate measuring machine. This survey will
provide the initial estimate of the alignment constants of each half-box. The surveys will how-
ever be performed at room temperature and pressure, and at a standard humidity level.

3. Software Alignment: The software alignment of the VELO can be performed at several different
stages of the data-taking and processing:

• On-line Alignment: If necessary the alignment could be run after the insertion of the VELO
half-boxes and before standard data-taking begins. This stage will only be necessary if the
quality of the previous alignment () is not sufficient to ensure optimal performance of the
displaced vertex trigger. It is expected from the high accuracy of the mechanical system
that the internal alignment of the VELO modules within their half-boxes would not have
to be performed at this stage. The relative alignment of the two half-boxes and the global
alignment are expected to bereproducible up to 10 µm level due to mechanical system.
However this has yet to be proven and conservatively we reserve this as an option and
hence require a reasonably fast software alignment algorithm.

• Off-line Alignment for first data processing: An off-line alignment of the VELO is an-
ticipated to further improve the alignment constants. This alignment could be run easily
within the period between data taking and offline data processing, as this period is ex-
pected to be significant (see section 4.4.2 of [2]). This alignment stage will be largely based
on the work presented here.

1A standalone version of this code is available from http://ppewww.ph.gla.ac.uk/LHCb/VeloAlign/VeloExample.html

page 5

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
2 The VELO Alignment Context Date: December 12, 2005

• Off-line Alignment for data re-processing: It is anticipated that the data will be re-processed
at the end of each data-taking year. This re-processing stage offers a further opportunity to
refine the alignment constants if necessary.

4. Alignment Monitoring: We envisage running a monitoring task, during data taking, that will
monitor the quality of the track residuals obtained in the data. This monitoring job could trigger
the re-running of the software alignment if required.

2.2.1 Software Alignment Procedure

The software alignment of the VELO has two stages.

1. Internal VELO Alignment: The internal alignment of the VELO is the topic covered in this
note. this is the critical stage of the whole alignment procedure of LHCb. This stage includes the
alignment of the VELO modules in their VELO-half boxes and the relative alignment of the two
VELO-half boxes. This is the stage discussed in details in this note.

2. Global Frame VELO Alignment: The VELO system must then be aligned with respect to the
rest of LHCb locating it in the LHCb frame. Although the VELO is the most precise tracking
detector in LHCb since the VELO moves the module position cannot provide the LHCb frame
reference point. The Global alignment is not discussed here but is a relatively simple task com-
pared with the internal alignment of the VELO system. The techniques developed in this note
for the internal VELO alignment, a system with 42 separate modules, can be readily adapted to
this task of locating one geometric object within a reference frame.

If the alignment procedure is required to be performed online, then it would be envisaged to proceed
as follows:

1. A set of tracks required for the VELO alignment is collected. The number of tracks required is
expected to be of the order of 10,000, so this does not require a significant data taking period.
Tracks residuals are then checked and alignment is run if significant discrepancies are observed.
If not data taking could proceed directly.

2. The VELO internal and global alignment is performed and a new set of alignment constant is
produced. This stage is required to take no more than a few minutes and hence not to signifi-
cantly impact on the physics data taking time of the fill.

3. The new constants are tested with a set of tracks. A residual and track quality checking task
using simple monitoring histograms is envisaged (but could be performed during data-taking
period).

4. If the new alignment constants have been successfully verified the Conditions Database is up-
dated with the new alignment constants and these are propagated throughout the on-line farm.

5. LHCb data taking then proceeds.

2.3 VELO systems Test - Alignment Challenge and Detector Calibration

The operation of the VELO-half boxes in an Alignment and Calibration Challenge (ACDC) is an in-
tegral part of our preparations for physics readiness of the VELO detector. All modules of the fully
assembled VELO-half boxes will be readout during a beam test scheduled for summer 2006. Ten mod-
ules will be readout simultaneously, and permutations used which cycle through all the modules. This
will allow a test of the alignment algorithms on data and will provide the first software internal align-
ment of the VELO-half boxes in close to final conditions. These alignment constants will be used as
the starting reference point for alignment of the VELO system during initial LHC operation.

page 6

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
2 The VELO Alignment Context Date: December 12, 2005

2.4 Construction and Assembly Precision

The expected mechanical movement and assembly misalignment scales are important for the align-
ment algorithm development as they define the range within which the track based software algo-
rithm is required to function. They are related to the mechanical precision with which each compo-
nent will be installed and assembled. The current estimates of these quantities have been used to
define the scope of the simulated misalignments used in this document. If, for example, a module
could be placed in a half-box with a 20 µm accuracy, one could expect that misalignments will be
distributed on a Gaussian centered on zero and with a 20 µm width.

Table 1 shows the expected construction accuracies for the different subparts of the VELO, for the
different possible degrees of freedom (3 rotations and 3 translations).

Component Degree of freedom Mechanical estimate

Relative r-φ sensor posi-

tion in a module

x and y translations 5 µm

Module to VELO-half x, y, and z translations
and rotations

20 µm for the translations,
0.5 mrad for the rotations

VELO-half to VELO x, y, and z translations
and rotations

50 µm for the translations,
0.05 mrad for X,Y rota-
tions, 0.5 mrad for Z

Other (sensor deforma-

tion, sagging,...)

see [5]

Table 1 Alignment precision expected from the construction and assembly of the VELO [6],[7]

In complement to this table, a 10 µm reproducibility of the box translations within the VELO is ex-
pected [7].

These construction misalignments (with respect to an ’ideal’ detector) will be surveyed with a high
accuracy during a VELO mechanical survey during and after assembly of the full system. This me-
chanical survey, which is part of the alignment Challenge described previously, will provide the ref-
erence positions of all components. Hence, we can expect to have to deal with smaller values than the
construction misalignments even at the very first alignment. However the system will be surveyed at
room temperature and atmospheric conditions and, of course, each VELO half-box will move between
each LHC fill. In the absence of other information at the current time for the studies presented here
the values from Table 1 have been used to set the scale of the considered misalignments: in particu-
lar values were needed for the misalignment of modules within the moving boxes, and for the boxes
’mechanically-allowed’ degrees of freedom: x and y translations.

2.5 Misalignment Studies

A detailed study of the effects of VELO misalignments on LHCb performance have been performed
by the authors in [6]. This study described the effect of module and half-box misalignments. It has
been decided to take the module, one r and one φ sensor bonded to the same substrate, as the smallest
object to align. This choice is justified by the fact that r and φ sensors are assembled with respect to
each other with high accuracy and that all misalignments, except individual sensor deformations, will
affect the two sensors within the same module identically. While the sensor deformation on the final
module is still to be evaluated, first studies [5] have shown that the effect of these should arise at
second order only.

Study [6] shows that in most of the cases, the tolerable misalignment scale with the existing LHCb
software algorithms is larger than the expected mechanical accuracy. The only issue concerns the half-
VELO box tilts (their rotations around the x and y axis), these must be well controlled in order to

page 7

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
3 General Introduction to Alignment Methods Date: December 12, 2005

ensure that the LEVEL1 trigger works correctly. However, if mechanical accuracies are as expected, it
will mean that VELO will not have to be aligned after each fill. But once again, this point has still to
be proven, as many parameters still remain unknown (for example, module movements during box
translations).

Another important conclusion of this work [6] is that some degrees of freedoms can be neglected to
a first approximation. This will be demonstrated quantitatively later in this note (see section 4.2) but
for the module misalignments, for example, we could conclude from [6] that the LHCb performance
is relatively insensitive to Z translations and rotations around the X and Y axes, hence these less
important degrees of freedom have been neglected in the study reported here.

3 General Introduction to Alignment Methods

3.1 Introduction

Figure 3 illustrates the simplest alignment problem where the modules have only one degree of free-
dom - vertical displacements. If the track is reconstructed without taking into account the module
misalignments the situation shown on the right plot is obtained: bad quality tracks. The alignment
mission is to retrieve the real geometry using the available information, i.e. the reconstruction without
alignment.

The VELO is not the first detector to be aligned using tracks so there are plenty of efficient alignment
methods on the market. However, the VELO geometry of curved strips, the layout of modules along
the beam and, not least, the possible requirement for a fast alignment at the start of each LHC fill mean
that all existing algorithms will have to be significantly tailored to fulfill these unique circumstances.

3.2 Alignment by Tracks: Iterative versus Non-Iterative Methods

When using tracks, the standard way to obtain the alignment constants is to minimize the residuals.
In figure 3 the residual is the distance between the red circle and the blue track intercept with the
detector plane. In the VELO it is the distance between the reconstructed cluster (r or φ) position and
the track intercept point in this sensor. In a perfect detector, without any resolution error, the residual
will only depend on the misalignment. Hence, minimizing the residuals will allow us to retrieve the
misalignment constants.

More quantitatively, the most general track equation is related to the track measurements by the fol-
lowing relation:

Y = f(X) + ε, (1)

where Y is a vector2 of the measurements on the track (eg r, φ clusters), X is a vector or matrix of the
input parameters of the function f which defines the track, and ε the vector of residuals. The most
common way to minimize the residuals is by using the least squares method, this is equivalent to
minimizing the following χ2:

χ2 =
∑

i

(Y i − f(Xi)T)V −1
i (Y i − f(Xi)) =

∑

i

εT
i V −1

i εi, (2)

where we sum on all track measurements, and where Vi is the covariance matrix of track state Y i.
Now, if Y has n coordinates, the problem is reduced to the solution of a system of n equations:

(
∂χ2

∂Yk

)

k∈[1,n]

= 0. (3)

However, this system could be solved only if the problem is linearizable i.e. if one could express the
track equation as follows:

f(X) = X ·α, (4)
2Throughout this note vectors are denoted in bold

page 8

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
3 General Introduction to Alignment Methods Date: December 12, 2005

where X is now a matrix containing the local derivatives of the tracks and α is a vector containing
the local parameters of the tracks.

In this case, and if we consider in addition that the different coordinates of Y are not correlated (Vi is
then a diagonal matrix containing the errors on the coordinates), the solution to the problem is:

α =

(∑

i

XT
i · V −1

i ·Xi

)−1

·
∑

i

XT
i · V −1

i · Yi. (5)

¿From that point it is straightforward to get the residuals.

To illustrate this lets describe a simplified VELO example. A VELO track could be roughly defined as
two straight lines: {

xmeasured = xtrack + εx = a · z + b + εx

ymeasured = ytrack + εy = c · z + d + εy
, (6)

so, in the VELO case, one has: Y = (xmeasured, ymeasured), ε = (εx, εy), V =
(

σ2
x σxy

σxy σ2
y

)
, α =

(a, b, c, d), and X =
(

z 1 0 0
0 0 z 1

)
. In this case there are 4 local parameters, these are the track

parameters which are the components of α, and 8 local derivatives, which are the components of X.

Looking back at equation (5), it becomes evident that changing the track measurement will modify
the residuals. This is the basic principle exploited by iterative minimization methods (described on
figure 4). Changing the measurement is equivalent to displacing the sensitive area, the idea is to move
the module, then fit the tracks with the new measurements and analyze the new residuals. You iterate
the method until you reach an acceptable solution, hopefully the minimal set of residuals.

This method is simple and in fact has already proven its efficiency in detector alignment on many
occasions but it has a few disadvantages which are potentially important for the VELO.

The first disadvantage is that it may be time consuming, and consequently ineffective for fast online
alignment. This can be illustrated by considering the example of the VELO testbeam alignment [8]
which was performed using an iterative technique. The required time to align the six telescope sen-
sors was about 10 1GHz Pentium CPU hours and 650 iterations were needed. In our case we will
only have a few minutes to align 42 modules so the same method is not applicable on a single CPU.
However, we do have the CPU power of a 1800 node processor farm available, so such an algorithm
is not necessarily excluded by CPU considerations. Furthermore, the number of iterations could be
significantly reduced, and consequently the computing time, by using more sophisticated iterative
techniques. However in this case we loose the simplicity of the method and the result is an algorithm
that is more difficult to setup and tune. Since we require a fast and robust alignment the simplicity of
the method is a strong criterion for our alignment decision.

The other significant disadvantage with basic iterative methods is that they are blind in the sense
that they ignore the relationship between the residuals and the misalignments. The track is biased
by the measurement hits it contains but this information is not used in the procedure. The effect of
this loss of information that is potentially most damaging is that outliers (incorrect hits) might be
more easily propagated through the iterations then leading to biases in the final result. Once again,
sophisticated techniques more or less manage to overcome that point but it becomes clear that the
problem would be simplified by taking into account directly the relationship between the residuals
and the misalignments.

Non-Iterative methods aim to take account of the relationship between the residuals and the mis-
alignments . Instead of simply fitting the track, the track and the residuals are fitted simultaneously.
To do so, you first need to find a linear relationship between the residual and the alignment constants
(as was previously done for the local part of the tracks). The track equation is now given by:

Y = X ·α + C ·∆, (7)

where ∆ contains the global parameters, i.e. the alignment constants we are looking for, and C is
a matrix containing the global derivatives. The problem is then solved exactly as previously. The

page 9

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
3 General Introduction to Alignment Methods Date: December 12, 2005

difference is that the solution now contains not only the local track parameters but also the global
alignment parameters. It is not necessary to deal with the residuals directly and you get the track
parameters and the misalignment constants in one step.
However, the problem with this method is that we have now correlated all the tracks. By definition,
global parameters are common to all the tracks. So, by including them into the fit, the tracks are no
longer independent. This means that it is necessary to fit all the tracks simultaneously. Previously
to fit a track we had only to solve a system of n equations, where n was the number of local track
parameters. Now, the final size of the system of equations is given by:

ntotal = nlocal · ntracks + nglobal. (8)

In order to get a good accuracy on the global alignment parameters you will need a significant number
of tracks. However if we need, say, 10000 tracks, as we have 4 local parameters for each track (in the
VELO but it could be far more), you finally get a system of around 40000 equations. The problem thus
requires us to invert, in a reasonable time, a 40000x40000 matrix and it is this for which we use the
Millepede algorithm.

3.3 Introduction to Millepede

Millepede was developed by Volker Blöbel for H1 alignment [1]. To understand how this algorithm
works, consider the equation (7) in the simple case of a straight track:

y =
∑

j

xj · αj +
∑

k

ck ·∆k. (9)

The χ2 to minimize is given by the relation:

χ2 =
∑

i

wi · (yi −
∑

j

xi
j · αj −

∑

k

ci
k ·∆k)2, (10)

with wi = 1/σ2
i (the measurements should be uncorrelated). As previously explained, all tracks are

fitted simultaneously and we have the expression:

χ2 =
∑

track,i

wtrack,i · (ytrack,i −
∑

j

xtrack,i
j · αtrack

j −
∑

k

ctrack,i
k ·∆k)2, (11)

where
∑

track,i stands as
∑

track

∑
i. Differentiating with respect to the track states allow us to derive

the required system of equations and produces the following result (this is the equivalent of equation
(5)):

∆1

. . .
∆nglobal

.
α1

1

. . .
αntrack

nlocal

=

V11

... V12

.

V21

... V22

−1

·

∑
track,i wtrack,i · ci

1 · ytrack,i

. . .∑
track,i wtrack,i · ci

nglobal
· ytrack,i

. .∑
i w1,i · x1,i

1 · y1,i

. . .∑
i wntrack,i · xntrack,i

nlocal
· yntrack,i

(12)

The four sub-matrices are given by:

V11(k, j) =
∑

track,i wtrack,i · ci
k · ci

j (k, j) ∈ [1, nglobal]× [1, nglobal]

V22(k + n · nlocal, j + n · nlocal) =
∑

i wn,i · xn,i
k · xn,i

j (n, k, j) ∈ [0, ntrack − 1]× [1, nlocal]× [1, nlocal]

V22(k, j) = 0 otherwise

V12(k, j) =
∑

track,i wtrack,i · ci
k · xtrack,i

j (k, j) ∈ [1, nglobal]× [1, nlocal · ntrack]

V21(k, j) = V12(j, k)
(13)

page 10

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
4 VELO Alignment Algorithm Date: December 12, 2005

The main point to note here is that the largest part of the matrix is V22 and that this is only filled with
symmetric sub-matrices of dimensions nlocal × nlocal. In addition, those blocks are on the diagonal so
that V22 is nearly empty and relatively simple to invert, this is the key to the problem. The full solution
requires us to invert V , i.e. find the four sub-matrices A, B, C, and D such that:

V11

... V12

.

V21

... V22

 ·

A
... B

.

C
... D

 = 1 (14)

However, in fact, we only need A and B, as this are the only parts required to find the alignment
constants. Hence we have:

∆1

. . .
∆nglobal

 = A ·

∑
track,i wtrack,i · ci

1 · ytrack,i

. . .∑
track,i wtrack,i · ci

nglobal
· ytrack,i

 + B ·

∑
i w1,i · x1,i

1 · y1,i

. . .∑
i wntrack,i · xntrack,i

nlocal
· yntrack,i

(15)

Inverting by blocks produces:

A =
(
V11 − V12 · V −1

22 · V T
12

)−1

B = −A · V12 · V −1
22

(16)

So the final result is just given by multiplying matrix A by a vector, which is relatively easy to derive,
as V22 is straightforward to invert. The alignment constants are thus obtained by inverting the matrix
A of only nglobal × nglobal dimensions. The central work of the Millepede algorithm is the solving of
equation (15).

Millepede manages the solution of this problem based on the user providing the track parameters and
the global and local derivatives. The program then does the local fit of each track (V22 sub-part), and
then updates the matrix A and the final vector, taking into account the global derivatives contribu-
tions, which appear in V11 and V12. When the loop over all tracks is finished, Millepede performs the A
matrix inversion, using the enhanced Gauss pivot method and then deduces the alignment constants,
and multiplies it by the correct vector of parameters. If the matrix inversion required is still large we
may consider the future use of alternative inversion techniques. A second loop is then performed in
order to remove the outlier tracks and the program usually converges after this second loop.

Millepede thus provides a fast and elegant solution to our large matrix inversion problem. It also pro-
vides a whole set of methods in order to add constraints to the system. The imposition of constraints
is critical to obtaining a robust solution and is discussed for the VELO case in section .

4 VELO Alignment Algorithm

4.1 Introduction

The VELO software alignment algorithm is able to align the modules within each of the two VELO-
half boxes and also to align the two half-boxes themselves within the VELO reference frame. The two
VELO half boxes will be retracted and reinserted between each LHC fill. However, the alignment with
tracks cannot give us information about the absolute box positions in the LHCb frame. This requires
a global alignment of the full VELO system with respect to the other sub-detectors, a comparatively
simple procedure, and is not considered further in this note.

The VELO alignment procedure naturally divides into two distinct parts:

1. An internal alignment of the modules within each VELO-half box using the residuals on tracks.

page 11

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
4 VELO Alignment Algorithm Date: December 12, 2005

2. A relative alignment of the two boxes with respect to each other using primary vertices, module
overlaps, and tracks crossing both halves.

An algorithm to perform the first alignment stage is proposed and described in sub-section 4.3. The
method is based on the relationship between the residuals and the alignment constants and the first
sub-section explains the required equations, for both steps of the alignment procedure. The relative
alignment of the two boxes will be discussed in a future note.

4.2 VELO Residuals and Global Parameters

As discussed in section 3.3, the requirement for our alignment procedure is to be able to derive a linear
relationship between the residuals and the misalignment constants. Each module has six degrees of
freedom and hence six alignment constants (denoted ∆i) which position it relative to its VELO-half
box. In addition, the position of the VELO half box is represented by a further six alignment constants
which are denoted ∆b

i .

In the following subsection, we first find the relations required for the alignment of the modules
inside their VELO-half box. Then, in the second part section 4.2.2, we will extend our derivation to
the relative alignment of the half-boxes in the VELO frame.

4.2.1 Position of Hits in the VELO Half-Box Frame

Consider a hit in a VELO module, this hit is defined by the coordinates rb
hit = (xb

hit, y
b
hit, z

b
hit) in

the VELO-half box frame. The VELO-half box frame is the reference frame for the VELO internal
alignment. The same hit is expressed as rhit = (xhit, yhit, zhit) in the local sensor frame, with rhit

defined as:
rhit = R · (rb

hit − rb
0), (17)

where R and rb
0 are respectively the rotation and the translation to get from the global to local frame.

For example, if the sensor is perfectly aligned (by which we mean at its ideal position) in the box we
would simply have:

rhit = rb
hit −

0
0
zb
0

 , (18)

where zb
0 is the sensor position on the z-axis. Then, if the sensor is misaligned, the same hit will have

a different expression in the sensor’s local frame. Let’s call rnew
hit this value, the contribution to the

residual due to misalignment is given by:

ε = rnew
hit − rhit. (19)

In the most general case, one has 6 degrees of freedom: 3 translations around the x, y, and z axes (called
∆x, ∆y , ∆z respectively), and 3 rotations around the x, y, and z axes (called ∆α, ∆β , ∆γ respectively).
rnew

hit is given by the relation:

rnew
hit = R∆γ R∆β

R∆α · (rb,new
hit − (rb

0 +

∆x

∆y

∆z

)) = ∆R · (rb,new

hit − (rb
0 + ∆r)). (20)

Here we have rb,new
hit and not rb

hit: since the sensor has moved in the global frame the hit in the global
frame has also moved. Hence, we need to derive the new intercept point between the track and the
displaced sensor.

rb,new
hit and rb

hit belong to the same VELO track, which could be defined by two straight lines in the
(x, z) and (y, z) planes (see relation (6)). One thus has (using the notation introduced in relation (6)):

rb,new
hit = rb

hit + h ·

a
c
1

 , (21)

page 12

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
4 VELO Alignment Algorithm Date: December 12, 2005

where h is the parameter we wish to determine. By definition rb,new
hit belongs to the displaced sensor,

which means that its value in the displaced sensor frame, rnew
hit , is orthogonal to the z-axis in that

frame. Thus we have:

rnew
hit ·

0
0
1

 = 0, (22)

which is equivalent to:

∆R · (rb,new
hit − (rb

0 + ∆r)) ·

0
0
1

 = 0. (23)

Assuming that rotations are small we can use a simplified expression for ∆R:

∆R =

1 ∆γ ∆β

−∆γ 1 ∆α

−∆β −∆α 1

 , (24)

and to first order:

∆R ·∆r ≈

∆x

∆y

∆z

 . (25)

A straightforward computation leads to the h value:

h =
∆z + xb

hit ·∆β + yb
hit ·∆α

1− a ·∆β − b ·∆α
≈ ∆z + xb

hit ·∆β + yb
hit ·∆α. (26)

The last approximation is justified by a binomial expansion to first order. We now have rb,new
hit , the

expression of rnew
hit is then easy to derive:

rnew
hit = ∆R · (rb,new

hit − (rb
0 + ∆r)) = ∆R · (rhit + h ·

a
c
1

) + ∆R ·∆r, (27)

then,

rnew
hit = ∆R ·

xhit

yhit

0

 + h ·∆R ·

a
c
1

 + ∆R ·∆r. (28)

The z expression cancels, and two equations remains:

xnew
hit = xhit −∆x + yhit ·∆γ + a · (∆z + xhit ·∆β + yhit ·∆α)

ynew
hit = yhit −∆y − xhit ·∆γ + c · (∆z + xhit ·∆β + yhit ·∆α)

, (29)

rnew
hit is the measurement you will observe and rhit is the value corrected for the misalignments. The

expression for the residuals as a function of the measured values is given by:

εx = xnew
hit − xhit = −∆x + ynew

hit ·∆γ + a · (∆z + xnew
hit ·∆β + ynew

hit ·∆α)

εy = ynew
hit − yhit = −∆y − xnew

hit ·∆γ + c · (∆z + xnew
hit ·∆β + ynew

hit ·∆α)
. (30)

This expression confirms the results of the VELO misalignment studies: the sensitivity to ∆z , ∆α, and
∆β is proportional to the track slope which is by construction small in the VELO, hence these degrees
of freedom are less important.

page 13

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
4 VELO Alignment Algorithm Date: December 12, 2005

4.2.2 Relative position of the half-boxes in the VELO frame

Let’s denote rV
hit the hit coordinate in the VELO frame. This coordinate could be, for example, the

primary vertex position. The connection with rb
hit is straightforward:

rb
hit = Rb · (rV

hit − rV
0). (31)

If we consider that the VELO and box frames are identical, in perfect geometry we get:

rb
hit = rV

hit. (32)

Adding box misalignments, we have:

rb,new
hit = ∆Rb

· (rb
hit −∆rb

) = ∆Rb
· (rV

hit −∆rb
), (33)

which leads to the following relations:

xb,new
hit = xV

hit −∆b
x + yV

hit ·∆b
γ + zV

hit ·∆b
β

yb,new
hit = yV

hit −∆b
y − xV

hit ·∆b
γ + zV

hit ·∆b
α

zb,new
hit = zV

hit −∆b
z − xV

hit ·∆b
β − yV

hit ·∆b
α

. (34)

The expressions for the residuals in the VELO frame, as a function of the box misalignments and
coordinates is thus given by:

εb
x = xb,new

hit − xb
hit = −∆b

x + yb,new
hit ·∆b

γ − zb,new
hit ·∆b

β

εb
y = yb,new

hit − yb
hit = −∆b

y − xb,new
hit ·∆b

γ − zb,new
hit ·∆b

α

εb
z = zb,new

hit − zb
hit = −∆b

z − xb,new
hit ·∆b

β − yb,new
hit ·∆b

α

. (35)

These equations provide the expression for the global derivatives for the box alignment. The main
difference with the case considered in the previous section comes from the fact that the z coordinates
now have an important effect on the residuals.

4.3 Internal Alignment

4.3.1 Track selection

The selection of the tracks used in the alignment is important as a full population of the A matrix is
required. An ideal track for alignment would cross all the VELO stations and have a sufficiently large
slope. This situation is unfortunately not possible in our case and we need to find a compromise.

The first class of tracks to consider is the standard VELO physics tracks which originate principally
from the beam spot situated in the center of the VELO. These tracks are angled but they do not cross all
of the box. In addition, the modules close to the beam spot will be crossed only at a low radius in the
high multiplicity area. We will see in the following discussion that in such a situation the performance
of the algorithm will be degraded.

To overcome these problem, we also consider another complementary type of track: those due to
beam halo particles3. Halo tracks have many advantages for our algorithm: they provide long tracks
crossing the whole box; angled tracks are available in all stations; they provide a potentially easier
way of studying the overlap region between modules in the left and right boxes. Unfortunately a
pattern recognition algorithm for halo tracks is not currently available within the LHCb software. This

3We could also imagine to use classic tracks coming from primary vertices significantly displaced in Z.

page 14

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
4 VELO Alignment Algorithm Date: December 12, 2005

point is, however, being addressed and a Gaudi implementation of this code should be available soon
(see for example [9]). First tests using toy tracks produced with a standalone code show encouraging
results (see for example [10]).

Concerning the standard physics tracks, it is clear that large misalignments are not supported by the
basic pattern recognition, which is tuned, until now, for a perfect geometry. This fact is easy to observe
with our algorithm, when running with a non-tune pattern recognition the result shown on fig.6 are
obtained. Here, the performance of the alignment algorithm is inadequate, this is due to some of the
misalignments being sufficiently large than the track hits in the displaced sensor have no chance to fall
into the pattern recognition search windows. Hence, we require a pattern recognition algorithm that
will take the misalignment into account and work in this area is currently being implemented by the
VELO tracking group[11]. However, as this misalignment tolerant pattern algorithm is not currently
available we rely here on our own private tune of the VELO pattern recognition with reasonably
increased tolerances for the search windows.

This privately tuned pattern recognition is one of the reasons why the alignment algorithm is cur-
rently not very efficient in the modules close to the interaction point. Indeed, in this high multiplicity
area, wrong hit pickup is non-negligible, and this is dramatically increased if, as we are doing, we
add misalignments and increase the size of the pattern recognition corridors. A possible solution to
this problem would be to add an isolation criteria to the pattern recognition: this was the approach
adopted by CDF in their tracking used for alignment [12]. This solution has not yet been investigated
as this problem is also likely to be significantly reduced by the use of halo tracks. However, a dedicated
pattern recognition for use in alignment could be highly beneficial.

4.3.2 Feeding Millepede with (X,Y,Z) space-points

A VELO track consists of a set of (r, φ) clusters, and we rely on an r, φ cluster pair from a single module
as our basic unit for alignment. The r and φ sensors are bonded to opposite sides of a substrate and
hence are located at different z coordinates. The difference in z co-ordinate must be considered when
mapping the cluster positions to an (x, y) coordinate. We thus have to transform (r, zr) and (φ, zφ)
into an (x, y, z) point. Standard VELO physics tracks only are nearly linear in (r, z) so it is possible to
project the φ cluster onto the R sensor since φRsensor ≈ φφsensor .

However, as the track is never completely (r, z)-linear, a small correction, based on the track ex-
trapolation in the sensors, is applied. Indeed, using those states, one could easily obtain the track
φtrack values when crossing the sensors: φtrack(φsensor) and φtrack(rsensor). If the track is (r, z)-linear
one should have φtrack(φsensor) = φtrack(rsensor). Correction for non-linearity is given by φcorr =
φtrack(φsensor)− φtrack(rsensor). The φ value for r sensor is then easy to derive, as illustrated on fig.5.
This correction becomes particularly useful in the case of halo tracks, which may be significantly non
linear in (r, z).

4.3.3 Constraining the internal alignment within Millepede

The internal alignment of the VELO modules in their half-box is by definition insensitive to shifts of
the position of the whole box. It is necessary to introduce a set of constraints into the alignment pro-
cedure to prevent these correlated module movements. This section describes the sort of constraints
necessary and methods used to introduce these.

The simplest solution is to control the variation of the alignment constants. As we don’t expect them
to move much more than the mechanical accuracy, one could add a constraining term to the χ2:

χ2
const = χ2 +

∆2
i

σ2
i

, (36)

where ∆i is the alignment parameter you want to control, and σi the maximal variation you expect for
this parameter (currently these are taken from the estimates of the mechanical accuracy of the system).
This constraint is straightforward to implement, as you just have to add 1/σ2

i to the matrix element
Ai,i. However, one could also fix more powerful constraints with Millepede, using relationships be-
tween the alignment constants.

page 15

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
4 VELO Alignment Algorithm Date: December 12, 2005

Constraint equations are the best way to prevent global deformations of the system during the align-
ment. The only possible deformations, in our case, are linear transformations. Translations are the
most straightforward example of them but there are four sort of linear deformations, which are sum-
marized on fig.7. In three dimensions, this leads to 12 possible global deformations. However, due
to the VELO station structure, we could neglect three of them at the first order: shearing in the XY
plane, and scaling of the X and Y axis. In addition, due to the VELO geometry, it will be difficult to
distinguish XZ and YZ shearings from Y and X rotations. Thus we choose to consider to constrain
only the XZ and YZ shearings, as they are easier to add into our linear system.

Hence we need to constrain 7 possible deformations: Z axis rotation, X, Y, Z translations, XZ and YZ
shearings, and Z axis scaling. The way to introduce these constraints in Millepede is explained in
detail in [13], consequently we will just briefly describe the basic principles here.

In each box one has to determine 21 alignments constants for each degree of freedom. Let’s take the X
translation example. Before the alignment, one has:

< ∆x >= ∆X , (37)

where ∆X is a global offset, which couldn’t be found by an internal alignment. If we want to avoid
global translations along the X axis during the alignment procedure, then we need to fix this constraint
equation.

This can be performed by introducing a new parameter ∆′
x related to ∆x by:

∆′
x = ∆x −∆X . (38)

By construction we then have:
< ∆′

x >= 0, (39)

which is an equation we could define without any problem...

Using this new formalism, known as the canonical convention, we are able to set the 7 constraint
equations. One should notice here that the alignment constants we will get from the internal alignment
process are the ∆′

i, i.e.the ’offset-free’ constants. Clearly this is not a problem as the box offsets are
only accessible via a box alignment procedure. The description of this procedure will be the subject of
a future note.

4.4 Algorithm implementation within the GAUDI framework

As we require reconstructed tracks for our alignment the code described here is currently running
within Brunel. The basic program flow is described on fig.9. It refers to the basic steps of a GAUDI
algorithm: initialization, execution, and finalization. We will now describe each step in more details.

4.4.1 Initialization

The previous alignment conditions are retrieved during the initialize() method. Algorithm specific
initializations are set externally via three job options files:

• VeloAlign.opts : contains the VELO geometry information, ie all the parameters defining the
sensors to be aligned. It is possible to choose the sensors we want to align. The selection criteria
for primary vertices are also set in VeloAlign.opts.

• TrackStore.opts : the tracks used for the alignment must satisfy specific criteria. These cuts (min-
imal number of hits, momentum cut, overlap cut...) are handled throughout the code into a
TrackStoreConfig object, which is setup via this job options file.

• Millepede.opts : all the information necessary to run Millepede (constraint equations, numbers
of DOFs, number of iterations...), are given here.

page 16

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
5 Results Date: December 12, 2005

4.4.2 Execution

The execute() method is used for the track selection. This selection is handled by a GAUDI tool:
TrackStore via the method TransformTrack(). This method takes a reconstructed track as its input.
The output is an AlignTrack, a specific object containing all the necessary information for our align-
ment algorithm (Millepede ”friendly” coordinates, event number...). If the considered track satisfies
the TrackStoreConfig cuts then it is stored in an AlignTrack container.

4.4.3 Finalization

The Millepede tool, a C++ translation of the Millepede algorithm, is instantiated here, via the Init-
Mille() method. This initialization takes into account the geometry and configuration requests con-
tained in VeloAlign.opts and Millepede.opts.
After the tool initialization, Millepede is fed with AlignTracks, via the method PutTrack(). This process
is quite quick, as the AlignTrack is already in the expected format.
Finally, the global fit is performed via the method MakeGlobalFit(), which produces as its output the
internal alignment constants.
This is the end of the internal alignment stage. We then need to find the boxes offsets. This part will be
described in a future note, however the method used is quite similar to the one described for internal
alignment.
Once the global alignment is performed we update the alignment conditions (of course we first have
to check that the results are correct) this is the last stage of the alignment algorithm.

4.4.4 CPU requirements

Should the ’fill-to-fill’ software alignment of the VELO be necessary, then their will be strict require-
ments on the CPU performance. However this alignment will have at its disposal the power of the
LHCb trigger farm of approximately 1800 processors. The only other use envisaged for these proces-
sors is running monitoring tasks prior to data taking. Hence, it is important to ensure that the align-
ment algorithm fits comfortably into the available CPU budget. The alignment algorithm adopted
here is based on a linearization and matrix inversion by blocks and currently has rather modest CPU
requirements. Figure 10 shows the time spent (normalized to a 1 GHz Pentium III) in the alignment
algorithm presented in this note as a function of the number of events used. Due to the form of the al-
gorithm adopted the time required by the matrix inversion is relatively small. The majority of the time
is spent in populating the matrix and this time grows linearly with the number of tracks used. The
matrix population could potentially be performed in parallel on a number of processors with the data
combined only for the matrix inversion stage. Such an implementation has not yet been investigated
given the small times obtained on even a single processor.

4.4.5 Planned improvements for possible online utilization

At this point, the code has not yet been optimized for speed of operation.
For example, the creation of a new Aligntrack object, even if it is really useful for the algorithm, could
perhaps be avoided and all the track selection performed in the Finalize() method. Such modifications
could reduce the time spent into the alignment algorithm and thus have to be evaluated.
But once again, as we said in section 2.2, the best way to test the code and to optimize it will be the
2006 alignment challenge.

5 Results

5.1 Principle of the study

The results of the internal alignment algorithm have been evaluated using simulation events and are
reported in this section.

page 17

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
5 Results Date: December 12, 2005

200 samples of 2000 minimum bias MC events have been produced and propagated through LHCb
simulation packages. Each sample had a different set of alignment constants, which were introduced
into the LHCb geometry using the recently developed LHCb Geometry Framework described in [14].

The misalignment values have been randomly chosen within a Gaussian distribution centered on 0
and with the resolution σscale. The different scales are summarized in table 2. Module rotations and
translations have been considered. In addition, the constraints equations on the box translations have
been tested by introducing box misalignments.

Component Degree of freedom σscale

Module ∆x, ∆y , ∆z 30 µm

Module ∆α, ∆β , ∆γ 2 mrad

Table 2 Misalignment scales for internal alignment studies

As previously stated, halo tracks and dedicated pattern recognition weren’t available at the time of
this study. However, these features are useful mainly for modules which are close to the interaction
point (mainly the stations 5 and 6).

The internal alignment algorithm has thus been tested between stations 7 and 20. It is anticipated that
the same quality of result will be obtained on all stations using the correct track samples. Preliminary
results using backward tracks (stations 0 to 4) are also presented.

5.2 Internal alignment

5.2.1 Effect on misalignments

Figures 11, 12, 13 show the misalignment constants before (full squares), and after (open squares) the
step 1 application, for ∆x translations, ∆y translations, and ∆γ rotations respectively. On each figure,
the top plot shows the left box result, and the bottom plot the right box one.

The first conclusion is that a good correction of misalignments can be obtained with a relatively mod-
est number of tracks. The results shown here have been obtained with about 15000 tracks for each box.
Another interesting point is that relatively large misalignments are corrected without any problem.
Rotational biases of a few mrads and translational biases larger than 80µm are indeed well recon-
structed. Such misalignments are larger than the mechanical constraints on the modules positioning,
so the algorithm performs over the required range of misalignments.

As expected, the sensitivity to other degrees of freedom is smaller. Hence, if we try to retrieve them
the result is not relevant (i.e.misalignments constants are not well reconstructed). But in any cases they
don’t affect or bias the results obtained for the major degrees of freedom. So this is not a concern, at
least at the first order.

The robustness of the method is tested in figures 14 and 15. These show the results obtained with the
200 sets of events, for both translations and rotations. The results shown above for a single example
data set are confirmed here. The small discrepancies in the rotation plot come from station close to the
interaction point (mainly 7 and 8). This effect is expected to disappear using the final track sample for
the alignment. Apart from that, all the relevant misalignments are well corrected, even those with a
relatively large scale.

A fit of the corrected alignment constants is shown on fig.16. Translational misalignments are cor-
rected to a 2.8µm accuracy (better than the best possible VELO resolution), whereas a 0.4 mrad preci-
sion is obtained for rotation around the z axis. The resolution for the rotations is not as good as for the
translations but is already very acceptable as it is a the level of 1/6th of a φ outer strip. Furthermore,
this result is mainly degraded by station 7 and 8, and it is expected to be slightly improved using halo
tracks.

page 18

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
5 Results Date: December 12, 2005

5.2.2 Backward areas

An important feature of our basic track selection is that no momentum cut is requested a priori, so that
the algorithm should work on backward tracks too. This is shown on figures 17 and 18 using the same
events samples and applying the algorithm between station 0 and 4 (station 5 is skipped for the same
reasons as station 6).

The results concerning the translation parameters are as good as for forward tracks, but the rotational
misalignment distributions are a little bit more distorted. This torsion is expected from the canonical
convention used for applying constraints [13], and is larger when the number of considered stations
becomes small. This could be corrected using a larger amount of tracks, but this is not expected to be
a problem with 21 modules.

5.2.3 Effect on residuals

The first objective of the internal alignment is to improve the track reconstruction. The best way to
check that is to compare the track residuals before and after the alignment procedure.

One has: {
εx = xmeasured − xtrack

εy = ymeasured − ytrack
. (40)

In the following, as our detector has an (R,φ) geometry, we will present residuals values in R and φ
directions:

{
εR =

√
(xmeasured + εx)2 + (ymeasured + εy)2 −

√
x2

measured + y2
measured

εφ = atan(ymeasured+εy

xmeasured+εx
)− atan(ymeasured

xmeasured
)

. (41)

Residual values, as a function of R and φ are shown on fig. 20 and 21, A global view, for X and Y
residual is presented on figure 19. We see that in all cases the mean value of the residuals is centered
on zero after the alignment procedure and that the RMS of the distribution is also slightly improved.

The pulls are computed as follows:

Pulli =
εi√

σ2
measured,i − σ2

track,i

(42)

The - sign in the pull definition comes from the fact that the measurement is taken into account in the
fit. σtrack,i is the fitted track error on the ith coordinate. This is obtained from the track parameters by
error propagation. Values of Pullx and Pully are presented on figure 22. They are fitted using the sum
of two Gaussians. The principal Gaussian has a width of 0.8, which is slightly lower than the expected
value of 1. It means that measurement error is slightly over- estimated, which is the case as we are
using the value Pitchstrip/

√
12 for our measurement error. This point will be improved soon with the

utilization of a correctly tuned VELO simulation[15].

5.2.4 Effect of track statistics

We expect the alignment result to be improved as a function of the number of tracks. Results obtained
in section 5.2 were obtained with 2000 events per job, which corresponds to about 15000 tracks. The
same jobs were re-processed but taking 500, 5000, and 10000 events per job. Fits of the final corrected
misalignment distribution, as shown on figure 16, were performed. The result of those fits is summa-
rized on figure 23 where resolution as a function of the event statistics is displayed in the case of Z
rotation misalignment. We clearly observe the expected improvement, as a function of the statistics.

page 19

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
6 Conclusion Date: December 12, 2005

5.2.5 Crosscheck of Constraints

As previously discussed, the track residuals within a box are not sensitive to misalignments of the
box, and constraints applied during the internal alignment should prevent any box movement. A
clear check of that point is shown on figure 8, where the internal VELO module alignment is run with
the box misaligned. The modules are perfectly aligned before the alignment procedure is performed.
These plots show the effect of the internal alignment on 30 sets of box misaligned data (1000 events
each). On the left are the generated internal misalignment constants, so only zeroes, and on the right
the ones found by our internal alignment algorithm. As expected the algorithm doesn’t reconstruct
any large misalignment. Small distortions arise from the fact that we are not yet using halo tracks, so
that the final matrix is not perfectly conditioned. Moreover, these distortions are statistic dependent:
the larger the number of tracks, the smaller are the reconstructed misalignments.

6 Conclusion

The alignment of the LHCb VELO proceeds in three stages: a precision mechanical assembly; an accu-
rate metrology of the components and the assembled system; and a software alignment using tracks
collected during data taking. The Alignment Challenge and Detector Calibration where the full velo-
halves are operated in a test-beam and the first estimate of the alignment constants obtained is also a
critical element of the programme. The software alignment has been developed in order to be able to
run on a ’fill-to-fill’ basis if necessary. The outcome of the alignment will already be physics analysis
quality alignment constants. Thus the algorithm could be largely used as a basis for the alignment
which will be run on off-line data. This note has described critical elements of the software alignment
stage, which has been implemented in the Gaudi framework and studied with simulation events.

As previously stated, the alignment might have to be performed after the insertion of the VELO at
the start of an LHC fill and before main LHCb data taking can commence. The alignment will then be
performed on a timescale of a few minutes using the CPU power of the CPU trigger processor farm.
CPU consumption results have been presented that demonstrate that a single 1GHz processor can
produce an effective internal alignment of the VELO on 10,000 tracks in approximately 10 minutes.
The processing is readily divisible between CPUs, so the CPU performance of the current algorithm is
found to be suitable for this task. This method contrasts with typical iterative techniques of alignment
where the CPU alignment time commonly runs into hundreds of CPU hours.

The alignment requires three stages: the internal alignment of the VELO modules in their VELO-
half boxes, the relative alignment of the VELO-half boxes and the global alignment of the VELO in
the LHCb frame. The relative alignment is the subject of current work and will be discussed in a
future note. The global alignment is a comparatively simple task, compared with the other two, and
is not considered in this note. A C++ version of the existing FORTRAN ‘matrix-crushing’ algorithm
Millepede has been developed for use as a tool in this alignment and will also be applicable elsewhere
in LHCb.

A detailed algorithm to perform the internal alignment of the modules in the VELO-half boxes has
been successfully demonstrated in this note. The algorithm relies upon a non-iterative matrix inver-
sion technique. The approach is based on a least squares minimization of track residuals. The tech-
nique accounts for the connections between the local track and global alignment constants by simul-
taneously fitting both (local and global) sets of constants. The technique utilizes tracks from LHC
proton-proton collisions and tracks from beam halo particles that traverse the whole detector. Some
limitations on the current simulation event tests have been imposed by the fact that beam halo track-
ing is not yet available in the LHCb software framework. However, the results obtained on forward
stations of the VELO show that a 3 µm precision (to be compared with the intrinsic hit resolution
of the VELO of > 5µm) were obtained on the relevant translational degrees of freedom (i.e.along X
and Y axis), and a 0.4 mrad accuracy on rotation DOFs (i.e.around Z axis). Further improvements are
anticipated using Halo tracks and, if necessary, a dedicated pattern recognition for alignment. The
results has been cross-checked by studying the residuals on tracks and the expected improvement
demonstrated.

To conclude, this note has demonstrated the feasibility of performing the first critical stage of the
VELO software alignment. The results obtained on the internal half-box alignment, notably on the

page 20

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
6 Conclusion Date: December 12, 2005

translational degrees of freedom of the modules, fulfill the requirements of LHCb. The CPU require-
ments of this algorithm are suitable for operation in the LHCb environment. This note sets the strategy
for the LHCb VELO online alignment and the group consider this work is on track to provide the re-
quired VELO alignment functionality.

page 21

7 References

[1] V. Blobel and C. Kleinwort - A new method for the high-precision alignment of track detectors - hep-
ex/0208021

[2] LHCb Collaboration - LHCb Computing TDR - CERN/LHCC 2005-019

[3] LHCb Collaboration - LHCb VELO technical design report - LHCb TDR 5 - CERN-LHCC 2001-010

[4] LHCb Collaboration - LHCb reoptimized detector technical design report - LHCb TDR 9 - CERN-
LHCC 2003-030

[5] C. Parkes, TJV. Bowcock, P. Collins, K. Osterberg - A study of the curvature of VELO prototype
sensors - LHCb-2001-110

[6] D. Petrie, C. Parkes, S. Viret - Study of the impact of VELO misalignments on the LHCb tracking and
L1 trigger performance - LHCb-2005-056

[7] H.J. Bulten - Mechanical Tolerance & Beam Position Information for Velo Alignment -
http://agenda.cern.ch/fullAgenda.php?ida=a054721#s1

[8] I. Tomalin - Alignment of the 1998 VELO testbeam data - LHCb-99-032

[9] T. Lastovicka - VELO Halo/TB Particle Tracking (and Triggering) -
http://agenda.cern.ch/fullAgenda.php?ida=a054721#s1

[10] VELO alignment with halo tracks - http://ppewww.ph.gla.ac.uk/LHCb/VeloAlign/VeloApplication 3.html

[11] D. Hutchcroft - VELO Tracking and Pattern Recognition for Trigger and Offline with Misalignments -
http://agenda.cern.ch/fullAgenda.php?ida=a054721#s1

[12] R. McNulty, T. Shears, A. Skiba - A procedure for the software alignment of the CDF silicon system -
CDF/DOC/TRACKING/GROUP/5700

[13] R. Mankel - A ’canonical’ procedure to fix external degrees of freedom in the internal alignment of a
tracking system - HERA-b 99-087

[14] J. Palacios - LHCb Geometry Framework - https://uimon.cern.ch/twiki/bin/view/LHCb/GeometryFramework

[15] T. Szumlak - VELO cluster resolution/eta correction - http://agenda.cern.ch/fullAgenda.php?ida=a054721#s1

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Figure 1 General view of the VELO, the modules are visible within the two boxes. The sensors are
shown in blue.

Figure 2 Detailed view of one VELO box.

page 23

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Figure 3 The basic alignment problem. The correct module geometry (left) must be retrieved by
studying the residuals of the hits (circles) with respect to the tracks.

Figure 4 The basic principle of an iterative alignment technique.

page 24

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Figure 5 The diagram illustrates the φ correction required to account for non (r, z) linear tracks
intercepting the r and φ sensors in a module (see text for details).

page 25

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Velo module number
6 8 10 12 14 16 18 20

M
is

al
ig

n
m

en
t

b
ef

. c
o

rr
ec

ti
o

n
 (

in
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Velo module number
6 8 10 12 14 16 18 20

M
is

al
ig

n
m

en
t

af
te

r
co

rr
ec

ti
o

n
 (

in
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Velo module number
6 8 10 12 14 16 18 20

M
is

al
ig

n
m

en
t

b
ef

. c
o

rr
ec

ti
o

n
 (

in
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Velo module number
6 8 10 12 14 16 18 20

M
is

al
ig

n
m

en
t

af
te

r
co

rr
ec

ti
o

n
 (

in
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Velo module number
6 8 10 12 14 16 18 20

M
is

al
ig

n
m

en
t

b
ef

. c
o

rr
ec

ti
o

n
 (

in
 r

ad
)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Velo module number
6 8 10 12 14 16 18 20

M
is

al
ig

n
m

en
t

af
te

r
co

rr
ec

ti
o

n
 (

in
 r

ad
)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Figure 6 The results of performing internal alignment using the default non-tuned pattern recognition
algorithm. For each station each point correspond to a different set of misalignments. Left plots shows
the misalignments constants for X translations (top), Y translations (middle), and Z rotations (bottom)
before alignment. Right plots show the same constants after correction.

page 26

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Figure 7 The four basic types of linear transformations are illustrated.

page 27

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Velo module number
0 5 10 15 20

M
is

al
ig

n
m

en
t

b
ef

. c
o

rr
ec

ti
o

n
 (

in
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Velo module number
0 5 10 15 20

M
is

al
ig

n
m

en
t

af
te

r
co

rr
ec

ti
o

n
 (

in
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Velo module number
0 5 10 15 20

M
is

al
ig

n
m

en
t

b
ef

. c
o

rr
ec

ti
o

n
 (

in
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Velo module number
0 5 10 15 20

M
is

al
ig

n
m

en
t

af
te

r
co

rr
ec

ti
o

n
 (

in
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Velo module number
0 5 10 15 20

M
is

al
ig

n
m

en
t

b
ef

. c
o

rr
ec

ti
o

n
 (

in
 m

ra
d

)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Velo module number
0 5 10 15 20M

is
al

ig
n

m
en

t
af

te
r

co
rr

ec
ti

o
n

 (
in

 m
ra

d
)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Figure 8 Internal alignment on an internally aligned box: for dx (top), dy (middle), and dγ (bottom)
misalignments (the conventions of figure 6 are used).

page 28

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Figure 9 VELO alignment in GAUDI: algorithm description

page 29

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Number of events
0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
P

U
 t

im
e

(i
n

 s
)

0

100

200

300

400

500

Figure 10 The computing time, normalized to a single 1GHz Pentium III, necessary to perform the
alignment algorithm, as a function of the number of events analysed.

page 30

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Station number
6 8 10 12 14 16 18 20

M
is

al
ig

n
m

en
t

va
lu

e
(i

n
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Station number
6 8 10 12 14 16 18 20

M
is

al
ig

n
m

en
t

va
lu

e
(i

n
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 11 Internal alignment effect on dx misalignments for one particular sets of misalignments.
Black squares show the misalignment before correction, whereas open squares show them after in-
ternal alignment is applied. Top plot corresponds to the left box, bottom plot is for the right box.

page 31

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Station number
6 8 10 12 14 16 18 20

M
is

al
ig

n
m

en
t

va
lu

e(
in

 m
m

)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Station number
6 8 10 12 14 16 18 20

M
is

al
ig

n
m

en
t

va
lu

e
(i

n
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 12 Internal alignment effect on dy misalignments for one particular sets of misalignments (the
conventions of figure 11 are used).

page 32

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Station number
6 8 10 12 14 16 18 20

M
is

al
ig

n
m

en
t

va
lu

e
(i

n
 r

ad
)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Station number
6 8 10 12 14 16 18 20

M
is

al
ig

n
m

en
t

va
lu

e
(i

n
 r

ad
)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Figure 13 Internal alignment effect on dγ misalignments for one particular sets of misalignments (the
conventions of figure 11 are used).

page 33

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Generated misalignment (in mm)
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

R
ec

o
n

st
ru

ct
ed

 m
is

al
ig

n
m

en
t

(i
n

 m
m

)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 14 Internal alignment robustness tests: results for the translations, for dx and dy (middle)
misalignments (200 sets of misalignments).

page 34

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Generated misalignment (in rad)
-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01

R
ec

o
n

st
ru

ct
ed

 m
is

al
ig

n
m

en
t

(i
n

 r
ad

)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Figure 15 Internal alignment robustness tests: results for the rotations, for dγ misalignments (200
sets of misalignments).

page 35

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

 / ndf 2χ 130.8 / 30

Constant 18.7± 1411

Mean 2.828e-05± 1.373e-05

Sigma 0.000025± 0.002829

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.050

200

400

600

800

1000

1200

1400

 / ndf 2χ 130.8 / 30

Constant 18.7± 1411

Mean 2.828e-05± 1.373e-05

Sigma 0.000025± 0.002829

 / ndf 2χ 160.8 / 47

Constant 9.3± 468.4

Mean 5.970e-06± -2.175e-05

Sigma 0.0000057± 0.0004181

-0.005 -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004 0.0050

100

200

300

400

500

 / ndf 2χ 160.8 / 47

Constant 9.3± 468.4

Mean 5.970e-06± -2.175e-05

Sigma 0.0000057± 0.0004181

Figure 16 Internal alignment robustness tests: resolution on the corrected misalignment constants
(200 sets of misalignments). Top plot shows the result for the X and Y translations (in mm), bottom
plot shows the result for Z rotation (in rad).

page 36

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Velo module number
-1 0 1 2 3 4 5 6

M
is

al
ig

n
m

en
t

b
ef

. c
o

rr
ec

ti
o

n
 (

in
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Velo module number
-1 0 1 2 3 4 5 6

M
is

al
ig

n
m

en
t

af
te

r
co

rr
ec

ti
o

n
 (

in
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Velo module number
-1 0 1 2 3 4 5 6

M
is

al
ig

n
m

en
t

b
ef

. c
o

rr
ec

ti
o

n
 (

in
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Velo module number
-1 0 1 2 3 4 5 6

M
is

al
ig

n
m

en
t

af
te

r
co

rr
ec

ti
o

n
 (

in
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Velo module number
-1 0 1 2 3 4 5 6

M
is

al
ig

n
m

en
t

b
ef

. c
o

rr
ec

ti
o

n
 (

in
 r

ad
)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Velo module number
-1 0 1 2 3 4 5 6

M
is

al
ig

n
m

en
t

af
te

r
co

rr
ec

ti
o

n
 (

in
 r

ad
)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Figure 17 Internal alignment robustness tests: results for the left box backward part, for dx (top), dy
(middle), and dγ (bottom) misalignments (the conventions of figure 6 are used).

page 37

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Velo module number
-1 0 1 2 3 4 5 6

M
is

al
ig

n
m

en
t

b
ef

. c
o

rr
ec

ti
o

n
 (

in
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Velo module number
-1 0 1 2 3 4 5 6

M
is

al
ig

n
m

en
t

af
te

r
co

rr
ec

ti
o

n
 (

in
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Velo module number
-1 0 1 2 3 4 5 6

M
is

al
ig

n
m

en
t

b
ef

. c
o

rr
ec

ti
o

n
 (

in
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Velo module number
-1 0 1 2 3 4 5 6

M
is

al
ig

n
m

en
t

af
te

r
co

rr
ec

ti
o

n
 (

in
 m

m
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Velo module number
-1 0 1 2 3 4 5 6

M
is

al
ig

n
m

en
t

b
ef

. c
o

rr
ec

ti
o

n
 (

in
 r

ad
)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Velo module number
-1 0 1 2 3 4 5 6

M
is

al
ig

n
m

en
t

af
te

r
co

rr
ec

ti
o

n
 (

in
 r

ad
)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Figure 18 Internal alignment robustness tests: results for the right box backward part, for dx (top), dy
(middle), and dγ (bottom) misalignments (the conventions of figure 6 are used).

page 38

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Z (in mm)
100 200 300 400 500 600 700

 (
in

 m
m

)
Y

∈

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

1

Z (in mm)
100 200 300 400 500 600 700

 (
in

 m
m

)
Y

∈

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

2

Z (in mm)
100 200 300 400 500 600 700

 (
in

 m
m

)
Y

∈

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

3

Z (in mm)
100 200 300 400 500 600 700

 (
in

 m
m

)
Y

∈

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

4

Z (in mm)
100 200 300 400 500 600 700

 (
in

 m
m

)
Y

∈

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

5

Z (in mm)
100 200 300 400 500 600 700

 (
in

 m
m

)
Y

∈

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

6

Z (in mm)
100 200 300 400 500 600 700

 (
in

 m
m

)
Y

∈

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

7

Z (in mm)
100 200 300 400 500 600 700

 (
in

 m
m

)
Y

∈

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

8

Figure 19 Track residuals summary plot, as a function of Z position of the modules. Left plots are
before internal alignment, right plots after. The plots 1,2 show the X residuals for the left half-box. The
plots 3,4 show the Y residuals for the left half-box. Plots 5,6,7 and 8 show the same results for right
half-box. Error bars correspond to the RMS of the residual distributions.

page 39

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

R (in mm)
5 10 15 20 25 30 35 40 45

 (
in

 m
m

)
R

∈

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

1

R (in mm)
5 10 15 20 25 30 35 40 45

 (
in

 m
m

)
R

∈

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

2

R (in mm)
5 10 15 20 25 30 35 40 45

 (
in

 m
m

)
φ

∈

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

3

R (in mm)
5 10 15 20 25 30 35 40 45

 (
in

 m
m

)
φ

∈

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

4

R (in mm)
5 10 15 20 25 30 35 40 45

 (
in

 m
m

)
R

∈

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

5

R (in mm)
5 10 15 20 25 30 35 40 45

 (
in

 m
m

)
R

∈

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

6

R (in mm)
5 10 15 20 25 30 35 40 45

 (
in

 m
m

)
φ

∈

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

7

R (in mm)
5 10 15 20 25 30 35 40 45

 (
in

 m
m

)
φ

∈

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

8

Figure 20 Track residuals as a function of R, for one particular station (station 14) and one particular
set of misalignments. Left plots are before internal alignment, right plots after. Are shown left box R
and φ residuals (resp. 1,2 and 3,4), and right box R and φ residuals (resp. 5,6 and 7,8). Error bars
correspond to the RMS of the residual distributions.

page 40

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

 (in rad)φ
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 (
in

 m
m

)
R

∈

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

1

 (in rad)φ
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 (
in

 m
m

)
R

∈

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

2

 (in rad)φ
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 (
in

 r
ad

)
φ

∈

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

3

 (in rad)φ
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 (
in

 r
ad

)
φ

∈

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

4

 (in rad)φ
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 (
in

 m
m

)
R

∈

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

5

 (in rad)φ
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 (
in

 m
m

)
R

∈

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

6

 (in rad)φ
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 (
in

 r
ad

)
φ

∈

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

7

 (in rad)φ
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 (
in

 r
ad

)
φ

∈

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

8

Figure 21 Track residuals as a function of φ (same run and same set of misalignment than previous
figure). Left plots are before internal alignment, right plots after. Are shown left box R and φ residuals
(resp. 1,2 and 3,4), and right box R and φ residuals (resp. 5,6 and 7,8). Error bars correspond to the
RMS of the residual distributions.

page 41

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

 / ndf 2χ 255.3 / 142
p0 23.0± 3619
p1 0.0038± 0.0031
p2 0.0053± 0.7917
p3 18.9± 511.6
p4 0.01416± -0.01428
p5 0.020± 1.888

XPull
-10 -8 -6 -4 -2 0 2 4 6 8 100

500

1000

1500

2000

2500

3000

3500

4000

4500 / ndf 2χ 255.3 / 142
p0 23.0± 3619
p1 0.0038± 0.0031
p2 0.0053± 0.7917
p3 18.9± 511.6
p4 0.01416± -0.01428
p5 0.020± 1.888

 / ndf 2χ 224.3 / 142
p0 22.6± 3886
p1 0.003564± -0.001986
p2 0.0048± 0.7968
p3 18.0± 389.9
p4 0.01648± -0.00193
p5 0.025± 1.887

Y
Pull

-10 -8 -6 -4 -2 0 2 4 6 8 100

500

1000

1500

2000

2500

3000

3500

4000

4500
 / ndf 2χ 224.3 / 142

p0 22.6± 3886
p1 0.003564± -0.001986
p2 0.0048± 0.7968
p3 18.0± 389.9
p4 0.01648± -0.00193
p5 0.025± 1.887

Figure 22 Pulls of X (top) and Y (bottom) track residuals, computed after alignment. Distributions are
fitted using a double gaussian. Gaussians resolutions are given by parameters p2 and p5, and means
are given by p1 and p4

page 42

A procedure for LHCb VELO online alignment Ref: LHCb-2005-101
Note Issue: 1
7 References Date: December 12, 2005

Number of events
0 2000 4000 6000 8000 10000

R
es

o
lu

ti
o

n
 o

n
 a

lig
n

m
en

t
co

n
st

an
ts

 (
in

 m
ra

d
)

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Figure 23 Effect of number of events on internal alignment performance: Z rotation example.

page 43

