
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006 1323

Software for the LHCb Experiment
Gloria Corti, Marco Cattaneo, Philippe Charpentier, Markus Frank, Patrick Koppenburg, Pere Mato,

Florence Ranjard, Stefan Roiser, Ivan Belyaev, and Guy Barrand

Abstract—LHCb is an experiment for precision measurements
of CP-violation and rare decays in B mesons at the LHC collider
at CERN. The LHCb software development strategy follows an
architecture-centric approach as a way of creating a resilient
software framework that can withstand changes in requirements
and technology over the expected long lifetime of the experiment.
The software architecture, called GAUDI, supports event data
processing applications that run in different processing envi-
ronments ranging from the real-time high-level triggers in the
online system to the final physics analysis performed by more
than 100 physicists. The major architectural design choices and
the arguments that lead to these choices will be outlined. Object
oriented technologies have been used throughout. Initially devel-
oped for the LHCb experiment, GAUDI has been adopted and
extended by other experiments. Several iterations of the GAUDI
software framework have been released and are now being used
routinely by the physicists of the LHCb collaboration to facilitate
their development of data selection algorithms. The LHCb recon-
struction (Brunel), the digitization (Boole) and analysis (DaVinci)
applications together with the simulation application (Gauss), also
based on Geant4, and event and detector visualization program
(Panoramix) are all based on the GAUDI framework. All these
applications are now in production.

Index Terms—Programming, software, software packages.

I. INTRODUCTION

THIS paper presents the current status of the LHCb soft-
ware. LHCb [1], [2] is one of the experiments currently

under construction at CERN to take data at the Large Hadron
Collider (LHC). The primary goal of the experiment is to make
precision measurements of CP violating decays and other rare
phenomena in the b-system and so to make detailed tests of the
Standard Model description of CP violation, as well as investi-
gate possible new physics. LHCb will produce large amounts of
data, of the order of Peta bytes per year, which will need to be re-
constructed and analyzed to produce the final physics results. In
addition, physicists are continuously studying the detector and
the physics performance that can be achieved using it. Software
for all data processing stages for the various needs of the exper-
iment has been produced and is at different levels of develop-
ment. This software will have to be maintained throughout the
lifetime of LHCb, expected to be of the order of 10–20 years;
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the impact of changes in software requirements and in the tech-
nologies used to build software can be minimized by developing
flexible and adaptable software that can withstand these changes
and can be easily maintained over the long timescale involved.

With these goals in mind we have constructed GAUDI
[3], a general object oriented framework designed to provide
a common infrastructure and environment for the different
software applications of the experiment. The applications,
supporting the typical phases of Particle Physics experiments
software, from simulation to reconstruction and analysis, are
built within the GAUDI framework. Experiment specific soft-
ware, as for example the Event Model and Detector Description,
are also provided with the framework as core software com-
ponents. The framework together with these services and the
applications constitutes the complete LHCb software system.
The subdetector software developers, or physicists performing
analysis, provide the software algorithms to these applications.
Use of the framework in all applications helps to ensure the
integrity of the overall software design and results in maximum
reuse of the core software components.

II. GAUDI ARCHITECTURE AND FRAMEWORK

The development process for GAUDI is architecture centric,
requirements driven, incremental, and iterative. This involves
identifying components with specific functionality and well-
specified interfaces, defining how they interact with each other
to provide the whole functionality of the framework. The frame-
work is real code implementing the building blocks outlined in
the architecture and ensuring its design features are respected.
The approach to the final software system is via incremental re-
leases, adding to the functionality at each release according to
the feedback and priorities of the physicists developing the code
for the different applications and following the evolution and
changes in their needs.

A schematic view of the GAUDI architecture can be seen in
the object diagram shown in Fig. 1. It represents a hypothetical
snapshot of the state of the system showing the objects (in this
case component instances) and their relationships in terms of
ownership and usage. Note that it does not illustrate the struc-
ture of the software in term of class hierarchy. In the following
we will outline the major design choices taken in the GAUDI
architecture.

A. Generic Component Model With Well-Defined Interfaces

Each component of the architecture implements a number
of interfaces (pure abstract classes in C++, the main language
used in the implementation) for interacting with the other com-
ponents. The basic idea of GAUDI is to define a basic set of
services that are common to most of the event data processing
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Fig. 1. Object diagram of the GAUDI architecture.

applications that LHCb had to develop and to define their in-
terfaces independently of the actual implementation. In order
to ease the integration of components we defined an interface
model supporting interface versioning, dynamic interface dis-
covery, and generic component factories. With these features
we were able to implement runtime loading of components (dy-
namic libraries) allowing us to use a plug-and-play mechanism
in the implementation of the data processing applications. Since
all components are essentially decoupled from each other, they
can be implemented independently and in a minimal manner,
i.e., supplying sufficient functionality to do their job but without
the many refinements that can be added at a later date. Compo-
nents can be developed using other specialized frameworks or
toolkits, for example for data persistency, visualization, simu-
lation, etc. A specific implementation of a component can be
replaced by another one implementing the appropriate inter-
face and providing equivalent functionality. This makes pos-
sible a transparent use of third-party software. This approach
has allowed us to build the LHCb applications by customizing
the framework, i.e., by dynamically selecting the most suitable
components to perform the different tasks. Due to these features
the GAUDI framework is easily adaptable for use in other ex-
periments: although originally developed for the LHCb exper-
iment it has been adopted and extended by the ATLAS exper-
iment [4] and adopted by other experiments including GLAST
and HARP.

B. Separation Between Data and Algorithms

Even though we have decided to use object oriented tech-
nology we wanted to profit from all the accumulated experience
in doing software in High Energy Physics experiments. In fact
one of GAUDI’s main design criteria is to distinguish data ob-
jects, whose basic function is to carry data, from algorithm ob-
jects which have an algorithmic role. While data objects will
essentially provide manipulation of internal data members, al-
gorithms will, in general, process data objects of some type and
produce new data objects of a different type.

C. Algorithms

Algorithms are the essence of the data processing applica-
tions and where the physics and subdetectors code is encapsu-
lated. Due to the fact that algorithms implement a standard set of
generic interfaces they can be called without knowing what they
really do. The application manager knows which algorithms to
instantiate and when to call them. The algorithms execution is
scheduled explicitly by configuring the application manager or
by the execution of the Data On Demand service. Since complex
algorithms can be implemented by using a set of simpler ones,
a more elaborate control sequence can be established in the ap-
plications to support filtering and branches. These are combined
with multiple output streams to provide event filtering and se-
lections. The different LHCb data processing applications are
customized by choosing the appropriate set of algorithms to ex-
ecute.

D. Separation of Transient and Persistent Data

An important design choice has been to distinguish between
a transient from a persistent representation of the data objects,
for all categories of data. Algorithms see only data objects in
the transient representation and, as a consequence, are shielded
from the technology chosen to store the persistent data objects.
In fact, so far, we have changed from ZEBRA [5] (for legacy
data) to ROOT/IO [6] and more recently to POOL [7] without
the physics code encapsulated in the algorithms being affected.
The two representations can be optimized following different
criteria (e.g., execution versus I/O performance) and different
technologies can be accessed (e.g., for the different data types).

E. Transient Data Stores

The data flow between algorithms proceeds via the transient
store. This not only shields them from the persistent technology
but minimizes the coupling between independent algorithms,
allowing their development in a fairly autonomous way.

We have distinguished between three categories of data.
Event data are obtained from particle collisions and their
successive processing, detector data describe the detecting ap-
paratus (geometry, calibration, etc.), and statistical data result
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from processing a set of events (histograms, n-tuples). They are
not only conceptually different types of data, their access pat-
tern, and their “lifetime” during a “job” is also different; hence
we have organized them in corresponding separate transient
data stores. The Transient Event Store contains the event data
that are valid only for the time it takes to process one event.
The Transient Detector Store contains the data that describe the
various aspects of the behavior of the detector (e.g., alignment)
during a period of data taking corresponding to the processing
of many events. The Transient Histogram Store contains statis-
tical data which typically have a lifetime corresponding to the
data processed in a complete job. Although the stores behave
slightly differently, i.e., the clearing of the store is handled at
different frequencies in the three cases, their implementation is
based on a common transient store component given the many
things they have in common.

We have already mentioned that the data flow between algo-
rithms proceeds via the transient store. In addition the transient
store acts as an intermediate buffer for any type of data conver-
sion to a different type of data representation, in particular the
conversion to persistent or graphical objects. Zero or more per-
sistent or graphical representations of the data can correspond
to one transient representation.

The data within the transient store is organized in a “tree-
like” structure, similar to a Unix file system, allowing data items
that are logically related (for example, produced in the same
processing stage) to be grouped together at runtime. Each node
in the tree is the owner of everything below it and will propagate
its deletion to all items in its branches. To map object oriented
data models onto a tree structure, object associations have been
implemented using symbolic links in which ownership of the
referenced items is left to the node holding them.

F. Services

This category of components offers the services common to
most of the applications. They are generally sizable components
set up by the framework at the beginning of a job and used by
the algorithms as often as needed. This approach allows the al-
gorithm developers to avoid writing the routine software tasks
that are typically needed in a physics data application.

Some examples of services can be seen in Fig. 1. More details
on GAUDI and LHCb services will be given in Section III.

G. Tools

Tools are lightweight objects whose purpose is to help other
components perform their algorithmic work. Sometimes an en-
capsulated piece of code can be executed with different fre-
quency (only for some events or many times per event); it can be
necessary to execute it on each data object separately or the data
objects on which to perform the algorithmic operation could
be local to the component. Finally different components may
wish to share the same algorithmic operation as is or configure
it slightly differently (e.g., different event selection algorithms
will want to combine reconstructed particles to make vertices).

To provide this kind of functionality we have introduced a
category of processing objects that encapsulate these “light” al-
gorithms and called them Tools.

III. CORE SERVICES

The GAUDI framework is decomposed into a number of in-
dependent subframeworks to provide the routine software tasks
typically needed in an application.

The basic kernel of the framework together with a set of utility
services constitutes the General Framework Services. The Job
Options Service, to configure the applications at runtime, the
Message Service, the Random Number Generator Service, the
Event Data Service, and the Histogram Service are some exam-
ples of what belongs to this category.

Other subframeworks provide specialized functionality.
Many of these services use third-party components. This al-
lows to profit from existing software and helps in minimizing
development and maintenance efforts.

A technology-neutral Object Persistency mechanism has
been developed and interfaced with the framework, given the
fact that a single persistency technology may not be optimal
in all cases. The persistency mechanism has been designed
such that the best adapted technology can be used for each
category of data. Data Management and Bookkeeping provides
event tag collections and mass storage interfaces. The new
LCG POOL framework is based on a similar architecture
allowing the client code to be technology free. Last year
POOL has replaced the LHCb ROOT/IO based persistency
solution previously in place. This will allow us to benefit
from the additional functionality provided by POOL such as
file catalogues and event collections.

The Data Dictionary Service provides a high-level modeling
language to define the event object model, independent of the
language used in the current implementation of the processing
applications (i.e., C++) [8]. The description language chosen
has been XML, which provides a very strict syntax in addition
to being very flexible. A GAUDI parser package (GAUDI Ob-
ject Description) automatically produces the C++ header files.
This approach ensures adherence to coding conventions, con-
sistent sets of member functions, standard ways of cross-refer-
encing objects, documentation’s lines in the format required by
the code documentation tool (Doxygen). The service also pro-
vides runtime introspection information for object persistency
and interactive analysis making use of the LCG object dictio-
nary provided by the SEAL project [9].

Event Model Support Classes like containers and reference
classes are also provided to support the implementation of the
LHCb Event model.

The Detector Description framework allows detector related
information to be available to the physics applications pro-
viding a generic description of the structure of the geometry.
The aim has been to have a unique description of the detector
for all applications (e.g., simulation and reconstruction). The
physical and logical description of the LHCb detector plus
subdetector specific data resides in a Detector Description
Database (DDDB) that provides the persistent storage of the
detector data. Various versions of the DDDB following the
evolution of the LHCb detector design have been produced.

Definition and implementation of interactive services, graph-
ical interfaces, and scripting tools are provided in User Interac-
tion services.
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Fig. 2. The LHCb data processing applications and data flow.

Finally, specialized frameworks for simulation, analysis tools
(not the tools themselves), and data visualization have been put
in place.

A. The LHCb Event Model

The Event model is the description of the event data items that
are exchanged between algorithms in any application. In order
to obtain a coherent set of objects, a stable event model has been
designed and implemented for all processing phases.

Guidelines for common approaches to the Event data model
have been put in place and utility classes provided. Direct ac-
cess to contained objects is done via a unique identifying key,
the container to which objects belong allowing also sequential
access. Explicit relationships between classes in the data model
occur only between classes adjacent in the processing sequence.
There is a clear separation between reconstructed data and their
Monte Carlo truth origin, with no explicit links between the two;
their relationship is preserved in special linker/relations objects.

The Event Data model classes are described using the high-
level description language mentioned before.

The current LHCb event model contains the following sets of
objects: Monte Carlo truth objects (generation and decay ver-
tices, particles, hits in sensitive detectors), digitized information
from sensitive detectors, raw data blocks, reconstruction objects
(tracker clusters, energy clusters, tracks, etc.), particle identifi-
cation objects, physics objects (particles, vertices, etc.). Partic-
ular emphasis has been put on all classes that have the likelihood
of being made persistent.

The classes have been thoroughly reviewed before being im-
plemented. Changes to the existing Event model in light of the
experience with its use follow the same review procedure.

IV. DATA PROCESSING APPLICATIONS

Typical phases of Particle Physics data processing have been
encapsulated in the various LHCb applications. Each applica-
tion is a producer and/or consumer of data for the other stages
as shown in Fig. 2. The applications are all based on the GAUDI
framework; they share and communicate via the LHCb Event

model and make use of the LHCb unique Detector Description.
This not only ensures consistency between the applications but
allows algorithms to migrate from one application to another as
necessary. The subdivision between the different applications
has been driven by their different scopes (simulation and re-
construction) and convenience (simulation of the events and de-
tector response) as well as CPU consumption and repetitiveness
of the tasks performed (reconstruction and analysis).

A. Gauss, the Simulation Applications

Gauss [10] mimics what will happen in the spectrometer to
allow understanding of the experimental conditions and perfor-
mance. It integrates two independent phases that can be run to-
gether or separately. Normally they are run as a single job. Both
phases make use of libraries and toolkits available in the Physics
community.

The first phase consists of the event generation of
proton–proton collisions and the decaying of the B mesons
in channels of interest for the LHCb physics program. It is
interfaced to Pythia [11] for the event production and to a
specialized decay package, EvtGen [12]. It also handles the
simulation of the running conditions (e.g., event pileup and
primary vertex smearing due to the special luminosity the
experiment will run at). Other event generator engines can be
interfaced in this phase if required. The particles produced are
stored in the HepMC [13] generic format that can be made
persistent if this phase is run in stand-alone mode.

The second phase consists of the tracking of the particles pro-
duced in the proton–proton interactions in the LHCb detector.
The simulation of the physics processes the particles undergo
when traveling through the experimental setup is delegated to
the Geant4 toolkit [14]. Geant4 interacts with Gauss using a set
of interfaces and converters encapsulated in a GAUDI special-
ized framework (GiGa [15]) which allows the conversion of the
LHCb detector geometry into the Geant4 geometry. It also con-
verts the output of the first phase of Gauss to the Geant4 input
format. The output of Geant4 in the form of hits produced in the
sensitive detectors as well as the Monte Carlo truth history is
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then converted back into the LHCb event model. The behavior
of the Geant4 simulation engine in terms of detectors to simu-
late, physics models to use, details of the Monte Carlo truth to
be provided, is controlled at runtime via job options configura-
tion.

Gauss has replaced the previous FORTRAN-based simula-
tion application at the end of 2003. After validating it both with
test beam data and by comparison with its predecessor, it is now
used for massive data production (data challenge).

Improvements to the simulation both in terms of the appli-
cation itself, additional details and new features (e.g., machine
background) are foreseen and are being continuously imple-
mented.

B. Boole, the Digitization Application

The simulation of the detector responses and their digitization
in order to produce data in the same format as the experiment
electronics and DAQ system is provided by Boole. Although
logically this process is part of the simulation, it is very con-
venient to integrate it in a separate application. Boole is also
responsible for including in the data the effect of the adjacent
beam crossings in the sensitive detectors. Simulation of im-
perfections in the detectors’ response is continuously improved
with the evolving knowledge acquired from test beam data.

Boole has been put in production as a separate application in
2003 and is part of the applications used in data challenges.

C. Brunel, the Reconstruction Application

Brunel integrates complete pattern recognition as well as
subdetector and combined reconstruction. It produces as output
files containing all reconstructed items such as calorimeter
and trackers clusters, charged tracks, as well as information on
particle identification from the RICH, calorimeter and muon
subsystems (DST).

Brunel can process identically the results of the Boole digiti-
zation and data directly from the data acquisition system (DAQ)
and as such is independent from simulation.

In addition to the input event data, Brunel needs to access
the detector description and the conditions database (including
alignment and calibration). Work is in progress, in collaboration
with LCG, to deploy a dedicated framework for the conditions
database.

Brunel is the oldest of the LHCb object oriented applications
having been operational and of production quality since August
2002; however continuous changes to the pattern recognition
strategy for performance improvements and additional function-
ality are in progress.

D. DaVinci, the Analysis Framework

The analysis framework supports selection of events and anal-
ysis proceeding from the further processing of the DST data.
It provides tools of general utilities for the manipulation (e.g.,
vertexing) and analysis of the physics event objects that are de-
scribed in term of “particles” and “vertices.” In addition, tools to
allow the evaluation of the physics performance of the code are
provided to enable study and comparison with the Monte Carlo
truth information.

The output of DaVinci can be purely statistical or event data.
Analysis object data files containing physics objects can be
written to allow further processing. The output of DaVinci can
also be a reduced DST, where only events satisfying certain
conditions are written. Selection algorithms can be integrated
into a complete DaVinci selection job dynamically configured:
a production version of this job is in place to further process
the data produced and is used for event selection production in
the data challenge.

V. SOFTWARE TRIGGERS

The structure of the GAUDI architecture, with algorithms
never communicating directly with permanent data storage,
makes it also well suited for online applications where data
comes from the DAQ. Only the Input Service to the Transient
Store, the job control, and the monitoring components need to
be specialized to interface with the DAQ and with the Exper-
iment Control System, while other components can be used
identically as in offline applications.

The software trigger algorithms are currently being devel-
oped in the DaVinci application to evaluate their performance,
while the components to be specialized for the online environ-
ment are developed in parallel.

VI. VISUALIZATION

The graphical display of detector geometry and event data
objects is provided by a dedicated application called Panoramix.

It is based on a set of visualization services and converters
providing the graphical representation of the LHCb setup as
well as of the data. The event data can be read from files or pro-
duced on the fly. An interactive user interface allows the user to
choose what to display and how it is visualized. The visualiza-
tion services are based on the OnX1 package for interactivity and
Open Inventor2 for the graphics. Python is used as the scripting
language to control the GUI and to provide the necessary func-
tionality by wrapping LHCb C++ code. Predefined views have
been implemented and are available in the GUI as well as the
normal zoom and rotation facilities.

Since Panoramix is based on the GAUDI framework, the
LHCb detector description and event model, it can work
with any of the data processing applications described be-
fore allowing not only 3D graphical rendering for geometry
verification but also providing aid in the development and
understanding of the physics algorithms.

VII. CONCLUSION

Software is a fundamental aspect of an experiment and has
a strong impact on its success. The software development ap-
proach chosen is architecture driven and has proven to be flex-
ible and resilient to change. Applications for the various pro-
cessing stages have been implemented and, although in different
stages of development, are all used for massive production of
data (more than 210 million events) for studies to be carried out

1http://openscientist.lal.in2p3.fr
2http://oss.sgi.com/projects/inventor/
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in the experiment. The applications are also routinely used by
all LHCb collaborators in their everyday work.

The GAUDI framework is expected to adapt to the changes
that will occur in the third-party software used (e.g., POOL) as
well as replace dedicated components with common libraries
with similar functionality (e.g., adopting the component model
provided by LCG), thus minimizing the software maintenance.

Additional services will be provided as the physicist require-
ments evolve, making use as much as possible of external soft-
ware (e.g., linear algebra and minimization via LCG provided
software).

The need to ease the development and debugging of the
physics software as well as possibility of performing interactive
analysis is driving the choice of using Python3 as scripting
language. Generic Python bindings for the GAUDI framework
provide access to the objects in the C++ world combining the
full functionality of the existing framework with the flexibility
of the Python language. Further development with Python
for easier interactive control of the application and access to
additional LHCb services is foreseen.

Adopting a common framework and services has allowed
maximum reuse of the software and helped in minimizing dupli-
cation of code. The necessary evolution of some of the services
provided is expected to have minimal impact on the applications
due to the interface model adopted.
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