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In this note we present studies of coverage and power for confidence intervals for a Poisson process with known
background calculated using the Likelihood ratio (aka Feldman & Cousins) ordering with Bayesian treatment of
uncertainties in nuisance parameters. We consider both the variant where the Bayesian integration is done in both
the numerator and the denominator and the modification where the integration is done only in the numerator whereas
in the denominator the likelihood is taken at the maximum likelihood estimate of the parameters. Furthermore we
discuss how measurements can be combined in this framework and give an illustration with limits on the branching
ratio of a rare B-meson decay recently presented by CDF/D0. A set of C++ classes has been developed which can
be used to calculate confidence intervals for single or combining multiple experiments using the above algorithms and
considering a variety of parameterizations to describe the uncertainties.

1 Introduction

A popular technique to calculate confidence intervals

in recent years is the technique suggested by Feldman

& Cousins1. The method consists of constructing an

acceptance region for each possible hypothesis (in the

way as proposed by Neyman3) and fixing the lim-

its of the region by including experimental outcomes

according to rank which is given by the likelihood

ratioa:

R(s, n)L =
L(n|s + b)

L(n|sbest + b)
(1)

where s is the hypothesis, n the experimental out-

come, b the expected background, sbest is the hy-

pothesis most compatible with n and L the Like-

lihood function. The expected background b is an

example for a so called nuisance parameter., i.e. a

parameter which is not of primary interest but which

still affects the calculated confidence interval. An-

other example of such a nuisance parameter could

be the signal efficiency. In the originally proposed

method by Feldman & Cousins, only the presence of

background was considered and it was assumed to be

exactly known. The question on how to treat uncer-

tainties in nuisance parameters in confidence interval

calculation, in particular in context of the frequentist

construction has drawn considerable attention in the

recent years. In 1992 Cousins & Highland2 proposed

a method which is based on a Bayesian treatment of

the nuisance parameters. The main idea is to use a

probability density function (pdf) in which the aver-

age is taken over the nuisance parameter:

P (n|s, ǫ) −→

∫
P (n|s, ǫ′)P (ǫ′|ǫ)d ǫ′ := q(n|s, ǫ)

(2)

where ǫ′ is the true value of the nuisance parame-

ter, ǫ denotes its estimate and s and n symbolize

the signal hypothesis and the experimental outcome

respectively.

Cousins & Highland only treated the case of

Gaussian uncertainties in the signal efficiency. The

method has since been generalized by Conrad et

al.4 to operate with the Feldman & Cousins order-

ing scheme and taking into account both efficiency

and background uncertainties as well as correlations.

This generalized method has already been used in

athroughout this note we consider Poisson distributions with experimental outcome n, hypothesis parameter s and (possibly not
exactly) known background b
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a number of particle and astroparticle physics ex-

periments (see references in Tegenfeldt & Conrad5).

FHC2 denotes this generalized method in the remain-

der of this note.

In case of significantly less events observed than

expected background, FHC2 tends to result in con-

fidence intervals which are becoming smaller with

increasing uncertainties. Hill6 therefore proposed a

modification where in the ordering the likelihood ra-

tio is defined as:

R(s, n)L =
q(n|s + b)

L(max (0, nobs − b̂) + b̂)
(3)

here b̂ is the maximum likelihood estimate of b given

the subsidiary observation of b. MBT (“Modified

Bayesian Treatment”) denotes this modification in

the remainder of this note.

In this contribution, we discuss coverage and

power of these two methods as well as the combina-

tion of different experiments with and without cor-

relations. We start by introducing the C++ library

which has been developed to be able to do the nec-

essary calculations.

2 POLE++

For the coverage studies presented in this paper a

reasonably fast and efficient code is required. Hence,

a user-friendly and flexible C++ library of classes

was developed based on the FORTRAN routine pre-

sented by Conrad8. The library is independent of ex-

ternal libraries and consists of two main classes, Pole

and Coverage. The first class takes as input the num-

ber of observed events, the efficiency and background

with uncertainties and calculates the limits using the

method described in this paper. The integrals are

solved analytically. Coverage generates user-defined

pseudo-experiments and calculates the coverage us-

ing Pole. Presently the library supports Gauss, log-

Normal and flat pdf for description of the nuisance

parameters. Several Experiments with correlated or

uncorrelated uncertainties in the nuisance parame-

ters can be combined. The pole++ library can be

obtained from http://cern.ch/tegen/statistics.html

3 Coverage and Power

The most crucial property of methods for confidence

interval construction is the coverage, which states

that a fraction (1-α) of infinitely many repeated ex-

periments should yield confidence intervals that in-

clude the true hypothesis irrespective of what the

true hypothesis is.

For a confidence interval construction (accord-

ing to Neyman) without uncertainties in nuisance

parameters this property is fulfilled by construction.

In the present case however, we have to test the cov-

erage employing Monte Carlo experiments.

Power on the other hand is a concept which is de-

fined in the context of hypothesis testing: the power

of a hypothesis testing method is the probability that

it will reject the null hypothesis, s0, given that the

alternative hypothesis strue is true. This concept is

rather difficult to generalize to confidence intervals

since the alternative hypothesis is not uniquely de-

fined. We use the following definition for power:

Π(strue)s0
=

∑
n/∈Acc(s0)

q(n|strue, ǫ) (4)

and view power as a function of strue. Acc(s0) here

denotes the acceptance region of s0. This seems an

intuitively appealing measure: given the choice be-

tween different methods, the one should be taken

which has minimally overlapping acceptance regions.

Typical examples of the coverage as function of

signal hypothesis are shown in figure 1. It can be seen

that the introduction of a continuous variable leads

to a considerable smoothing of the coverage plot. A

modest amount of over-coverage is introduced, sim-

ilarly for the MBT method and the FHC2 method.

For high Gaussian uncertainties in efficiency (∼ 40

%) the over-coverage of MBT is less pronounced than

for FHC2. More detailed coverage studies of the

FHC2 method have been presented by Tegenfeldt &

Conrad5. The power of the FHC2 and MBT meth-

ods is compared in figure 1 for 40 % uncertainties in

the efficiency. FHC2 as higher power for hypotheses

rather far away from the null hypotheses. This is

true only for large signals and comparably large un-

certainties (and for not too large differences between

s0 and strue), otherwise differences are negligible.

4 Combining different experiments

The combination of experiments can be divided into

two cases. The simpler case is the one of completely

uncorrelated experiments: in this case the pdf used

in the construction are given by a multiplication of
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Figure 1. Examples for the coverage and power of the discussed methods. Upper most figure: coverage of the FHC2 method
assuming a 5 % and 40 % Gaussian uncertainties in efficiency. Middle figure: the coverage for the FHC2 method compared to
the MBT method for 40 % Gaussian efficiency uncertainties. Lowest figure: the power of the two methods compared for 40 %
Gaussian uncertainties in efficiency.
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the pdfs of the single experiments:

q(~n|s) =

nexp∏
i=1

q(ni|s, ǫi) (5)

If correlations between uncertainties in nuisance pa-

rameters have to be considered, multivariate pdfs

have to be employed:

q(~n|s,~ǫ) =

∫ ∞

0

...

∫ ∞

0

nexp∏
i=1

P (n|s, ǫ′i)P (~ǫ′|~ǫ)

nexp∏
i=1

dǫ′i

(6)
We illustrate the effect of combining different exper-
iments with the example of the CDF limit on the
branching ratio for B0

s → µ+µ−, see table 1. In
this case, two CDF data sets are combined with an
uncorrelated uncertainty in the background expecta-
tion and an uncertainty in the efficiency which can be
factorized into a correlated and uncorrelated part7.
Bernhard et. al.7 presented a fully Bayesian combi-
nation, which is included in the table for comparison.
The limit obtained using the FHC2 method is slightly
smaller than the fully Bayesian limit.

Table 1. The CDF single and combined limits on B0
s
→ µ+µ−

calculated by FHC2. CDF1 and CDF2 denote the two differ-
ent data sets used for single limits. The quoted uncertain-
ties are for the single experiments, the efficiency uncertainties
change to 13.1 and 11.1 % for the uncorrelated part if exper-
iments are combined. The number in the parentheses is the
result of the purely Bayesian calculation7.

CDF 1 CDF 2

eff. uncertainty [%] 18.2 16.0

eff. uncertainty [%] 20.3 19.2

corr. eff. uncertainty.[%] 15.5

95 % CL [10−7] 2.5 4.3

95 % comb.[10−7] 1.7 (2.0)

5 Discussion & Conclusion

There are two main caveats when interpreting the

presented results: first of all, the methods (more

or less implicitly) assume a flat prior probability for

the true nuisance parameter. Thus, conclusions on

the coverage and power are true only for that prior.

This assumption seems particularly harmful in case

of combined experiments, a case for which we did

not calculate the coverage. Results presented at this

conference by Heinrich9 indicate that the assump-

tion of a flat prior for nuisance parameters in each

channel leads to significant under-coverage for fully

Bayesian confidence intervals. Heinrich also shows,

that this behavior can be remedied with an appropri-

ate choice of prior (in his particular example: 1/ǫ).

For the methods presented here this might imply

that there is under-coverage in case of several com-

bined experiments. A second caveat, is that we test

the coverage only for 90% confidence level. At this

conference Cranmer10 presented results that indicate

under-coverage for very high confidence levels (> 5

σ) if uncertainties in the background are treated in

the Bayesian way. Tests of coverage for high confi-

dence levels and combined experiments are currently

under way. With these caveats in mind, we con-

clude that Bayesian treatment of nuisance parame-

ters introduces a moderate amount of over-coverage.

The MBT method has less over-coverage for the case

with large Gaussian uncertainties in the signal effi-

ciencies. We also compared the power of the two

suggested methods. For large uncertainties and large

true signals, the FHC2 method has higher power for

hypotheses relatively far away from the null hypoth-

esis.
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