
Evaluation of subfarm
controllers candidates with
an implementation of LHCb
event-building

Public Note
Issue: Final
Revision: 7

Reference: LHCb-2005-087
Created: November 11, 2004
Last modified: October 31, 2005

Prepared by: B. Gaidioz, A. Barczyk, N. Neufeld, B. Jost

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final

Date: October 31, 2005

Abstract

This report summarises experimental results obtained when running an implementation of
LHCb event-building on various candidates for subfarm controllers (SFC) of the LHCb data
acquisition network. In the document, we first describe the implementation of event-building
and then show experimental results.

Document Status Sheet

1. Document Title: Evaluation of subfarm controllers candidates with an imple-
mentation of LHCb event-building

2. Document Reference Number: LHCb-2005-087

3. Issue 4. Revision 5. Date 6. Reason for change

Draft 1 Nov 11, 2004 Creation of the document. Description of the
implementation.

Draft 2 Nov 15, 2004 Added description of the event-builder and a
more complete description of the overall imple-
mentation. First performance graphs.

Draft 3 Nov 16, 2004 Section on the PCI-X performance problems met
with NIC

Draft 4 Nov 17, 2004 Added section on interrupt rate with graphs.
Added Xeon 2.4 GHz results.

Draft 5 Nov 18, 2004 Added conclusion and introduction
Draft 6 Nov 19, 2004 Uploaded to the web site
Final 7 Oct 14, 2005 Released after having completed the section on

Itanium and PowerPC

Contents

1 Introduction . 3

2 Description of the implementation of event-building 4

2.1 Event-builder . 4

2.1.1 Overall architecture . 4

2.1.2 Multithreading . 4

2.1.3 Data structure for events 5

2.1.4 Memory management 5

2.1.5 Communication . 6

2.1.6 Timeouts and timings implementation 8

2.1.7 Blocking calls to the select system call 8

2.2 Possible bottlenecks in the operating system 9

2.2.1 Memory copy from/to a kernel buffer to/from a user-level buffer . . 9

page 1

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final

Date: October 31, 2005

2.2.2 Use of standard socket interfaces/protocols 9

2.3 Possible improvements with changes to the operating system 10

2.3.1 Attempt to do zero-copy event-building 10

2.3.2 Implementation of customised socket layers 13

3 Performance evaluation . 15

3.1 Methodology . 15

3.1.1 Description of the testbed 15

3.1.2 What parameter varies? 16

3.1.3 What is measured? . 17

3.1.4 System parameters . 18

3.2 Intel dual Xeon 2.4 GHz . 18

3.3 AMD dual Opteron 1.4 GHz . 20

3.4 AMD dual Opteron 2.1 GHz . 20

3.5 Intel dual Xeon 3 GHz . 20

3.6 Intel dual Itanium 1.4 GHz . 24

3.7 Macintosh PowerPC G5 2.0 GHz 24

4 Conclusion . 24

4.1 Summary . 24

4.2 Number of subfarms . 27

5 References . 27

A Interrupt rate . 33

List of Figures

1 Impact of different implementation of memory management 6

2 Performance of Ethernet frame sending with the Linux packet generator . . 12

3 Performance of DMA transfers seen from the PCI bus 13

4 The experimental testbed for SFC candidate benchmarking 15

5 Performance of event-building ran on dual Xeon 2.4 GHz 19

6 Performance of event-building ran on dual Opteron 1.4 GHz 21

7 Performance of event-building ran on dual Opteron 2.1 GHz 22

8 Performance of event-building ran on Intel dual Xeon 3 GHz 23

9 Performance of event-building ran on Intel dual Itanium 1.4 GHz 25

10 Performance of event-building ran on Macintosh PowerPC G5 2.0 GHz . . . 26

11 Performance of event-building ran on all candidates with standard protocols 28

page 2

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
1 Introduction Date: October 31, 2005

12 Performance of event-building ran on all candidates with customised protocols 29

13 Possible number of subfarms and equivalent rate per subfarm 30

14 Possible number of subfarms and equivalent rate per subfarm (customised
protocols) . 31

15 Interrupt rate of all candidates with standard protocols 34

16 Interrupt rate of all candidates with customised protocols 34

1 Introduction

This report is related to the LHCb data acquisition network and more particularly to the
subfarm controller component. For a general description of the DAQ, its various components,
rates, links, etc., please refer to [18, chap. 6].

The overall data rate sent to the full farm through the readout network is expected to be
about 7.1 GB/s. Data consists of sets of packets called “multi-event packets” (MEP) [7]. Each
packet contains a set of fragments of successive events. The number of fragments stored in
the packet is called packing factor and is different in L1 and HLT. Fragments were buffered
in the source and packed together in a single frame to decrease the frame rate. However,
all the fragments have to be separated at some point before they are computed with trigger
algorithms.

The subfarm controller (SFC) is the component which receives large sets of MEP packets of
both L1 or HLT sources, in order to concatenate fragments of each event and forward them to
computing nodes. After they have carried a trigger algorithm, L1 computing resources send
back a decision which has to be known to the readout supervisor so that it triggers the equiv-
alent HLT event to be sent to the farm. The SFC is responsible for collecting these decisions,
put them together in a packet (a multi-decision packet, MDP [6, page 7]) and forward it to
the decision sorter (which takes care of forwarding decisions to the readout supervisor in the
proper order). HLT resources do not send back decisions.

In the current DAQ design, the SFC is a computer, with an input link coming from the readout
network, an output link to the subfarm, and an output link to send MDP packets to the sorter.
In this note, we call all this “performing event-building”. This is done in software by the
event-builder.

The main performance criteria we put on candidates for SFC is of course the rate at which
they can handle input data, check packets, forward the data, receive decisions and forward
them to the sorter. By using an SFC which is more powerful than an other, we can implement
a lower number of subfarms of a larger size, which has two advantages:

• the subfarm size is larger, which provides good statistical properties of its average com-
putation time,

• we buy a lower number of SFC, which is nice from the price point of view.

Of course, we expect that the more powerful a candidate is, the more expensive it is, so one
must find the proper tradeoff with the increase of the subfarm size.

In order to choose a good computer as a SFC, we have carried evaluation of several candi-
dates, which is presented in this document. In sect. 2 we give an accurate description of an
implementation of event-building in software and explain some of our technical choices. We

page 3

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
2 Description of the implementation of event-building Date: October 31, 2005

describe the software itself in sect. 2.1. Then, we identify some of the bottlenecks we see in
sect. 2.2 and our attempts to minimise their cost in sect. 2.3. Sect. 3 is dedicated to measure-
ments obtained with various candidates for SFC. The methodology is described in sect. 3.1
and sections following present the results obtained on each candidate.

2 Description of the implementation of event-building

The implementation referred in this report is an implementation of event-building in C which
we run on the Linux operating system. The C language gives us a good control of what we do
(which is useful is system programming). The actual source code is of a bit more than 2000
lines (comments not included). The Linux operating system has the main advantages that
it shows good performance in networking, its source code is available (which is mandatory
to understand the performance and improve it) and since it is also quite popular, it is also
very well documented indirectly, by means of many newsgroups or mailing-lists where both
authors of the code and users contribute.

2.1 Event-builder

In this section, we describe the implementation of event-building and also explain some im-
plementation choices.

2.1.1 Overall architecture

The implementation of event-building is a user process ran on top of the socket interface to
the network. We have separated the overall processing in two halves, each of which is ran by
an independent thread.

receiving MEP packets and preparation of the events — This task consists in receiving MEP pack-
ets, checking their content and preparing the iovec array for sending (see sect. 2.1.3).
Once a full set of frames has been sent, the corresponding descriptor is queued for
sending.

forwarding of events to the subfarm, management of the subfarm — The forwarding thread gets reg-
istration requests for subfarm nodes. It is also aware of events newly built by the re-
ceiver thread. When both events and idle computing resources are available, events are
sent to idle computing resources. This half is also responsible for sending decisions to
the decision sorter.

The meeting point of these two threads is a linked list of “sets of built events” (see sect. 2.1.3)
which the receiver thread is the producer of and the forwarder thread is the consumer of.
After sending, empty sets are put back by the forwarder thread in an separate queue which
is consumed by the receiver thread.

2.1.2 Multithreading

The implementation uses two threads. All candidates we have benchmarked are all dual CPU
machines. Each thread is ran on its own CPU.

page 4

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
2 Description of the implementation of event-building Date: October 31, 2005

• Use of threads permits to benefit of dual CPU machines. The implementation is actually
done with no more than two threads doing their own CPU intensive things and would
not benefit of being ran on a machine with more than two CPU. Also, we cannot measure
the gain in using hyperthreading (which is available on some of the candidates). This
feature is actually disabled in the tests we have done.

• One could have even implemented event-building with a lot of threads (for example
with two receivers, one per type of event, and several forwarders, one per computing
resource registered). However, this is more easy to keep control of programs when do-
ing scheduling ourselves. This way, instead of relying on the operating system sched-
uler, priority queues and granularity, we can easily set up priorities between chunks
of code if needed (e.g. we empty the L1 socket first, we send L1 events first, or with a
configurable ratio, etc.).

Use of multithreading is here used to run a producer/consumer system. If we would happen
to run event-building on a quad-CPU machine, the implementation could be changed so that
two threads would execute each half, with proper mutual exclusion. In this case, this is not
only a producer/consumer system we implement, but a really parallelised system. Profiling
of the code shows that memory copies are of significant cost, which we would expect to see
running in parallel with packet processing done by an other thread.

2.1.3 Data structure for events

The receiver thread receives fragments by sets of many (packing factor). However, once events
are built, they are forwarded one by one, independently from each other whether they belong
to the same set of MEP or not.

The program handles sets of events rather than independent events, where a set contains as
many events as the packing factor of the level. If for example, packing factor is 25, a single
set of events contains all the data structure for 25 events. Events are still forwarded indepen-
dently with a bit of specific data management (it would have been easier to handle single
events on the forwarding side but an attempt to go for such implementation showed a sig-
nificantly bad performance because of linked-lists management and cache misses).

Inside a set of events, an event consists in an array of many struct iovec (a pair of pointer and
length). There are as many cells to the array of iovec for a type of event than there are data
sources for this type of event. These arrays are updated dynamically when a MEP packet is
received so that the pointer points exactly to the fragment in the MEP packet and the length
is the length in bytes of the fragment. Doing so permits to “build” an event without actually
copying the data from a buffer to an other. Bytes are still the ones which came with the raw
IP packet.

Events are sent later with a socket call compatible with arrays of iovec. Here we use sendmsg
which takes the address of the array and the number of cells as parameters. Copying bytes
contiguously to network frames is then done by the operating system.

2.1.4 Memory management

For a long while, we have implemented memory management upon packet reception with
calls to malloc(max_ip_length), then recvmsg, then realloc(pkt,real_length) (which does not move
the data but simply updates the descriptor). The library is probably well implemented and

page 5

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
2 Description of the implementation of event-building Date: October 31, 2005

optimised. However, since we did not check the code, we were not aware that it does not
deal properly with allocation of large areas (max_ip_length) which is then “freed” (from a
system point of view) by the call to realloc. What happens is that realloc apparently gives
back the useless pages to the system. When receiving the next packet, malloc requests new
pages to the system. Most of the time it will receive back the pages that were given back
just before. However, the system zeroes the page for security purposes (it does not know the
same process is getting the pages again).

So we have implemented a simple memory management ourselves in the event-builder
which is done on a large array of bytes allocated at boot time (with a call to malloc). This
leads to a significant improvement as one can see on fig. 1.

0

20

40

60

80

100

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

Memory management implementation (1KB frames)

malloc,free (recv)
malloc,free (send)

own MM (recv)
own MM (send)

Figure 1 Impact of different implementation of memory management. We see that use of
our own implementation permits to save a significant cost and to handle a higher rate.

2.1.5 Communication

In this implementation, event-building is implemented in a user process ran on top of the
socket interface to the network. MEP packets are received with a raw socket and built events
are forwarded to subfarm nodes with a UDP socket.

receiving with raw IP We use a raw socket for receiving MEP packets because this is the
only possible standard socket type we can use. Indeed, the data format is itself a transport
level data format because the MEP header is included right after the IP header. Using a raw
socket provides the process with the full IP header which is usually not needed (because we
know the source address from the struct sockaddr set by the system in the call). In our case,
we actually need to check parts of the IP header so this is not really a problem.

sending with UDP Sending can be implemented with any protocol available in the system
because end applications are all software and thus have relatively low constraints on that.

page 6

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
2 Description of the implementation of event-building Date: October 31, 2005

What needs to be implemented is forwarding of possibly large arrays of bytes (events) with
robustness in case of packet drop (which will happen at least for electronic reasons at a low
rate). Available protocols are:

TCP — The TCP protocol implements reliability and order checking and would be very suit-
able for this communication. Unfortunately, this protocol was designed for networks
with unpredictable performance and topology (Internet) and is not meant for “real-
time” data acquisition like ours. It has a very dynamic behaviour and complicated re-
transmission algorithms and timeouts [5, 1, 4, 3] and it is too difficult to keep control on
what it does. It is not obvious that understanding the 14 000 lines of its code [13], then
implementing tuning with what is provided and add our hooks would be the proper
way. The code is periodically updated for high performance and this should be fol-
lowed. Also, most of the tuning parameters are global to all TCP connections open with
the host, which is not obviously what we want.

This is actually consistent to implement our own protocol from scratch because it would
be simple and understandable, and we would have control on all parameters easily.

raw IP — We can implement our own protocol on top of raw sockets. We have initially used
UDP because it is the user level access to IP. Also, the fact that UDP has a demultiplexing
functionality has been used in the implementation and porting raw IP would require
some changes.

Although we were aware that the UDP code is computing a useless checksum on the
entire packet (useless because we expect the Ethernet checksum to do the job in our
case), we thought it was possible to disable it and went for UDP.

UDP — Our current implementation uses UDP as a communication protocol between the SFC
and the subfarm node. Documentation of socket options for UDP does not say it is pos-
sible to disable UDP checksum (probably because computation of this checksum is part
of the standard). After careful look in the Linux UDP source code, there is in fact a
way to disable checksumming. The implementation has support for not computing the
checksum with an undocumented socket option called SO_NO_CHECK [12, line 288]
(non standard). If set to 1 [16, line 55], this option disables checksum computation [15,
line 420]. Disabling checksum checking on the receiving side seems to be available if the
option is set to 2 [16, line 58]. However, this is not possible to set the option to anything
but 1 or 0 because SO_NO_CHECK is a boolean option [12, line 210]1. Setting the option
to 2 can be done inside the kernel only by setting the field of the socket struct directly.
This is done in one place in the kernel (see [17, line 1516]) but the UDP code does not
handle this specific case.

Apparently, this functionality of disabling checksum is not fully implemented yet but
will be in the future releases.

There is a possible help in the NIC if it implements UDP checksum in hardware. The NIC
we use all provide these functionality. The main issue is that they cannot compute the
checksum if the packet is split into several IP packets. In our case, this is very common
that the data is larger than what fits in the classical Ethernet MTU (1500 bytes) and we
cannot benefit from that.

Tests with large MTU shows it helps not to compute the checksum in software but it
requires our switches would implement large MTU. Also, HLT events are usually so

1Although, if it would be possible, the code does not permit to disable checksum in both sending and receiv-
ing, which we would actually need.

page 7

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
2 Description of the implementation of event-building Date: October 31, 2005

large that they would not fit into one large MTU and would still require the host to
compute the checksum (but less often).

What seems to be proper ways to solve the problem of the checksum is:

• either implement a socket option to UDP to really disable the checksum computation on
the host (and checksum checking on the other side). Or wait for it to be implemented
in the next releases of Linux.

• or use raw sockets (requires some changes to the code),

• or implement our own UDP-like protocol (which we have done because we expected
other improvements this way, see sect. 2.3.2).

Use of either UDP or raw IP requires us to implement timeout mechanisms for robustness
and possible retransmission and data fragmentation (because the data stored in a datagram
is limited by the maximum IP packet length).

Also a nice feature of non connected sockets (like UDP or raw IP) is that we can open a single
socket for many different communications. The cost of communicating with many hosts does
not increase with the number of hosts thanks to this (finding the data structure associated to
a host is an O(1) operation in our implementation).

2.1.6 Timeouts and timings implementation

Timeouts and timings are implemented in the process with specific timeouts queues. For
performance purposes, since we know we have a limited set of types of timeouts, we keep
track of the latest timeout of a specific type (of the same duration) so that enqueuing a new
one of the same type is faster (start after the last one). This has shown to help in case of a
specific type of timeouts which are scheduled “per-event” (there are a lot).

The two threads are always blocked in calls to select with a their own timeout parameter
which value is computed right before, according to when is the next timeout. The select sys-
tem call returns zero if returning because of the timeout. If so, the code handles expiration of
a timeout.

Timings have been implemented with either calls to gettimeofday or by reading the cycles
counter register (architecture dependent but exists on most of the candidates). We have seen
a little improvement in using the cycles register (under high load) probably because it is fast
and avoids a system call. It is also very accurate. Timestamps have however to be converted
to seconds and microseconds for use in calls to select. The performance also depends on the
way the gettimeofday call is implemented, which is architecture dependent.

All tests have been done with timings with the cycles register (unless specified differently).

2.1.7 Blocking calls to the select system call

Our implementation uses calls to select to block threads on a receive call which returns only
when data has arrived (or because of a timeout). The select system call is known to be a bottle-
neck when a large amount of descriptors is given as a parameter (critical in web servers). The
usual advice is to implement polling with one thread per descriptor (or a number of thread,
each one handling a subset of the descriptors).

page 8

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
2 Description of the implementation of event-building Date: October 31, 2005

In our implementation, threads poll two or three descriptors, which is far from costing a lot
of CPU (profiling does not show that the cost of the system call is significant).

Both threads poll two descriptors for receiving: one for L1 and one for HLT (either to receive
MEP packets for the receiver thread or to receive decisions, connection requests for the for-
warder thread). The forwarder thread polls one more descriptor which is the receiving side
of a local socket pair (AF_UNIX family) between the two threads. It is used to synchronise
them on the fact that a new set of events has been queued by the receiver.

Usually, threads are synchronised with thread conditions or signals. However, these means
interface poorly with blocking I/O calls like select because there is no way to block on both
types of events (I/O or thread synchronisation message). Use of a local socket is a bit an
overkill for such a simple purpose but it is fortunately not critical (a message is written and
then read each time a full event set is built, so with a relatively low frequency).

2.2 Possible bottlenecks in the operating system

Performance evaluation shows that a large part of the CPU cycles is spent in executing the
code of the operating system rather than event-building. Obviously, since our application
involves a lot input/output with the network, the network stack of the operating system and
interaction with the event-building software is critical. show evidences, graphs.

The most obvious performance bottlenecks are the following:

2.2.1 Memory copy from/to a kernel buffer to/from a user-level buffer

Unix operating system make a clear distinction between kernel code and user code which
execute and handle data both in a different address space. When a packet is sent or received
by an application, it is copied by the kernel to/from a kernel buffer from/to a user buffer.
Such copy physically consists in moving bytes from a location in RAM to an other location,
without any change to it. It is so a bit artificial. The destination process could get directly a
pointer to the data.

2.2.2 Use of standard socket interfaces/protocols

raw IP sockets Our raw data is carried in raw IP packets and the only standard way to
get it from a user process is to use the SOCK_RAW socket family [10]. A feature of this socket
family is that several sockets can be open on the same IP protocol number and all would get a
copy of the packet. In our case, only one process is listening to such packets but the operating
system anyway clones the packet descriptor (not its content) in case an other socket would be
registered for it as well.

UDP sockets UDP is fine for our purpose because it is exactly like raw IP with demulti-
plexing functionalities. However, its definition implies a checksum to be computed before
sending and checked upon receiving. Since it is of a significant cost, several NIC provide the
functionality of computing it in hardware. However, this requires the full UDP datagram to
fit into one MTU packet (no IP fragmentation involved). Most of the time, our data does not
fit into an MTU of 1500 bytes. Possible use of larger MTU is not guaranteed because not all
switches perform still well with large frames or do not provide all the same maximum MTU
settings.

page 9

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
2 Description of the implementation of event-building Date: October 31, 2005

2.3 Possible improvements with changes to the operating system

There was an attempt to improve the performance of event-building with proper changes or
hooks to the operating system.

2.3.1 Attempt to do zero-copy event-building

Although we have minimised the number of memory copies with the use of arrays of iovec to
store events and send them, our implementation does a significant amount of memory copies
in the network stack code.

Cost of memory copies Memory copies are the main cost on all candidates we have eval-
uated. Time spent in copying data from the kernel to our user buffer takes about 25% of the
overall execution time on the CPU which is running the receiving thread. On the sending side,
curiously enough, the time spent in copying data from the user buffer to a kernel buffer is
about 50% of the execution time. This is usually more than twice the cost of copying to user
space while the amount of data is very similar. I will tell you soon why.

Upon reception of a packet, we transfer the entire IP packet to user memory. There is thus a
single memory copy loop per call, on contiguous bytes. On the sending side, we are sending
data with a sendmsg call on an relatively long array of iovec (126 or 323 cells, one per fragment).
Looking into the implementation of the IP stack in Linux of raw_sendmsg or udp_sendmsg
shows they both build packets with a generic function [8, line 150] which loops over the
array and calls the memory copy function once per cell (126 or 323 times in our case). Any
overhead per call to the memory copy function is much more visible with this schema.

The function involved in doing the memory copy is copy_from_user (see [14, architecture de-
pendent]). This function is first of all not inlined when the kernel is compiled, so all calls are
real function calls. Second, it does a bit of checks at the beginning because it is called from the
kernel to copy data from a user buffer. Third, it is a generic memory copy implementation
(while we know our fragments are always sets of 32 bits words).

Possible implementation with scatter-gather I/O In theory, it is possible to avoid com-
pletely memory copies either when receiving or when sending data. The first requirement is
to run the event-builder process in a kernel thread so that it can access directly kernel buffers.
The code of the event-builder is meant to be compiled either as user program or kernel mod-
ule for that purpose. This permits very easily to save the receiving side memory copy by
replacing it by a pointer assignment. On the sending side, it is less easy because we were
using the array of iovec to save a useless copy on a contiguous set of bytes. The proper way
to go is to use a functionality of Ethernet cards called scatter-gather. This permits to have the
NIC downloading several sets of bytes to build internally a single Ethernet frame and forward
it2.

2Some operating systems use this functionality in the network stack to prepend layer specific headers to a
packet which are in fact allocated in different locations. The Linux network stack does not use scatter-gather for
that purpose because authors claim it is less efficient. Instead, the topmost layer systematically allocates a larger
set of bytes of the proper length and lower layers put there headers in it afterwards. Scatter-gather is however
used in Linux in the implementation of the the sendfile system call for example.

page 10

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
2 Description of the implementation of event-building Date: October 31, 2005

Performance of PCI-X DMA transfers Although using scatter-gather would require several
DMA for one single frame, the theory tells us the PCI bus is not a serious bottleneck. maybe
put some computations and refer a book, etc.

We have evaluated the performance of frame sending using this functionality using the Linux
packet generator (pktgen [9]). It is a kernel module which directly calls the hard_xmit function
of a network driver (the function which queues a frame for sending). We have done little
changes which have to be mentioned.

• In Linux, a packet can be appended a a fragment by adding a proper descriptor to its
array of fragments [11, line 147]. The default length of this array is small (about 18) [11,
line 128], and is too low (we need about 300 descriptors). So we have changed this to a
value above 100 for the tests.

• Also, the pktgen module does not properly cut a frame into fragments: their length
decreases because of the way they divide the data [9, line 532]. So, we have made a
little change to it to make fragments of the same length (apart the last one which is
usually longer).

The Ethernet controller we ran the tests on is the Intel 82546EB [20] (on the dual Intel Xeon
2.4 GHz candidate). The Linux driver is provided by Intel (e1000 driver). In this driver, when
a multi-fragment packet is queued, the driver loops over the array of fragments and each one
is put into a different descriptor. The card reads descriptors and downloads all fragments
one by one. The last fragment has a specific bit set by the driver to trigger the frame sending
by the card after it has downloaded it. Because we use a lot of very small fragments, the
number of descriptors used for a single Ethernet frame increases a lot, which could harm the
performance. This is actually not what prevents us for using this functionality.

We have measured the rate (frame rate and byte rate) obtained in case we send single fragmented-
frames of a given size (including small ones) and in case we send a 1500 bytes frame split into
several DMA descriptors. The results are shown on fig. 2.

The link usage follows exactly the theory for sufficiently large frames.

• When sending single fragment frames of a size below 300 bytes, frame rate becomes
too low compared to what the link could handle. The byte rate also drops significantly
(topmost graphs of fig. 2).

• In our case, we plan to actually send large frames split into several little DMA transfers.
On fig. 2, we see that that for frames of 1500 bytes, below a fragment size of 167 bytes
(nine fragments), the theoretical speed is no more reached.

• Unfortunately, in case we generate smaller frames (bottom graphs are obtained with
500 B frames), the maximum number of fragments decreases as well and we cannot use
the full link speed above. In case of 500 bytes frames, the maximum optimal number of
fragments drop to two (fragment length of 250 bytes).

The Broadcom based NIC gives similar results.

After having gone to all sort of configurations on the host to improve this, we have sampled
the PCI signals with a PCI analyser3 and measured the space between consecutive frames on
the bus. We know from Intel documentation that most of the frames are downloaded one

page 11

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
2 Description of the implementation of event-building Date: October 31, 2005

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400 1600

fr
am

e
ra

te
 (

kf
/s

)

frame size (bytes)

frame rate as a function of the frame length

experiment
theory

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600
by

te
 r

at
e

(G
b/

s)
frame size (bytes)

byte rate as a function of the frame length

experiment
theory

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400 1600

fr
am

e
ra

te
 (

kf
/s

)

fragment size (bytes)

frame rate as a function of the fragment length (1500B)

experiment
theory

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

by
te

 r
at

e
(G

b/
s)

fragment size (bytes)

byte rate as a function of the fragment length (1500B)

experiment
theory

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400 450 500

fr
am

e
ra

te
 (

kf
/s

)

fragment size (bytes)

frame rate as a function of the fragment length (500B)

experiment
theory

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

by
te

 r
at

e
(G

b/
s)

fragment size (bytes)

byte rate as a function of the fragment length (500B)

experiment
theory

Figure 2 Performance of Ethernet frame sending with the Linux packet generator. Topmost
graphs shows the frame rate and the byte rate as a function of the frame length. Otherwise,
the performance is much worse. Bottom graphs shows the performance of sending frames of
1500 or 500 bytes (including Ethernet header) with a variable number of DMA fragments (use
of scatter-gather).

page 12

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
2 Description of the implementation of event-building Date: October 31, 2005

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000 1200 1400 1600

eq
ui

v.
 b

yt
e

ra
te

 (
G

b/
s)

burst length (bytes)

rate on the PCI-X bus

DMA rate
1Gb/s

Figure 3 Average byte rate obtained on the PCI bus. Below transfers of 300 bytes, the system
does not reach the link speed anymore.

after each other thanks to the fact the NIC reads first 64 descriptors (with a DMA) and then
gets the frames by DMA. The spacing should be minimised then. Results are shown on fig. 3.
As expected, the rate decreases with the length of the burst but there is a little drop, which
is actually seen for frames of 300 bytes. It could be due to traffic on the PCI bus (descriptors
downloaded or uploaded by the NIC) which makes the average delay between frames larger.
What we see is that for relatively short frames (shorter than 300 bytes), the spacing is so large
that the overall rate goes below 1 Gb/s .
Angel told me he would have a look to the samples this week. This problem has been the topic
of a little thread in the Linux netdev mailing-list [19] but no serious advice was published in
it.
The conclusion is that: unless we understand how to efficiently queue very short DMA trans-
fers from the host to the card, there is no hope in performing better by doing zero-copy
event-building this way4 than by doing the memory copies to large chunks of bytes before to
help the DMA engine.

2.3.2 Implementation of customised socket layers

There are some performance problems due to use of the standard socket interface. In order
not to interact with standard protocol families, we have defined the SOCK_LHCB socket fam-
ily and defined three protocols in it: one for receiving L1 MEP packet, one for HLT MEP packets
(the same code registers twice in fact) and one for sending events (or any type).

MEP sockets We have implemented a raw socket like protocol which is registered in the
kernel by loading a kernel module. The code is a bit less than 400 lines long. This proto-

3Thanks to Hans Müller for providing us with this useful device.
4Many thanks to Angel Guirao Elias (ex-CERN), Éric Lemoine (SUN labs Europe) and Loïc Prylli (Myricom)

for their advices on this question.

page 13

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
2 Description of the implementation of event-building Date: October 31, 2005

col registers for handling IP protocols numbers 0xf1 and 0xf2 which we use as protocol
numbers of respectively L1 and HLT packets. Only one socket can be open on each protocol.
Semantic is then similar to raw IP (the full IP packet is copied).

Using this protocol leads to some improvement of the performance because we avoid cloning
of all the packet descriptors (and we probably do a little bit less of processing than the raw IP
code).

Hooking ourselves in the protocol stack could also permit to implement other features.

• The actual recvmsg call on our protocol copies one packet at a time (like the SOCK_RAW
family). We can freely change its semantic so that a single call copies as many frames
as possible. This would decrease the overall system call overhead. The total number of
bytes copied would still be returned. It would be then up to the application to parse
successive frames properly.

• In case of overload, buffer overflow can be detected in a slightly inefficient way by peri-
odically looking at the socket queue length in the proc file system. A very useful feature
provided by the use of a specific protocol is also to have the opportunity to check and
detect overflow of the socket queue in real-time. The rcv call implemented in the mod-
ule is the last function called after a new packet has been received by the system. It is the
one which enqueues a packet to the user socket queue. It is the proper place to define a
low watermark above which a throttling mechanism would be triggered because even
at very high CPU load (at which looking in the proc file system would be slowed down
significantly), this code is always executed and can take any action instantaneously.

• Various statistics can be exported to the proc file system. This permits to easily distin-
guish packets for L1 and packets for HLT in packet counts, etc. (Linux shows them as
“unknown protocols” packets). Since packets might be dropped when enqueuing them
to the event-builder socket, we cannot rely on the user-level event-builder to do packet
counting properly.

EVENT sockets We have also implemented a UDP like protocol specific to event sending.
The code is a bit less than 400 lines long. The main features are:

• does not implement checksum,

• length of the message is not limited to 65 536 but 232 bytes. This is nice because events
will never be that long. Also, this avoids the need to fragment data from user space,
which cost is not negligible since we use iovec arrays. On the other side, fragmentation
inside the protocol does not cost anything significant.

• there is a packet identifier for reliability: the recvmsg call does not copy bytes of a packet
if previous packets were missing. Thus, it is not up to the receiver to order packets.

• headers are stripped by the network layer,

• room for optimisations since we have control of the code: customisable fragmentation
in several frames, memory copies, possible retransmission, etc.

Improvements we see using this protocol are that if L1 events are too large to fit in one MTU,
this does not really affect the performance (anyway no checksum is computed); also, we
have replaced the standard generic memory copy by a simple inlined raw memory copy of

page 14

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
3 Performance evaluation Date: October 31, 2005

multiples of 32 bits words written in assembly, which also leads to improvement since there
are many execution of this chunk of code.

About the memory copy, an important point is to emphasise if using this raw memory copy,
we save time in particular because we skip some steps which are done by default. We do not
check that the pointer we copy from is not lying in kernel space. When copying data in a
system call, the process is running in a mode where it has the right to copy from/to any area
of the kernel. No segmentation fault would be raised if doing so. Thus, the copy_from_user
memory copy function checks in software that the source pointer is not lying in kernel space
by comparing it to the limit set up for the task doing the copy [14, look for access_ok()] (this is
an access to a field of the struct, done for each fragment copy). The function returns an error
code if the pointer points in a forbidden place.

The security hole this missing check implies is not a problem for us. However, this does not
protect us anymore from passing a pointer lying in kernel space by mistake.

3 Performance evaluation

3.1 Methodology

3.1.1 Description of the testbed

The testing environment consists in sending to the SFC candidate data with a profile similar
to what it would receive during data acquisition. Also, we need to connect fake computing
resources to emulate the subfarm nodes. The testbed is shown on fig. 4.

SFCNP

SFN

switch

SFCNP

SFN

Figure 4 The experimental testbeds we have used. A switch (the box in the middle), a net-
work processor (NP), a candidate (SFC) and a subfarm emulator (SFN). (left) The network
processor sends MEP packets to the SFC candidate which forwards events to the SFN emula-
tor. (right) A more complicated setup for candidates which can handle more than 1 Gb/s. The
network processor sends MEP packets to the SFC candidate with two ports (load balancing
between the two ports). The SFC forwards events to the SFN emulator with two ports as well.

Sources emulation In the real data acquisition network, front-end electronics send their
frames all at the same time to the same SFC. When they are received by the SFC, they arrive
back-to-back because they were queued in switches, in particular the one connected to the
SFC. To obtain the most similar traffic shape when doing tests, packets are sent from a single
source, a network processor, running a program [2] authored by Artur Barczyk which emu-
lates both the full sets of L1 and HLT sources. Virtual number of destinations (number of SFC),

page 15

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
3 Performance evaluation Date: October 31, 2005

fragments lengths and packing factors are parameters of this emulator which we have made
use of, for the benchmarks.

A limit is that the NP software uses the same fragment length for all fragments of a specific
type, which does not reflect the reality. However, this permits a more accurate measurement
of the performance. No measurements with random lengths have been done so far.

L1 and HLT flows are sent independently following different periods (two independent timers
are set up on the NP). This means that in some cases, the SFC receives mixed frames of both
types in the same shot and the event-builder builds two events of different types at the same
time. This is consistent with reality.

Computing resources emulation Although we have now a sufficient number of machines
in our lab, we have not yet ran computing resources emulators with each one running on
its host. Instead, we use a single host to run all receivers with a multithreaded program.
In this program, each thread registers itself to the event-builder with a short message ex-
change. When data acquisition starts, it receives data packets, checks everything is received
and sends back a decision packet which is interpreted by the event-builder as a signal that
the computing resource is now free for an other computation.

Running the software with one computing resource per node (and thus about 30 different
nodes) would be of great interest but we do not expect this would change the performance
of the SFC candidate significantly.

3.1.2 What parameter varies?

Data rate The purpose of the tests is to measure how well the SFC candidates perform when
running event-building. The main measurement we do is to see how far we can increase the
data rate for each of them. This can be done in several ways.

• The most obvious one is to increase the data rate “as if we would decrease the number
of subfarms”. Physically, this consists in increasing the rate at which bursts of frames
are sent to the host.

• An other interesting measurement is to see the impact of receiving smaller or larger
packets because fragments of events are more or less long. Obviously, this leads to
decreasing or increasing the amount of data being copied and in these cases, the frame
rate a candidate can handle is different.

• Finally, we can also vary the packing factor of raw data packets which implies a change
in the burst rate since packets would be sent more or less often. In this case, the amount
of bytes is more or less the same but the frame rate changes.

Impact of packing factor change has been measured on one candidate only because of lack of
time. We expect the results can be applied to other candidates.Change of burst rate or frag-
ment length has been conducted on all candidates. Packing factor impact is work in progress.

In the tests, we have used as default packing factors and fragment sizes the following values:

level 1 — packing factor of 25, fragment size of 32. The frames are thus 946 bytes long. Small
frames are obtained with a fragment size of 20 (646 bytes). Large frames are obtained
with a fragment size of 52 (1446 bytes).

page 16

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
3 Performance evaluation Date: October 31, 2005

high level — packing factor of 10, fragment size of 100. The frames are thus 1086 bytes long.
Small frames are obtained with a fragment size of 56 (646 bytes). Large frames are ob-
tained with a fragment size of 140 (1486 bytes).

Number of ports Some candidates are able to handle more than one Gb/s. We have bench-
marked them with two ports in and two ports out to see up to where they could go.

Use of specific protocols In sect. 2.3.2 we have described two specific protocols imple-
mented as Linux kernel modules. Tests have been ran with or without them (in which case,
raw IP and UDP are used).

3.1.3 What is measured?

We need to see how far we can increase the rate in input to a candidate. This is done by two
means.

1. we measure the CPU load for a specific configuration of input data (frame size, frame
rate),

2. we check that event-building is handled properly (no packet loss, events do not queue
in the event-builder, etc.).

We have tried three tools to measure the CPU load: top, mpstat and oprofile.

• The oprofile tool is practical for measuring idle time when the kernel is not SMP capable
because we can see how often the PC is executing the idle function. However in SMP
mode, idle time is apparently spent in several functions and we did not investigate
further to see which one they are.

• top and mpstat are similar tools. We have seen several times top giving non consistent
results so we have done all measurements with mpstat.

The mpstat tool gives an evaluation of idle time per CPU, which we have used to compute the
load.

Actually, in the measurements we made with mpstat, it happens that the sum of CPU loads
which are recorded (user, system and idle CPU load) is below or above 100% (happens to be
85% to 115%. . .). So, definitely we must be cautious when handling the CPU load measure-
ments in an absolute way. Where we see some consistency is that when we expect CPU load
to be lower or higher (because we change the input data rate for example), the CPU decreases
or increases the proper way.

Since we are not fully confident in our evaluation of the CPU load, checking that event-
building is done properly is at least a practical indication that the load is actually lower than
100%.

The mpstat tool provides us with various measurements per cpu: the time spent by the CPU
in executing user code, kernel code and interrupt rate. In our setup, the user level CPU load
is a good indication of the cost of doing event-building, error checking, computing resource
management, etc.

page 17

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
3 Performance evaluation Date: October 31, 2005

Next sections will show results obtained with mpstat. They will graphs, organised in two
columns: on the left we show the CPU load as a function of the link usage, on the right,
we show the CPU load as a function of the frame rate. From top to bottom, we increase the
fragment size to see the impact of smaller or larger fragments on the rate the candidate can
handle in bytes/s and frames/s.

3.1.4 System parameters

Linux kernel — We are running the Linux 2.6.6 kernel. The SMP option is of course enabled,
Netfilter (hooks used by filters, firewalls, NAT, etc.) is disabled.

socket buffers — We increase the maximum socket buffer queue lengths rmem_max (read queue)
and wmem_max (write queue) to 8 000 000 bytes. This permits the kernel to queue pack-
ets to the socket queue of the process without losing them even if it is not scheduled
quickly enough or is executing an other code than the one which receives frames. When
issuing the call to set this socket queue length, the kernel actually doubles this value
which seems to be a feature needed for the performance of TCP (our communications
does not rely on TCP but we benefit from this).

prioritisation — Since we have not seen an improvement in running the process with the
“real-time” priority, the process is simply ran with a “nice” value of −20 to be relatively
more prioritary than the other processes. Using the strict priority scheduling might
have an impact of the overall latency through the process because it will always be
scheduled as often as possible but this is the object of further studies.

interrupt coalescing — A useful feature of NIC is interrupt coalescing. When set up with inter-
rupt coalescing, a NIC issues an interrupt after having received/sent several packets.
This permits to reduce significantly the cost of handling packet reception or transmis-
sion. Settings are described in appendix A.

cpu affinity — The Linux kernel provides means to tide a thread to a CPU. In a similar way,
interrupt handling of a specific device can also be attached to a specific CPU. The event-
builder process is running two independent threads. From the networking communi-
cation point of view, one is receiving raw data from an interface and the other one is
sending data and receiving decisions on an other. We have noticed the performance is
much more predictable when attaching both a thread and its associated NIC to the same
CPU. So in our settings, the receiver thread and the raw data NIC are attached to CPU0

while the forwarding thread and the subfarm NIC are attached to CPU1.

3.2 Intel dual Xeon 2.4 GHz

This candidate is the oldest candidate we have benchmarked. It was bought two years agowhen
was this PC bought?.

• It is a dual Xeon clocked at 2.4 GHz. The motherboard is a SuperMicro P4DL6 [22],

• Hyperthreading is disabled,

• The network controller is the Intel 82546EB [20] (dual port NIC).

page 18

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
3 Performance evaluation Date: October 31, 2005

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual Intel Xeon 2.4 GHz (646B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180
C

P
U

 lo
ad

 (
m

ps
ta

t,
%

)

frame rate (Kfps)

dual Intel Xeon 2.4 GHz (646B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual Intel Xeon 2.4 GHz (1KB frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

dual Intel Xeon 2.4 GHz (1KB frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual Intel Xeon 2.4 GHz (1400B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

dual Intel Xeon 2.4 GHz (1400B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

Figure 5 Performance of the dual Xeon 2.4 GHz. From top to bottom: increase of the frag-
ments length. On left column: as a function of percentage of the link usage. On right column:
as a function of frame rate. Graphs show the CPU usage obtained either with standard proto-
cols and customised protocols (specified as “custom.”).

page 19

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
3 Performance evaluation Date: October 31, 2005

Fig. 5 shows the results obtained with the dual Xeon 2.4 GHz. From the results we see that
the candidate is actually not able to handle a full Gb/s in and out, even with large fragments
(where the rate handled goes usually more far). Use of customised protocols helps but does
not permit to reach the link speed anyway.

3.3 AMD dual Opteron 1.4 GHz

This candidate has been bought one year ago. It is an AMD Opteron machine clocked at
1.4 GHz. It came with two Gb ports using a Broadcom BCM5702 controller which has shown
pretty bad performance compared to what can be obtained with an Intel card. We have thus
put a dual Intel NIC in it (82546EB controller [20]) for the tests. All this is hosted on a RioWorks
motherboard [21].

Fig. 6 shows the results obtained with the dual Opteron 1.4 GHz. Performance plots show
that the candidate can reach the Gb link speed if frames are large. We have however not
carried the tests above 1 Gb/s because we are anyway close to overload the CPU.

Compared to the dual Intel Xeon 2.4 GHz, it handles better small frames at a high rate while
the difference is less visible with large frames. The frame rate goes much above the previous
candidate when frames are small.

3.4 AMD dual Opteron 2.1 GHz

This candidate is a dual Opteron 2.1 GHz machine. It comes with a front-side bus clocked
at 800 MHztodo. It includes two onboard Ethernet Broadcom BCM5704 controllers which we
can use for data and has a single PCI-X slot available. We have thus plugged a dual Intel card
because the candidate could apparently handle more than 1 Gb/s properly. Fig. 7 shows the
results obtained with the dual Opteron 2.1 GHz.

3.5 Intel dual Xeon 3 GHz

This candidate is a prototype provided by a manufacturer for some weeks. Unfortunately, it
went back to them two weeks before the review will take place and various improvement
and last minute tests could not be conducted on it. We have however been provided by the
same company a very similar machine which we is a similar model one will be able to buy.
The measurements presented here were done on the prototype.

The PC is a dual Xeon 3 GHz with optional hyper-threading (disabled). It comes with a lim-
ited number of Gb Ethernet ports (two) which are using a Broadcom controller. At that time,
we had a pretty bad experience with Broadcom controllers and in particular the associated
drivers so that we have instead plugged a quad-port card from Intel and not used the on
board ports. This has been a good opportunity to use the Intel quad-port card which we did
not test before.

Actually, although we had loaded the NIC driver with the proper parameters, we observed a
rather high interrupt rate on the last two ports which were used in event forwarding here. At
that time, this machine was the first one we benchmarked and, although the numbers were
a bit surprising, we thought the interrupt rate was the one which should be observed and
continued with the same configuration (see appendix. A for more details).

Fig. 8 shows the results obtained with the Intel dual Xeon 3 GHz. The Xeon performs in a

page 20

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
3 Performance evaluation Date: October 31, 2005

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual AMD Opteron 1.4 GHz (646B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180
C

P
U

 lo
ad

 (
m

ps
ta

t,
%

)

frame rate (Kfps)

dual AMD Opteron 1.4 GHz (646B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual AMD Opteron 1.4 GHz (1KB frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

dual AMD Opteron 1.4 GHz (1KB frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual AMD Opteron 1.4 GHz (1400B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

dual AMD Opteron 1.4 GHz (1400B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

Figure 6 Performance of the dual Opteron 1.4 GHz. From top to bottom: increase of the
fragments length. On left column: as a function of percentage of the link usage. On right col-
umn: as a function of frame rate. Graphs show the CPU usage obtained either with standard
protocols and customised protocols (specified as “custom.”).

page 21

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
3 Performance evaluation Date: October 31, 2005

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual AMD Opteron 2.1 GHz (646B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180
C

P
U

 lo
ad

 (
m

ps
ta

t,
%

)

frame rate (Kfps)

dual AMD Opteron 2.1 GHz (646B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual AMD Opteron 2.1 GHz (1KB frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

dual AMD Opteron 2.1 GHz (1KB frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual AMD Opteron 2.1 GHz (1400B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

dual AMD Opteron 2.1 GHz (1400B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

Figure 7 Performance of the dual Opteron 2.1 GHz. From top to bottom: increase of the
fragments length. On left column: as a function of percentage of the link usage. On right col-
umn: as a function of frame rate. Graphs show the CPU usage obtained either with standard
protocols and customised protocols (specified as “custom.”).

page 22

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
3 Performance evaluation Date: October 31, 2005

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual Intel Xeon 3 GHz (646B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180
C

P
U

 lo
ad

 (
m

ps
ta

t,
%

)

frame rate (Kfps)

dual Intel Xeon 3 GHz (646B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual Intel Xeon 3 GHz (1KB frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

dual Intel Xeon 3 GHz (1KB frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual Intel Xeon 3 GHz (1400B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

dual Intel Xeon 3 GHz (1400B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

Figure 8 Performance of the Intel dual Xeon 3 GHz. From top to bottom: increase of the
fragments length. On left column: as a function of percentage of the link usage. On right col-
umn: as a function of frame rate. Graphs show the CPU usage obtained either with standard
protocols and customised protocols (specified as “custom.”).

page 23

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
4 Conclusion Date: October 31, 2005

similar way to the Opteron 2.1 GHz. What is actually very different is the performance of the
sending CPU. Taking for the example the graphs related to frames of 1 KB, we see it is the CPU
which is the most loaded, while it is the opposite on the Opteron. We could not verify this
but we expect this to be due to the fact the interrupt rate is higher on that CPU than what it
could be if the NIC was behaving in a similar way to the one of the Opteron.

If we assume the forwarder CPU is artificially more loaded, we should then take the load of
the receiver CPU as the bottleneck. In this case, we conclude this candidate performs actually
a bit better than the Opteron 2.1 GHz.

3.6 Intel dual Itanium 1.4 GHz

Fig. 9 shows the results obtained with the Intel dual Itanium 1.4 GHz.

This candidate has an Intel Itanium processor (ia64 architecture). This architecture is the only
true 64 bits architecture among all the candidates. The purpose of the tests is in particular to
check if such architecture is obviously better for our application.

The candidate has hard time in handling one full Gb/s where other candidates perform much
better.

We are new to this architecture and still suspect we were not using it the proper way. We
have tried a computing benchmark called nbench and compared the architecture to other
candidates. It appears that the Itanium is not the best architecture in all tests apart floating
point operations were it is far above the others. However, our application does not use a
single floating point operation so we definitely do not benefit of this performance.

3.7 Macintosh PowerPC G5 2.0 GHz

Fig. 10 shows the results obtained with the Macintosh PowerPC G5 2.0 GHz. This candidate
is a PowerPC, a completely different architecture than the other candidates which are all PC.
We have unfortunately a little experience with this architecture and measurements presented
here might have been done without all the care we put in doing them on other candidates.

Actually, we also had a very little experience with the operating system installed on the can-
didate and firsts tests were given us the impression that we did not do operating system
tuning the best way. We have then installed a Linux distribution on it. It comes with a 2.6.8
kernel (while other candidates were running a 2.6.6) which we have used to do the tests.

4 Conclusion

4.1 Summary

• We have implemented the SFC event-building in software. The implementation can be
run on a plain Linux operating system with the standard socket interface. Since profil-
ing shows the system is a task which uses a lot of CPU, we have also proposed some
extensions to it to improve the efficiency. Memory copies are the most critical chunks
of code and we have done some investigation with hope of doing event-building with
zero-copy. However, the performance of very short DMA transfers does not permit this.
Optimisations which were implemented permit to increase the input rate by a few per-
cent but also provides proper places to implement some useful functionalities.

page 24

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
4 Conclusion Date: October 31, 2005

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual Intel Itanium 1.4 GHz (646B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180
C

P
U

 lo
ad

 (
m

ps
ta

t,
%

)

frame rate (Kfps)

dual Intel Itanium 1.4 GHz (646B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual Intel Itanium 1.4 GHz (1KB frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

dual Intel Itanium 1.4 GHz (1KB frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual Intel Itanium 1.4 GHz (1400B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

dual Intel Itanium 1.4 GHz (1400B frames)

receiver
forwarder

receiver (custom.)
forwarder (custom.)

Figure 9 Performance of the Intel dual Itanium 1.4 GHz. From top to bottom: increase of the
fragments length. On left column: as a function of percentage of the link usage. On right col-
umn: as a function of frame rate. Graphs show the CPU usage obtained either with standard
protocols and customised protocols (specified as “custom.”).

page 25

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
4 Conclusion Date: October 31, 2005

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual Macintosh PowerPC 2.0 GHz (646B frames)

receiver
forwarder

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180
C

P
U

 lo
ad

 (
m

ps
ta

t,
%

)

frame rate (Kfps)

dual Macintosh PowerPC 2.0 GHz (646B frames)

receiver
forwarder

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual Macintosh PowerPC 2.0 GHz (1KB frames)

receiver
forwarder

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

dual Macintosh PowerPC 2.0 GHz (1KB frames)

receiver
forwarder

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

dual Macintosh PowerPC 2.0 GHz (1400B frames)

receiver
forwarder

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

dual Macintosh PowerPC 2.0 GHz (1400B frames)

receiver
forwarder

Figure 10 Performance of the Macintosh PowerPC G5 2.0 GHz. From top to bottom: increase
of the fragments length. On left column: as a function of percentage of the link usage. On
right column: as a function of frame rate. Graphs show the CPU usage obtained either with
standard protocols and customised protocols (specified as “custom.”).

page 26

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
5 References Date: October 31, 2005

• We have tested candidates for SFC with this implementation by measuring how far we
could increase the event rate while they still build and forward data without losses.
We have measured their CPU load with mpstat from what it gives as idle time. How-
ever, these values cannot be trusted in an absolute way. They just permit to compare
candidates or implementation choices.

On fig. 11 and 12 we show the performance of all candidates on the same plots in order to
help comparisons. Instead of plotting the two CPU loads, we have plotted the maximum of
both. Fig. 11 shows the results obtained with the standard protocols. Fig. 12 shows the results
obtained with the customised protocols.

4.2 Number of subfarms

From the performance point of view, all candidates can do the job of being an SFC in the
DAQ because we can increase or decrease the number of subfarms according to the rate they
can handle. An outcome of the tests which we perform is actually to compute how many
subfarms we can put in place for each candidate we can use as an SFC. Then, according to
their price, we can compute the cost of any solution. We have also interest in lowering the
number of subfarms for statistical reasons.

• We could target a CPU load we want to have on average on a SFC and compute the ideal
data rate per SFC thanks to the measurements we did. However, we’d better not trust
them.

• A more consistent way is to target a maximum rate we know a candidate can handle
(we know from the measurements) and reserve some margin so that the targeted rate
will be the maximum rate multiplied by a factor lower than one. Then we divide the
total data rate by the newly computed rate and this can determine how many subfarms
we can put. We also know that if the rate increases up to the maximum rate we mea-
sured, the SFC will still be able to run properly.

As an example, we show on fig. 13 (and fig. 14 in case of use of customised protocols) the
number of subfarms we can implement as a function of the factor we want to multiply the
maximum rate with. The maximum rate has been taken on graphs of fig. 11 and 12 where we
take the rate which leads the candidates at about 85% CPU load with a frame size of 1 KB (we
do not trust this value of 85%, we use it as a mean to get the highest rate an SFC can run at).
We also compute the equivalent rate per subfarm it leads to.

The candidates which were able to handle more than 1 Gb/s are referred as “(2p)”. In case we
put one port on the SFC, although the candidate limit is higher, the maximum rate is 1Gb/s
(the switch is the bottleneck then). This leads to a larger number of subfarms. This is shown
on the graph as the “1 Gb/s” candidate and all candidates which are able to handle more
than 1 Gb/s are included in this curve.

5 References

[1] Mark Allman, Vern Paxson, and W. Richard Stevens. TCP congestion control. Internet
Request For Comments (RFC) 2581, Internet Engineering Task Force (IETF), April 1999.

page 27

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
5 References Date: October 31, 2005

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

All candidates (646B frames)

Xeon 2.4 GHz
Opteron 1.4 GHz
Opteron 2.1 GHz

Xeon 3 GHz
Itanium 1.4 GHz

PowerPC 2.0 GHz
 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

All candidates (646B frames)

Xeon 2.4 GHz
Opteron 1.4 GHz
Opteron 2.1 GHz

Xeon 3 GHz
Itanium 1.4 GHz

PowerPC 2.0 GHz

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

All candidates (1KB frames)

Xeon 2.4 GHz
Opteron 1.4 GHz
Opteron 2.1 GHz

Xeon 3 GHz
Itanium 1.4 GHz

PowerPC 2.0 GHz
 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

All candidates (1KB frames)

Xeon 2.4 GHz
Opteron 1.4 GHz
Opteron 2.1 GHz

Xeon 3 GHz
Itanium 1.4 GHz

PowerPC 2.0 GHz

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

All candidates (1400B frames)

Xeon 2.4 GHz
Opteron 1.4 GHz
Opteron 2.1 GHz

Xeon 3 GHz
Itanium 1.4 GHz

PowerPC 2.0 GHz
 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

All candidates (1400B frames)

Xeon 2.4 GHz
Opteron 1.4 GHz
Opteron 2.1 GHz

Xeon 3 GHz
Itanium 1.4 GHz

PowerPC 2.0 GHz

Figure 11 Performance of the all candidates with standard protocols. On left column: as a
function of percentage of the link usage. On right column: as a function of frame rate.

page 28

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
5 References Date: October 31, 2005

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

All candidates (646B frames)

Xeon 2.4 GHz
Opteron 1.4 GHz
Opteron 2.1 GHz

Xeon 3 GHz
Itanium 1.4 GHz

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

All candidates (646B frames)

Xeon 2.4 GHz
Opteron 1.4 GHz
Opteron 2.1 GHz

Xeon 3 GHz
Itanium 1.4 GHz

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

All candidates (1KB frames)

Xeon 2.4 GHz
Opteron 1.4 GHz
Opteron 2.1 GHz

Xeon 3 GHz
Itanium 1.4 GHz

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

All candidates (1KB frames)

Xeon 2.4 GHz
Opteron 1.4 GHz
Opteron 2.1 GHz

Xeon 3 GHz
Itanium 1.4 GHz

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

Gb/s link usage

All candidates (1400B frames)

Xeon 2.4 GHz
Opteron 1.4 GHz
Opteron 2.1 GHz

Xeon 3 GHz
Itanium 1.4 GHz

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

m
ps

ta
t,

%
)

frame rate (Kfps)

All candidates (1400B frames)

Xeon 2.4 GHz
Opteron 1.4 GHz
Opteron 2.1 GHz

Xeon 3 GHz
Itanium 1.4 GHz

Figure 12 Performance of the all candidates with customised protocols. On left column: as
a function of percentage of the link usage. On right column: as a function of frame rate.

page 29

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
5 References Date: October 31, 2005

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 s

ub
fa

rm
s

safety factor

with standard protocols

Xeon 2.4
Opteron 1.4

1Gb/s maximum
Opteron 2.1 (2p)

Xeon 3.0 (2p)
Itanium 1.4

PowerPC G5 2.0

 0.4

 0.6

 0.8

 1

 1.2

 0.4 0.5 0.6 0.7 0.8 0.9 1

ra
te

 p
er

 S
F

C
 (

G
b/

s)

safety factor

with standard protocols

Xeon 2.4
Opteron 1.4

1Gb/s maximum
Opteron 2.1 (2p)

Xeon 3.0 (2p)
Itanium 1.4

PowerPC G5 2.0

Figure 13 Possible number of subfarms and equivalent rate per subfarm according to can-
didates performance. Top is the number of subfarms, bottom is the rate per subfarm.

page 30

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
5 References Date: October 31, 2005

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 s

ub
fa

rm
s

safety factor

with customized protocols

Xeon 2.4
Opteron 1.4

1Gb/s maximum
Opteron 2.1 (2p)

Xeon 3.0 (2p)
Itanium 1.4

 0.4

 0.6

 0.8

 1

 1.2

 0.4 0.5 0.6 0.7 0.8 0.9 1

ra
te

 p
er

 S
F

C
 (

G
b/

s)

safety factor

with customized protocols

Xeon 2.4
Opteron 1.4

1Gb/s maximum
Opteron 2.1 (2p)

Xeon 3.0 (2p)
Itanium 1.4

Figure 14 Possible number of subfarms and equivalent rate per subfarm according to candi-
dates performance (customised protocols). Top is the number of subfarms, bottom is the rate
per subfarm.

page 31

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
5 References Date: October 31, 2005

[2] Artur Barczyk. Use of network processors in the lhcb daq test-bed. LHCb Technical Note
2004-024, CERN LHCb experiment, March 2004.

[3] Kevin Fall and Sally Floyd. Simulation-based comparisons of tahoe, reno, and SACK
TCP. Computer Communication Review, 26(3):5–21, July 1996.

[4] Sally Floyd, Jamshid Mahdavi, Matt Mathis, and Matthew Podolsky. An extension to
the selective acknowledgement (SACK) option for TCP. Internet Request For Comments
(RFC) 2883, Internet Engineering Task Force (IETF), July 2000.

[5] Van Jacobson. Congestion avoidance and control. ACM Computer Communication Review,
18(4):314–329, 1988.

[6] Richard Jacobsson. Implementing the l1 trigger path. LHCb Technical Note 2003-080
DAQ, CERN LHCb experiment, August 2003. Page 7 describes the MDP format.

[7] Beat Jost and Niko Neufeld. Raw-data transport format. LHCb Technical Note 2003-063
DAQ, CERN LHCb experiment, September 2003.

[8] Linux kernel 2.6.6. Implementation of memory copies with iovec arrays. (net/core/
iovec.c).

[9] Linux kernel 2.6.6. Packet generator for device testing. (net/core/pktgen.c).

[10] Linux kernel 2.6.6. Implementation of the raw IP sockets. (net/ipv4/raw.c).

[11] Linux kernel 2.6.6. Definition of the packet descriptor. (include/linux/skbuff.h).

[12] Linux kernel 2.6.6. Common functions for sockets (in particular, socket options). (net/
core/sock.c).

[13] Linux kernel 2.6.6. Implementation of the TCP sockets. (net/ipv4/tcp*.c).

[14] Linux kernel 2.6.6. Implementation of memory copies to/from user space from/to ker-
nel space. (include/asm/uaccess.h).

[15] Linux kernel 2.6.6. Implementation of the UDP sockets. (net/ipv4/udp.c).

[16] Linux kernel 2.6.6. Header file of UDP. (include/net/udp.h).

[17] Linux kernel 2.6.6. A file which refers disabling of UDP checksum checking. (net/
sunrpc/xprt.c).

[18] LHCb. LHCb trigger system (LHCb TDR 10). Technical Design Report. CERN/LHC,
September 2003. ISBN 92-9083-208-8.

[19] TX performance of Intel 82546. Message on the Netdev Linux mailing-list. http://
oss.sgi.com/projects/netdev/archive/2004-09/msg00540.html.

[20] Intel web site. 82546eb dual port gigabit ethernet controller. http://www.intel.
com/design/network/products/lan/controllers/82546.htm.

[21] RioWorks web site. Documentation for the HDAMA motherboard. http://www.
rioworks.com/Download/HDAMA.htm.

[22] SuperMicro web site. Documentation for the P4DL6 motherboard. http://www.
supermicro.com/products/motherboard/Xeon/GC-LE/P4DL6.cfm.

page 32

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
A Interrupt rate Date: October 31, 2005

A Interrupt rate

When using an Intel controller, we have set up interrupt coalescing the following way:

RxIntDelay — 200
RxAbsIntDelay — 400
TxIntDelay — 200
TxAbsIntDelay — 400
RxDescriptors — 1024
TxDescriptors — 1024
InterruptThrottleRate — 0

These settings were applied to both receiving and sending NIC. In case of the NIC associated
to MEP packets, we simply decrease the number of descriptors for sending because they are
not used.
When using the Broadcom controller, we set it up like this:

rx_coalesce_ticks — 200
tx_coalesce_ticks — 200
rx_coalesce_frames — 100
tx_coalesce_frames — 100
tx_max_coalesce_frames — 100
rx_max_coalesce_frames — 100
tx_desc_count — 120
rx_desc_count — 200
adaptive_coalescing — 0

These settings were applied to two ports used for forwarding data. One sees that the number
of descriptors is rather low. Since the performance was fine on the Opteron 2.1 GHz with such
settings, it means we are not really dependent on a large number of descriptors.
The mpstat tool provides us with the interrupt rate of both CPU. This section summarises this
measurement. We have plotted interrupt rates of each CPU as a function of the frame rate
for the average frame size. Fig. 15 shows the results obtained with the standard protocols.
Fig. 16 shows the results obtained with the customised protocols. Performance is very similar
when using either standard protocols. (It could however because in the Linux stack, the NAPI
system can disable interrupts on purpose according to the CPU load.)

• On the dual Intel Xeon 2.4 GHz, measurements are wrong because apparently mpstat
gives for both CPU the overall interrupt rate on the host. They both have exactly the
same value and this value is more or less twice what we see on other hosts using the
same Ethernet controller.

• On the dual Intel Xeon 3 GHz, the interrupt rate of the second CPU is amazingly high. We
suspect that the measurement is right but that the NIC generates too much interrupts.
The two ports used by the receiver CPU seems to be badly configured although the
driver settings are fine. The latest e1000 driver did not improve this. Also, we have
noticed that the forwarder CPU load is higher than the receiver CPU load while this is
the opposite on all other candidate. We thus suspect this interrupt rate to be responsible
for this higher load.

page 33

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
A Interrupt rate Date: October 31, 2005

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 60 80 100 120 140 160 180

in
tr

/s
 (

m
ps

ta
t)

frame rate (Kfps)

dual Intel Xeon 2.4 GHz (1KB frames)

receiver
forwarder

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 60 80 100 120 140 160 180

in
tr

/s
 (

m
ps

ta
t)

frame rate (Kfps)

dual AMD Opteron 1.4 GHz (1KB frames)

receiver
forwarder

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 60 80 100 120 140 160 180

in
tr

/s
 (

m
ps

ta
t)

frame rate (Kfps)

dual AMD Opteron 2.1 GHz (1KB frames)

receiver
forwarder

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 60 80 100 120 140 160 180

in
tr

/s
 (

m
ps

ta
t)

frame rate (Kfps)

dual Intel Xeon 3 GHz (1KB frames)

receiver
forwarder

Figure 15 Interrupt rate of all candidates with standard protocols.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 60 80 100 120 140 160 180

in
tr

/s
 (

m
ps

ta
t)

frame rate (Kfps)

dual Intel Xeon 2.4 GHz (1KB frames)

receiver
forwarder

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 60 80 100 120 140 160 180

in
tr

/s
 (

m
ps

ta
t)

frame rate (Kfps)

dual AMD Opteron 1.4 GHz (1KB frames)

receiver
forwarder

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 60 80 100 120 140 160 180

in
tr

/s
 (

m
ps

ta
t)

frame rate (Kfps)

dual AMD Opteron 2.1 GHz (1KB frames)

receiver
forwarder

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 60 80 100 120 140 160 180

in
tr

/s
 (

m
ps

ta
t)

frame rate (Kfps)

dual Intel Xeon 3 GHz (1KB frames)

receiver
forwarder

Figure 16 Interrupt rate of all candidates with customised protocols.

page 34

Evaluation of subfarm controllers candidates with an implementation of LHCb event-building Ref: LHCb-2005-087
Public Note Issue: Final
A Interrupt rate Date: October 31, 2005

• On other candidates, we measure a similar interrupt rate on both sides. The dual AMD
Opteron 2.1 GHz is using a dual port Broadcom Ethernet controller which shows good
properties in terms of interrupt coalescing.

page 35

