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The QCD equation of state for two flavours at non-zero chemical potential
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We present results of a simulation of 2 flavour QCD on a 163 × 4 lattice using p4-
improved staggered fermions with bare quark mass m/T = 0.4. Derivatives of the ther-
modynamic grand canonical partition function Z(V, T, µu, µd) with respect to chemical
potentials µu,d for different quark flavours are calculated up to sixth order, enabling es-
timates of the pressure and the quark number density as well as the chiral condensate
and various susceptibilities as functions of µu,d via Taylor series expansion. Results are
compared to high temperature perturbation theory as well as a hadron resonance gas
model. We also analyze baryon as well as isospin fluctuations and discuss the relation to
the chiral critical point in the QCD phase diagram. We moreover discuss the dependence
of the heavy quark free energy on the chemical potential.

1. Introduction

It is important to study QCD at high temperature and high density by numerical
simulations of lattice QCD. In particular, studies of the equation of state (EoS) can
provide basic input for the analysis of the experimental signatures for QGP formation,
e.g. the EoS will control the properties of any hydrodynamic expansion. We extend
studies of the EoS to non-zero baryon number density.

Simulation at non-zero baryon density is known to be difficult; however recent studies
have found that a Taylor expansion with respect to chemical potential µu,d is an efficient
technique to investigate the low density regime, interesting for heavy-ion collisions [ 1, 2].
In the calculation of the Taylor expansion coefficients, i.e. calculation of the derivatives
at µu,d = 0, the technical difficulty for non-zero µu,d does not arise and a quantitative
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Figure 1. The ratios of Taylor expansion coefficients for pressure (quark number suscep-
tibility), isospin susceptibility and chiral condensate.

study becomes possible within the error by truncation of higher order terms. Since ther-
modynamic quantities can be defined by derivatives of the partition function, e.g. chiral
condensate 〈ψ̄ψ〉 = (T/V )(∂ lnZ/∂m), quark number density nq = (T/V )(∂ lnZ/∂µq),
quark number susceptibility χq = (T/V )(∂2 lnZ/∂µ2

q), and isospin susceptibility χI =
(T/V )(∂2 lnZ/∂µ2

I), where µq = (µu+µd)/2 and µI = (µu−µd)/2, the calculation of first
derivatives yields basic QCD thermodynamics observables, and the calculation of higher
derivatives is a natural extension.

In this study, we evaluate the Taylor expansion coefficients of thermodynamic quantities
and compare these results to the predictions from the perturbation theory in the high
temperature limit and from the hadron resonance gas model in the low temperature
hadron phase. Also fluctuations of quark number, isospin number and electric charge are
discussed near the transition temperature Tc. They are estimated by χq, χI and charge
susceptibility χC = χq/36 + χI/4, and are related to the critical endpoint expected at
non-zero µq. Moreover we study the Taylor expansion coefficients of chiral condensate
and heavy quark free energy. The details of simulations are given in [ 2].

2. Quark gluon gas and hadron resonance gas

We define the expansion coefficients by p/T 4 = (lnZ)/(V T 3) ≡
∑

∞

n=0 cn(µq/T )n,
χq[χI ]/T

2 ≡
∑

∞

n=2 n(n − 1)cn[c
I
n](µq/T )n−2 and 〈ψ̄ψ〉/T 3 ≡

∑

∞

n=0 c
ψ̄ψ
n (µq/T )n for µI = 0.

We expect the equation of state to approach that of a free quark-gluon gas (Stefan-
Boltzmann (SB) gas) in the high temperature limit. The coefficients in the SB limit
for 2 flavour QCD with µI = 0 are well known as c2 = cI2 = 1, c4 = cI4 = 1/(2π2) and
cn = cIn = 0 for n ≥ 6. Moreover the sign of c6 is negative starting at O(g3) in pertur-
bation theory. On the other hand, in the low temperature phase QCD is well described
by a hadron resonance gas model in which the pressure is obtained by summing over
the contributions from all resonance states of hadrons. In this model, the contribution
to p/T 4 from each individual hadron which has baryon number Bi is in proportion to
exp(3Biµq/T ), hence the pressure can be written as p/T 4 = G(T ) + F (T ) cosh(3µq/T ),
where G(T ) and F (T ) are the mesonic and baryonic components of p/T 4 at µq = 0.
Similarly, we obtain χq/T

2 = 9F (T ) cosh(3µq/T ), χI/T
2 = GI(T ) + F I(T ) cosh(3µq/T )
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Figure 2. The quark number susceptibility χq/T
2 (left) and isospin susceptibility χI/T

2

(right) for various µq/T . T0 is Tc at µq = 0.

and 〈ψ̄ψ〉/T 3 = Gψ̄ψ(T ) + F ψ̄ψ(T ) cosh(3µq/T ). Here, the mesonic component for χq is
zero because mesons have baryon number zero. Therefore, c4/c2 = 3/4, c6/c4 = 3/10,

cI6/c
I
4 = 3/10 and cψ̄ψ4 /cψ̄ψ2 = 3/4 in the region where the hadron resonance gas provides a

good approximation.

We investigate these coefficients. The results for cn+2/cn, c
I
n+2/c

I
n and cψ̄ψn+2/c

ψ̄ψ
n are

shown in Fig. 1. We find that these results are consistent with the prediction from the
hadron resonance gas model for T/Tc ≤ 0.96 and approach the SB values, i.e. c4/c2 =
cI4/c

I
2 = 1/2π2, c6/c4 = cI6/c

I
4 = 0, in the high temperature limit. Also c6 is negative

at high temperature as expected in the perturbation theory. These results suggest that
the models of free quark-gluon gas and hadron gas seem to explain the behaviour of
thermodynamic quantities well except in the narrow regime near Tc.

3. Susceptibilities at non-zero µq

Next, we calculate quark number and isospin susceptibilities in a range of 0 ≤ µq/T ≤ 1.
The data connected by solid lines in Fig. 2 are obtained by χq/T

2 = 2c2 + 12c4(µq/T )2 +
30c6(µq/T )4 and the corresponding equation for χI . Dashed lines are the results from
O(µ2

q) expansion. Since the statistical error of c6 is still large near Tc, the location and
height of the peak are less accurately determined, and also the error from the truncation
of higher order terms of µq/T seems to be visible for large µq/T . However, as seen in
Fig. 1, c6 changes its sign at Tc. This means the peak position of χq moves left, which is
corresponding to the change of Tc as a function of µq. Tc(µq/T = 1)/Tc(µq/T = 0) in [
3] is about 0.93. Moreover, χq increases with higher orders of the expansion for T ≤ Tc
which confirms the existence of a peak. This suggests the presence of a critical endpoint in
the (T, µq) plane. On the other hand, χI in Fig. 2 does not show any singular behaviour.
This is consistent with the sigma model prediction that only isosinglet degrees of freedom
become massless at the critical endpoint.
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Figure 3. (a) The ratios m1

2/m
1
0 and mav

2 /m
1
0 as functions of T/Tc and (b) the singlet

screening mass at non-zero µq.

4. Screening mass at non-zero µq

Finally we want to discuss the free energy of a static quark anti-quark pair at finite
temperature and density. We extract the singlet free energy F 1

QQ̄
and colour averaged free

energy F av
QQ̄

by the Polyakov loop correlation functions. For T > Tc, the free energy is ex-

pected to be exponentially screened at large distances, ∆F av,1
QQ̄

(r, T, µq) ≡ F av,1
QQ̄

(∞, T, µq)−

F av,1
QQ̄

(r, T, µq) ∼ e−m
av,1(T,µq)r. We calculate the Taylor expansion coefficients of the De-

bye screening mass mav,1 in terms of µq/T at µq = 0, mav,1 ≡
∑

∞

n=0m
av,1
n (µq/T )n. We

plot the data of m1
2/m

1
0 and mav

2 /m
1
0 in Fig. 3(a). We find m1

2 = (1/2)mav
2 . This is ex-

pected from perturbation theory, which suggests that the leading order contribution to
the colour singlet free energy is given by one gluon exchange while the colour averaged free
energy is dominated by two gluon exchange. Moreover the perturbative Debye screen-

ing mass mD is given by mD(T, µq) = mD,0(T )
√

1 + 3Nf/[(2Nc +Nf)π2](µq/T )2, with

mD,0(T ) = g(T )T
√

(2Nc +Nf )/6. Here Nc and Nf are the number of colour and flavour

respectively. The solid line in Fig. 3(a) is the perturbative prediction for m1
2/m

1
0. The

ratio m1
2/m

1
0 is found to be consistent with perturbation theory for T ≥ 2Tc. In Fig. 3(b)

we show the µq-dependence of the singlet screening mass m1(µq, T )/T for a small values
of µq/T , where only contributions from m1

0 and m1
2 are included. Further details of this

study are given in [ 4].
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