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ABSTRACT

We discuss the local and non-local pion-
nucleus optical potentials, We find that the local
potential becomes non-local when two nucleon corre-
lations are included. The two potentials (including
correlations) can be made local through a transform-
ation on the wave function., The new local potentials
agree up to quadratic terms when expanded in powers
of the density. The influence of finite range cor-
relations and off-shell pion-nucleon form factors are

also investigated.
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INTRODUCT ION

The low energy pion-nucleon interacfion is dominated by a
conspicuous P wave resonance, the (3,3) resonance. Any theory attempting
to describe the low energy pion-nucleus interaction must necessarily take
this fact into account. The recipe that has been used in the past is that
of Kisslinger 1 where the P wave gives rise to a non-local term in the
optical potential. This potential is inserted into the Klein-Gordon
equation for the pion which is then solved numerically. ‘This approach has
been ﬁsed'by Sternheim 2 to analyze low energy pion-nucleus scattering
experiments. The most successful application, however, has been in the
field of ® 'mesic atoms where it forms the basis for the multiple scat-
tering theory of Ericson and Ericson 3 . For a presentation of the impressive

results obtained in this area we refer to the paper by Krell and Ericson 4).

A recent precision experiment in the (3,3) resonance region
by Binon et al. 5) has caused a considerable theoretical activity and several
models have been used for the analysis of their data. Two important novel
observations were made. It was noted by Dedonder 6) and Faldt 7) that a
correct treatment of the kinematics leads to a considerable enhancement
factor for the non-local part of the optical potential which is indeed
supported by the data. In the present paper the corresponding kinematic
problem is investigated for the case of mesic atoms. The second observation

7), Lee and McManus 8) and Wilkin 9). They

was independently made by Faldt
noted that the Glauber multiple scattering theory naturally suggested a
local potential which was found to agree quite well with the data. It was

also noted that the original derivation of Xisslinger could as well be used

‘to derive the local potential, the two potentials'being different for off-

shell pion-nucleon scattering oanly. In view of this remark 1t was natural
to assume that the local potential should be applicable also to mesic atoms.

)
Preliminary calculations confirmed this hypothesis 10/.

The present paper is a study of the pion-nucleus optical
potential. Our basic theoretical tool will be the multiple scattering
theory employed by Ericson and Ericson 3 . We remind you that the success
of the microscopic description depends crucially oxn the smallness of the pion-
nucleon scattering lengths in comparison with inter-nucleon distances. We
give a derivation of the multiple scattering equatioas, a system of A
coupled integral equations, starting from‘the Schrdinger equation and discuss
the necessary approximations inv&iVed. The équations are used in much the

same way as the Ericsons. 'Furthermore, the general multiple scattering
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formalism is valid at alllenergies.A An application to pion-nucleus scat-

tering at high energies has already been described in a previous paper 11).

The main part of the paper concerns the application to low
energy scattering, in particular pionic atoms. We discuss the presently
fashionable local and non-local potentials. In the non-local case we recover
thefresults of the‘Ericsons, in particular the correlation induced Lorentz-
Lorenz term. In the local case we find that the potential becomes non-local
when correlation effects are taken into aceount. This resuit differs from
that of Scheck and Wilkin 12 whose potential remains local., The Sehfﬁdinger
equations fer the local and non-local potentials (including the correlation
induced Lorentz-Lorenz terms) look very different. However, both potentials
can be made local through a transformation of the wave function (different
for the two potentials). When the new local potentials are expanded in
powers of the density they agree in linear and quadratic terms. This pro-

perty was first noticed by Scheck and Wilkin 12) and assures similar nume-

‘rical results for pionic atoms. We also discuss finite range corrections

and the effect of off-shell pion-nucleon form factors. Here we find that

the strength of the Lorentz-Lorenz term is a measure of the ratio (spatial

-extension of elementary pion-nucleon interaction)/(nucleon-nucleon correla-

tion length). In this more general case the two potentials do not agree to

second order in the density.

KINEMATICS

, In the theoretical analysis of pion-nucleus scattering the
strong interaction is introduced through a phenomenological optical potential
whieh is derived from the elementary pion-nucleon inferaction. It is
important to realize that the optical potential deseribes the interaction
in the pion-nucleus c.m. system. Due to the large nuclear mass we must
therefore evaluate the elementary pion-nucleon interaction in a pion-nucleon

lab. system.

For our considerations it is sufficient to retain the isoscalar
part of the pion-nucleon amplitude. At low energies in the pion nucleon c.m.,

system

-

fE,E) = bre Kok,
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where b, is the S wave scattering length and c, the P wave scat-

tering volume. When transforming to the lab. system
1 - -| - . . i .
'(:). (%)ki) = 3- 'Fc (ke)kc) ) (2.2)

an additional angular dependénce is introduced through the Jacobiah J. PFor
non-relativistic pioné Jd has its largest value in the forward direction
J(O -O)-1-+P7m and its smallest value in the backward direction
J(Oc==1800) =1- ’H/m. Since this variation cannot be taken into account in
a conventional Klein—GordQn equation it is customary to use the forward value.
At high energieé this choice.is easily understood since the nuclear form
factor stronély favours forward scéttering. At threshold no such arguﬁent
can be applied. This is unfortunate since the variation of J introduces

a 30% uncertainty.

The transformation from c.m. to lab. momenta is most easily
achieved by.considering the relativistically invariant momentum transfer,
1,2 - ' 4\2 A\ - =\ 2
- - = - -l W -
-k = (k-&) | (k,_ L.,_\ | ( - ) (k‘_ L)

- L (2.3)

The energy loss is completely negllglble for low energy plons. As a result

we obtain a lab. amplltude
-Y.(“ k) = ’)‘{b +c(& &)+c‘k ,.-15 . (2.4)

The middle term co(ki -ki) can be retained as an energy dependent term in
the optical potential but its importance for pionic atoms is reaily small.,
In the (3,3) resonance region, though, it must necessarily be retalned.

We shall therefore consider the following identical on-shell amplltudes

PEGE) = Mtk

1) . ;
= b +clk - 5 ¢'3t | - (2:5)
where i;ik-ﬁz and
Vo= (1+'1) b o | |
6 — [N ° ! ‘ . (2.68)
s (-Bye . e

This particular choice of the parameters bé and cs is the one favoured
by experiment and corresponds to choosing the forward value of J for bé

and the backward value of J for 'cé.
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The multiple scattering theory that we shall deveiop is for-

mulated in co-ordinate space. Therefore, we introduce the co-ordinate space

5l

scattering amplitude defined as
AR N
V3 adew -y - vk
Y ) {,(%)k) ¢ . (2a1)

- = 1
-F (‘J) ) S
(2.1:3
Clearly, this definition assumes f,(k',k) to be known also for off energy
J ) .

shell scattering.

When the off-shell form of the pion-nucleon amplitude is
assumed to be given by thé k'.kK forms of the amplitude (2 5) we obtaln the

standard non-local Klssllnger amplltude
. . o .‘v - : ) _
'(:N\- (r" r) = 1 L‘ t C: V.V, } $(+Y) S(r) .

On the other hand, if we assume the off-shell behaviour to be given by the

(2.8)

&2 form of (2.5) we obtain the local interaction.which can be written in

many different ways

‘F(r-v.- ;%) =itk +ie, (v-»v‘,.) }&(.-_\.)}l,-\.)

_5_\,! ¢ D +lc N, }g(,-‘._) g(,._,) . (2.9)

The ‘second form turnslout:to be the most convenient one. ‘In the preseént

paper we shall only consider interactions of the form fNL and fL.

THE ‘OPTICAL POTENTIAL

We first observe that the pion-nucleon scattering lengths are
a good deal smaller than the distance between nucleons in the nuciéus. There-
fore, it is natural to attempt a microscopic description of the pion-nucleus
interactién based on the eleméntary pioﬁ—nucleon interaction. Our aim is to
write down a phenomenological equation for the pion wave function’cI? ().

3) and refer to the

For this purpose we shall use the approach of the Ericsons
Appendix for a derivation starting from the Schrddinger equation. The
nucleus will be considered as a collection of nucleons with a prescribed
density distribution and transitions between different nuclear states will be

neglected.
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The Schrdédinger equation for scatterlng by a single non-local

potential V(r,r') is given by
A+ FE =LA (LN (EF) o) (3.1)

It can be rewritten as an integral equation

‘{’(r-’)a "’k“‘) L Sdf 9 (/™ fo'e" \l(r,v')q’(r") ,  (3.2)

where X is the incoming plane wave and where the Green's function

g(r,r') is given by

e
9FF) = - . (3.3)

Introducing the co-ordinate space scattering amplitude f(E,f') instead of
the potential V(T,r') we write the solution as

T (5) = 9. + T8¢ q(5,) [de" F(&,") (7" .

(3.4)

Considering the limit of large T for the scattered wave we find that
£f(r,r') is related to the momentum space scattering amplitude f£(k,k')
through Eq. (2.7).

In the case of pion-nucleus interaction a hierarchy of
equations to determine ‘f (f') can be constructed in the following way. The
wave function (.P (r) at any point T is the sum of the incoming plane
wave CFk(f) and the scattering waves from all the nucleons. In analogy
with Eq. (3.4)

Gie) = 7‘B(F)+Sd‘r g(r)de 3(;.’-')81‘. .‘3(\- r.)r )cf(v,r) (3.5)

where ? (r ) is the nuclear density distribution and 1) (r r ) the ef-
fective ex01t1ng wave for nucleon no. J which is being 1ocated at rJ.

We remark that (r37,) will in general differ from the incoming plane
wave CP k(f‘) since the pion could have scattered an arbitrary number of
times before it finally hits nucleon no. j and leaves the nucleus without
further scatterings. When the range of the pion-nucleon interaction is
shorter than the nucleon-nucleon correlation length then the potentials

will not overlap and
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(A“-('L‘) ?(‘-‘3;5)\‘-_ =0 y ' (3.6)

:?3
i.e., the effective exciting wave is a free wave. Applying. the Operator‘

(l;4—k2) we obtain the Schrddinger equation for the pion

L)

(b)Y (F)=- 4% 543‘3. () S f (77 - 9(RiT) . oy
This is one gf ou% basic equations. o "

The full wave function ‘f (r) aiffers from ?(f;fj) only
through the scattered wavelet from the nucleon no. j. Assuming that the
addition of one scatterer will not appreciably“changé‘the interaction we
may as a first approximation put QP (f;fj)czﬂ?(f). Then for pointlike inter-

actions the Schrédinger equation (3.7) reduces to

(M) F(F) =-LpNE F )

(3.8)

where the potential v(r) depends on the specific form of the pion-nucleon
interaction f£(%,7'). For the non-local interaction (2.8) we obtain the

standard Kisslinger potential

| m = "%“’LH $() ~¢) Ve(mV }

(3.9)

NL
and for the local interaction (2.9) a local potential
- K T - - '
VB == L Bl paLebe@ T . (5.10)

aa
2)

These equations are often used in a phenomenological way , i.e., the para-

meters bé and ,cé are fitted to the experimental data.

In order to account for correlations we must proceed one step
further in the iteration and construct an integrai equation for c?‘(r;rj).
But CP (f;fj) is the sum of the incoming wave and the scattered waves from

2ll the nucleons except Jj itself. Thus

@R = _§) +
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Jde gt (14 6L7;,701 £ g57) § &6 f0 700 9lF%,5);

where P (f-;f'j,f'i) is now the effective exciting wave for nucleon no. i
knowing that nucleon no. j 1is being located at rj and nucleon no. i

itself at r. Furthermore, since we know that there is a nucleon at ri

we have restricted the locations of r, by introducing the correlation func-

tion G(fj,f'i) such that

(% %) = 9 (&) plF:) [14 6%, 7))

G(\',-m;\ = ~o0 , \‘?i“-'i\ >0 (3.12)

This general procedure can be continued by constructing an integral equation

for CF (E;f*i,f'j) etc., giving rise to a set of A coupled integral equations.

An improved set of approximate equations is now obtained by
breaking the iteration at the second Step, putting P (f‘;i‘j;f“i‘) ~ ?(E;Ei).
This means in particular that we are neglecting higher order correlations
in the nuclear density distribution. In this approximation the solution for
the pion wave function is obtained by solving Eq. (3.11) for ? (f;fj) and
substitutirig the result into Eq. (3.9). A better method is to subtract
Eq. (3.5) from Eq. (3.11) thus yielding a direct connection between ?(ﬁf-j)

and ‘f (r),

?(;;;}) =% +fd3\-,: (%) G({; ,ﬁ)fd&r“g,lr-,v-‘) S«fe'{(?'—ﬁ- JF-®) cp(?}' g).
(3.13)

We conclude that <P (f';z_*j) and EP (T) only differ through terms linear in

the correlation function G.

The basic theory is in our approximation given by Egs. (3.9)
and (3.13). In order to proceed further the interaction f(f-,i") has to
be specified. Furthermore, the actual form of the correlation correction
depends crucially on the value of ky y $ being the correlation length.

In a previous paper 11) we demonstrated that the above approach very hicely
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reproduced known results both at high and low energies. In the present
paper we concentrate on pion-nucleus sCattering:near threshold. The presently

fashionable non-local and 1bca1 potentials will be discussed separately.

CORRELATION FUNCTION

In the following we shall calculate corrections to the optical
potential arising from nucleon-nucleon correlations. For this purpose it
will be convenient to have a simple model for the correlation function. In

general it has to satisfy the normalization condition -
(de o(5) Gle,w) =-1
dfbg "’. 1) 'v) T ¢ (4.1)

However, for ease of calculation we shall assume that the correlation function
G(f1,f2) depends only on the relative distance, although it is not necessary

to restrict ourselves to this special class, and shall put

o _ 7 ) ast
G(“,,&) = (*r("‘r“z) = - ¢ vE (4.2)
For a general G(f) we define the correlation length i through
S F o
Sd‘" ; G'(“‘) = = 9& g . (4.3)

When the correlation length can be considered much smaller than
all other lengths in the problem it is sufficient to calculate the correlation

effects in the short range limit, ; -0, where
T T
- A ¢ =vf2 A
Te) = MG < (4.8)

"_'I- L - ‘-t/z SL
A

NTOESERE AR R ION (45

These two relations will be of great help in the actual calculations.

The numerical value for the correlation length § will be
taken from a comparison with the Fermi gas model where G¢(r) has a simple
analytic form. From our definition (4.3), it follows that ; kF==3/4,
where kp 1is the Fermi momentum. With a radius parameter ro==1.1 fm for
the nucleus we find a correlation length ; =0.55 fm. This value does not

account for dynamical correlations but is quite sufficient for our purposes.



NON-LOCAT, INTERACTION -

The non-local interaction has been studied in great detail
by the Ericsons 3). Our approach is almost identical to theirs and for the
non-local interaction we recover their results. The Schrddinger equation in

the absence of nucleon-nucleon correlations is given by Eq. (3.9).

‘In this Séction we shall use the pointlike form of the non-

local interacétion
| 'S'm_ o =1 ‘%\ + <) 6\,\"%} §) s(v) (5.1)

and shall only retain those terms which survive for short range correlations,
i.e., in the limit } —»0. In a later section we shall discuss in more
detail corrections due to the finite range of both correlation function and
interaction. Substituting the interaction £ of Eq. (5.1) into the

NL
Schrdodinger equation (3.7) gives

(b‘rk")q/(ﬂ =-'1‘K{B°' 3(“)*(‘)“) _c;§(g(;)E(',(;)) } ) (5.2)

with
® <y = @ (F3F)
"l‘_ (,) ¢ (v ! (5.3)
- - - - g
G AR TGN g :
. : 3 (5.4)

Here, “’(1) and E(1) differ from f and V? only through terms linear
in the correlation function. The precise connection, in our approximation,
is given by Eq. (3.13) and in the short range correlation limit we obtain

=)

G v o \ b -
@) -m = (o 3@ G IR ) - B e, }ge,%)

0 (5.5)

]

and

Ea-vH) =-fd}“s pE G 7)Y 1) E(';?;)j,, 19, 965%)
=- 735 < £(¥) £ (%) ~

(5.6)
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These two relations complete the solution since we can now express the
Schrddinger equation in the pion wave function ? (f‘) alone.

3) the multiple scat-

In the original paper by the Ericsons
tering equations are used in a different way. In Eq. (5.2) they replace
LI(f') by ‘P(”(f) and get an equation for ‘l’ 1)(1'*). The connection
between Y 1)(5) and E%1 (¥) 1is obtained directly from Eq. (3.1). For
pionic atoms they argue that this equation should reproduce the eigenvalues -

correctly. The method that is used in the present paper shows that no

additional assumption is necessary (cf., the Varenna Lectures of Ericson 3)).
This fact is of great importance in connection with the local potential.
Finally we express the result in the more conventional
variables
|
() =- Yx b, ¢F
3: ) kb, §(F) J (5.7a)
' \ =
d\(\-‘) == Yx <, g(r) )
(5.7b)
which give
1 - - - —
() = 3 TE) - v )
1-ia® (5.8)

Comparing with Eq. (3.9) we conclude that the introduction of short range
correlations, renormalizes the P wave part of the interaction but leaves
the S wave part unchanged. This phenomehon is identical to the Lorentz-

Lorenz effect for light scattering in dense media.

The numerical solution of equations of the type (5.8) is
achieved by a transformation that makes the potential local 4). With the

transformation

-"‘{
Yir) = (A+4,®) ()

(5.9)

£4(%) = 4 %) [(1- L 1)) (5.10)
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we get
(B+48) i) = vy () P (¥) (5.11)

and a local potential

{qlv)-&kdlr)ﬂ b+ (r)--u (V J(®) } (5.12)

"l"ﬁ( v) Y 142

We fepeat that this result neglects effects due to the finite range of cor-
relation function and interaction. For finite § it is, therefore, only
meaningful when k§ << 1, a condition which is well satisfied for mesic

atoms.

LOCAL INTERACTION

Iﬁ the absence of correlations the local interaction gives a
Schrddinger equation (3.10) with a local potential, hence the name. When
correlations are taken into account the potential becomes more complicated.

Moreover, non-local terms are generated.

As in the previous case we consider the pointlike form of
the interaction. Of the many possible representations, the most convenient
onme is:

: L L S—n- = =
LU~ ={ +tC £ +zC b } "-r.) T-V’-) .

'F‘_(" 1A j) "o ° L% % 3 ) (6.1)

In analogy with the previous case we retain only those terms which survive

in the short range correlation limit. The limitations mentioned in connection

with the non-local interaction will thus apply also here. Substituting the

interaction fL of Eq. (6.1) into the Schrddinger equation (3.7) gives

(5., w) Y _-wx{(k'\tqk)«e( '?-\uc D, (g(v‘)cf(rr))}ﬁ
1 : (6.2)
={3®)+ha®)+Laale) § ¢(F;¥)

+L 4 (Be @(FiF) ) e+ (T20) (9, 7(\-.?))'“‘\, .

When correlations are neglected ?(f‘;fj) ::‘P(f) and the last two terms on
the right-hand side vanish. In the presence of correlations they give rise
to gradient dependent terms. For the further calculation it is again convenient

to introduce
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Py )} = -~ ‘
o= v ("5“\]— <
(V) ' 3 ) (6.4)
W - = KX W
(%) E[bf‘f(“i“-\]o. - =% Vs ’ |
. Vile R ), - (6.5)
where the last equality is valid for non-overlapping potentials
relations between these quantities and Y (7)
the non-local case

The
are different from those in
By a straightforward application of Eq

W {\-) qf(f) de 5(?,?‘){(" +C, k‘) g( )?( ‘1\ Ce,¥;)

(BAB)WedMam

(6.6)
_c°b\, (g(r\?(wr,r)@(r )) };j=;'
_%'&(?) "fm("-)

)
"’(.f)

(%) { “:’&(“:)S(FS) f’F'. ':-) 5 c’(‘.‘)—) )

(6.7)

+h by, (gte,-m( v)v (7)) } =r
L@ E 6

_-id,(r) v )

b‘, "J")l AY (®) ﬂ)(')(e) - % .Y-E(.“(F)

‘Sd'g(t‘,“){“‘*('&)g( ) @lFS¥, )b'(r(r,r)

\ (6.8)
+L ¢ by, (8(\-‘,)?(":")6( (r(v,‘j,n}v_.-r'

W _ - -

4O « 1T (2w ETr) :

Here we have kept all terms which survive in the short range correlation
limit, i.e., also those proportional to kz.

The only real difficulty is encountered in Eq
the most singular term has the form

. (6.2) where

§é 5(F7) by (b, 67,7) = Sdzr' L5, 9] Lo, 6 ]

(6.9)

(6.3)
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In view of Eq. (4 5) it would give a delta function contribution. However,
it must be 1nterpreted as being zero. This is most easily seen by calculating
GQT+k )(F(f T, )l _' which has to be zero for non-overlapping potentials.

Here, excatly the same term is encountered and the limit § -0 must be

. taken in such a way that it vanishes. This can, e.g., be done by introducing

a finite hard core in the correlation function G(f), which is then taken

to zero at the end of the calculation. -

"We can now write down a Schrddinger equation in T(f) alone.

After some re-arrangements we find

(b*)., )‘I’ (\-) —{ q,(v) (\-—-LJ..(.-))* i L(v) 1-1 A&l } qa (,.)

(6.10)
v(aJr)E ®)) +4 L) V- E”re)
and (
w0 = ¢ (+) , (6.11)
LA
- N - o', -
E () = — vY o) . (6.12)
‘—g&(')

The presence of non-local terms is rather obvious but it must be admitted
that the résultfléoks less appealing than in the non-local case. We also
conclude that in contrast to the non-local interaction also the local part
of the potential is renormalized since "" 1)( )#‘P(r) In this sense the
local interaction is more singular than the non-local one. The non-local
potential of Eq. (6.10) can also be transformed into an equivalent local

potential but the transformation is rather complicated.

LOCAL, OR NON-LOCAL POTENTTIATL?

In the paper by Scheck and Wilkin 12)

the short range cor-
relation corrections to the optical potential are obtained by a completely
different method. They use a theorem by Bég and others to deduce contribu-
tions quadratic in the density from. the linear ones. This theorem concerns
the scattering by two non-overlapping separable potentials and asserts that
the double scattering term depends in a very particular Way on the on-shell
Valﬁes of the elementary scattering amplitudes. This result is then applied

to the second order Born approximation of the potentials (3.9) and (3.10),
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to deduce the presence of certain counterterms quadratic in the density,
Since the two potentials were derived from the same on-shell amplitude they
should be identical when quadratic terms are included. Since we are using
a completely different approach it is of some interest to check whether

their theorem is satisfied by our potentials.

The localized form of the non-local interaction is given by
Eq. (5.12) and a trivial expansion yields the second order terms. The non-
local potential of Eg. (6.10) has to be localized before a comparison can

be done. Keeping only quadratic terms we have
bk Tle) =g (-2©)) +1 a@ L-120)) + L(t-a®) AJJH'S ¥7)
-1 % (at) TED) + L L) DEEF) (‘7")
which, in the quadratic approximation can be written as
(bi’h-‘) ?(;) - { 1_(7-)(‘\~J~l\7')) +k‘¢lf)(1‘%*‘7)) +Ji(,-AlF))DJ\IF)} T(F)
- = (7.2)
- ‘VL v/ (a}(ﬁ) V?(\"")) }
This non-local potential is transformed into an esquivalent local potential by

a transformation similar to that in Eq. (5.8) and still keeping only linear

and quadratic terms we have

. . 1
V() = §6) (1~+®) + i ) (V- %-U?))*' 4 (-2t0) Dal¥) "'-,{:‘ BAF) . (7.5

The expansion of VﬁL(f) to second order gives exactly the same result.
Thus we have shown that our localized potentials satisfy the theorem of
Scheck and Wilkin. This is somewhat astonishing since our local potential
becomes non-local when correlations are included in contrast to their local
potential which remains local. In practical applications cubic terms in the
density are not very important and the two potentials therefore give very

similar numerical results.

In fact we can prove a more general result. From the theorem
of Bég one expects any two pion-nucleon amplitudes that agree on the mass
shell to give the same optical potential to second order in the density. We

consider the interaction

L9 -2 LG (.0
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which is still derived from the same on-shell amplitude. In this case

Y o) _ F (=) ;
H){MF) ) | (7.5)
=t ) I ()
E'® - vV (e , (
1-La® 7.6)
3
and the Schrddinger equation becomes
(btee) Tle) =1 (1—}-.1(.-)) takA@®+EAdaDT %)
(7.7)

_ta- M\“a.m)}wuv)t- )+ L)V B %) .

We observe that due to Egs. (7.5) and (7.6) this equation has terms which are
quadratic in both A and the density. An independent check is therefore
non-trivial. Neverthéless, after making the necessary transformations on the
wave function we obtain a localized potential which is identical to that in

Eq. (7.3). The theorem is thus satisfied.

We have thus proved that for short range correlations both
the local and the non-local potentials, or any linear combination thereof,
give the same localized optical potential to second order in the density.
The true wave functions, however, may be vastly different for different

off-shell behaviours.

OFF-SHELL FORM FACTORS AND FINITE RANGE CORRECTIONS

The scattering amplitudes fL(f",f') and fNL(f',E) that
have been used up to now were obtained under the assumption that the on-
shell scattering amplitude could be used also for off-shell scattering. In
general additional form factors will be present. As an illustration consider

the generalized non-local scattering amplitude

l = oot .
LG )= {nrellol b epl- SR8 b -

At threshold there is no need to renormalize the on-shell scattering lengths.

In co-ordinate space the scattering amplitude has a finite spatial extension

NGO Lbl+4c, 9,7 }4.,( AR (5.2)
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with
- /s
e . (8,3)

() (e vR)®

Unfortunately, we do not know what the realistic value of 9 might be.
A comparison with the static model suggests ¢ «~0.8 fm in the (313)

resonance region.

Our multiple scattering theory is valid for these more
general interactions as well. When inserting fNL(r ,r) of Eq. (8 2) into

the Schrddinger equatlon (3 7) we obtain
(b)) B ey =-¥xju! Sd, glrak, (52 ¥ e) (
-ty 8.4)
N V fdr g(r)L (r-r)F (r)}

with
w 3 A N ,
Y (%) = Sdr'{,‘(r-r) ?(?'.f) | (8.5)
BV = I8 A (5-7) T, ¢(+7) :
(8.6)

For a general hg one thus encounters an integro-differential equation.
Only for 6 -0, i.e., for pointlike interactions does it reduce to a
differential equation. Since ¢ might be comparable to the correlation
length or the nuclear surface thickness it is important to account for the

smearing. In view of the smooth behaviour of the wave function we propose

(b)) E(®) = (%) VYWiey - T (30 EW(:)) | (8.7)
where smeared quantities are defined as

(%) = Ir 4\.«(:--") A®') (5.8)

Apart from the smearing there is no change in our new Schrddinger equation.

Next we express g‘1(1)(5) and E(1)(f) in terms of g?(f).
This is done through Eq. (2.16) which, however, first, must be smeared in

accordance with Eqs. (8.5) and (8.6). We obtain
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a)-Te) = I, gtr) Gte,m) I ey - B, Yo (%)
' (8.9)

where the twice smeared Green's function is defined as

Ve (7F) = Y‘(sr*\ ‘e"v i(('.'"ﬁ) AGIF'F‘V) 3 (ﬁ)F"’) ¢ (8.10)

Following our previous approximation scheme the smearing in 9?”(5) has been
-neglected. We only consider the long wave length limit and expand in powers
of the correlation length. In leading order we obtain with our Gaussian
correlation function (4.2)

. LR ' 1)) - N, g |
Y)-Fle) = n & {3;“"4' (&) -3y VAGEIE o § Y (8.11)

where
oy A ”‘lt
ny = (1+ i")

(8.12)

A similar calculation for E(”(z—*) gives

a7 86) = [de 3ty 662 I e )-Q Ea e T RR)
ey -(y ' - 2~ i
- -‘3—")3&(\‘) E () +-'.§ $ v(a® vom) . (8.13)

The solutions for LP(” and E(1) are obtained by putting *(1)zf and
E 1 z-ﬁg in the finite range corrections. Numerically, they are anyway
too small to be confirmed experimentally. We conclude that the parameter

V) plays an essential r8le. In particular

s > g ) no Lorentz-Lorenz effect
e ~ 3 ) v weak Lorentz-Lorenz effect
o & § ) full Lorentz-Lorenz effect

i.e., the strength of the Lorentz-Lorenz effect is a measure of the ratio
(spatial extension of elementary interaction)/(nucleon-nucleon correlation
1ength) rather than a measure of the importance of short range -correlations

alone.
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_ Similar calculatlons can be done for the 1oca1 interaction .
but we no longer ‘expect the two locallzed potentials to agree to second
order in the density. This is most easily seen in the limit i << @ where
v;cﬂo. In this case, the two Schrddinger equations reduce.to those of
Eqs (3.9) and (3.12) which differ in the second order terms.

ACKNOWLEDGEMENTS

It is a pleasure to thank Drs. T.E.O. Ericson and M.P. Locher
for discussions and Dr. F. Scheck for the hospitality of the Schweizerisches

Institut fir Nuclearforschung where the main part of the paper was written.®



- 19 -

APPENDIZX

Our basic equations can also be derived from the non-relati-
vistic Schrddinger equation. Such a derivation is more“instructive than
the intuitive set of equations used in the main text since all approximations

can be clearly stated.

We write the Hamiltonian as

= K4\ Ho = &+ Ko - Vo v
H’ e‘|’U ) ) o | T ). ‘=) © ) . (A.1)
where K 1is the kinetic energy of the pion, Hf' the target Hamiltonian
and vy the interaction between the pion and nucleon no.' i. The Schrédinger
equation is then equivalent to the'folloWihg set of equations (see any text-

book on scattering theory)

A
. o= + — Lt Y, ) (a.2)

e -"‘{-\.6— wep .

\

A
- Z A% ) (8.3)
E-#tre 20

Lo = v, t y I ) | (.4)

E-B.tle
where EP i‘:is the wave fdnctioﬁ fof the cbmpléte p%on-nucleus system and

?i the initial state with energy E=Ek+ GO. The relation to our approach
in the main text is obvious. ‘Prl corresponds to the effective exciting wave
for nucleon no.n and differs from the cpmplete wave <pi on}y through the
outgoing wavelet from nucleon no.n itself. The main differencé is that

Egs. (A.2) and (A.3) together give the complete solution.

We limit ourselves to coherent interactions where the nucleus
remains in its initial state I?(;> and our aim'is to derive a Schrddinger

equation in the pion variables above. The pion wave function is defined as

T(F)=4F0,\§;> o o (4.5)
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The approximation which makes our exact equations tractable
is the "closure approximation" whereby the many-particle Green's function is

replaced by the free particle Green's function for the pion

|
' ~

N ————————

E-Hoti & £, -kt'e

(A.6)
In the case of Eq. (A.4) this approximation is known as the impulse approxi-
mation and assures that free and bound nucleons scatter in the same way.

3)

For pions the closure approximation is expected to be valid at all-energies .

In the impulse approximation the amplitude tn " depends only

on the co-ordinates of nucleon no. n. Denoting the nucleon co-ordinates

collectively by § we have in the no-recoil limit, M>,\ ’
[
V) E TS = TG ) 4 It 125 (a.7)
4=t

and, furthermore

(@\*\R>=-% f—(i")i‘) ‘ (a.8)

We are now ready to write down our equations. From Eq. (A.2)
we project out the pion wave function P (¥) and obtain in the closure and

no-recoil approximations

() =< lo:> + S«fv‘g)(s,:-')Sf\;. 9(&;) fde V""“'s/;""-’i) ¢(7'5%5) (4.9)

and A
$EN (R T =28y, Eg,g(ik‘?s)]%> (4.10)

The Green's function g(f,f') and the co-ordinate space scattering ampli-

tude f(Tr',T) are defined as before
ot le-¢'|

e = e-v) ) (a.11)

S R I
fon s e lddEc T R@mn T,
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The second of our equations is obtained from Eq. (A.B) in the closure and
no-recoil approximation by multiplying with %;: XK z£_£i>' Projecting out

the coherent part we obtain after division with ‘? (fi)

PFERY = Gl o> (4.13)

+s£sﬁ(:,-,»)§a3f,- 3 [146 (5,5 Sdﬂ"{ (#-F " %) P75 7 %)

and

kA M _
$:)907) Le 6, %) l#5 7, 75) =680, | E':, Z, $Eow) 8 i:"“'ﬁ\t)@. 14)
u*-u

with G(fi,fj) chosen to0 be the nuclear two-particle correlation function.

Equations (A.9) and (A.13%) do not exhaust the information
available from the wave functions q/ nt Multiplying Eq. (A.3) by

A B - -
7 2 S5+ §(3-F)
M s
mz| =) .

~w*~&
we obtain an equation similar to Eq. (A.14) but which expresses <? (f;fi,Ej)
in terms of 1’(f;fi,fj,fk). This procedure can be continued until we get
q)(f;fj.],,”fjA_,,) expressed in terms of ?(f;fj«,,-..,fjA>' A knowledge
of 1>(r;rj1,,,,rjA) is equivalent to knowing the complete soiutioun to
the scattering problem. Thus we have shown how the multiple scattering
equations written down in the main text can be derived from the Schrddinger

equation. The oaly necessary approximatioa was that of closure.

The assumption which is now being made is that q?(i;fi,fj)
has a weaker dynamical dependence on fi than on fj so that we can replace
it by its average value

p(e % . v ) ~ -, v

(r(r)rc.) J) <P( ? J) . (A.15)
Our system of equations is now closed, at least for point interactions, and
we write the result as

BR) T(e) = - 9 S g fa f 1 155 957

) (a.16)
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Qi v =Hert i v'q [%#) (& o (%) (v, %) fdg\"'-f(é'-ej,?'-r-j) P+,
' (A.17)

Finally, we remark that Eq. (A.16) can be obtained from Eq. (A.2) without

the closure approximation.
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