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INTRODUCTION

Multi-Regge asymptotic behaviour of multi-particle amplitudes is
now so familiar that it may be thought that there can be little basic
theory left to develop. However, until recently the only systematic
model-independant development of the formalism has been based on the use
of group-theoretic S0(2,1) expansionsl_s). Although this approach defines
the limits in which Regge behaviour will appear and the general form it
will take, it does not go very far beyond this. Analyticity and unitarity
can only be exploited to a limited extent. This is a particularly serious
problem when inclusive reactions are considered since the discontinuity
in a missing mass variable of a multi-particle amplitude must be taken to
obtain a multi-Regge representation of the inclusive cross—section.

Since multi-particle angular momentum theory may well be the most direct
way to calculate asymptotic behaviour even in a complete theory it is
clearly desirable to understand the implications of analyticity and uni-

tarity.

Also it seems inevitable that the constraints imposed by analyticity
and unitarity on a multi-Regge representation of a multi-particle ampli-
tude will play a significant role in the future analysis of both inclu-
sive and exclusive experimental data on multi-particle processes. In
fact the lack of analytic structure in the multi-Regge representation
given by the group theory approach is often used as justification for the
use of the dual resonance model for multi-Regge phenomenology in situa-
tions where the duality properties of the model are not necessarily ex-

ploited6’7).

A major purpose of the present paper is to show that the Sommerfeld-
Watsone'li) (S-W) approach to multi-Regge theory provides an alternative
to the group—theoretic approach. The S-W approach has the obvious virtue
that it is a straightforward generalization of the two-body Regge theory
with which most people are familiar. It also has many other advantages
over the group-theoretic approach and we can list some of the most impor-

tant as follows:

i) t-channel unitarity (the t-channel being the resonance channel for
a Regge pole) can be taken into account completely in the sense that the

full multi-particle equations can be continued in the complex angular
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momentum plane ) and all the anticipated constraints of unitarity in

this

a)
b)

c)

channel can be derived. We can

prove factorization of Regge pole residues

show that Regge poles must be accompanied by cuts for which dis-
continuity formulae can be derived!3®~!'%) ., The discontinuities being
given in terms of the Froissart-Gribov amplitudes that appear in the
Sommerfeld-Watson transform.

define Reggeon scattering amplitudes as continuations to complex
helicity of t-channel helicity amplitudes, as well as deriving the

unitarity equations they satisfy.

We should perhaps also mention that t-channel unitarity requires that the

same Regge trajectories which appear in two-body amplitudes also appear

in multi-particle amplitudes and therefore (using the Mueller theoremle))

in inclusive cross—sections. This point is sometimes questioned.

ii)

Regge and helicity-pole limits

a)

b)
c)

iii)

a)

b)

We can give a complete description of asymptotic behaviour in all

8’17’18). This includes

the helicity structure of vertex functions. This goes beyond their
factorization properties and is a consequence of the analytic struc-

19) are vital for con-

ture of amplitudes. The Steinmann relations
structing multi-particle Froissart-Gribov continuations and as a
result a structure for vertex functions consistent with these rela-
tions, emerges naturally from the Sommerfeld-Watson representation.
the phases of asymptotic contributions, that is signature factors

we emphasize that the structure of vertex functions in helicity-pole

as well as Regge pole limits comes out straightforwardly.
The analytic structure of the amplitude is built in and we can

take discontinuities easily so that the Mueller discontinuity for-—
mulal®) can be used to study the Regge behaviour of inclusive cross-
sections

analytically continue to particle poles on a Regge trajectory in a
well-defined way. The helicity structure of the Sommerfeld-Watson

transform is particularly important here.

We shall not give a complete discussion of all the above points in

this paper. In particular we shall say very little about Regge cuts
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since we have already discussed them extensively in previous paperslu’ls).

Also we restrict attention almost entirely to the five-point function.
This means that our discussion of helicity-pole limits, the factorization
of discontinuities and Reggeon amplitudes, does not have the immediate
physical relevance to inclusive cross-sections that is obtained by dis-
cussing higher amplitudes. Our reason for considering only the five-
point function is that it is the simplest multi-particle amplitude. By
presenting together the various aspects of multi-Regge theory for this
simple case we hope to give an understanding of how more complicated am-

plitudes can be treated.

In fact many of the problems we consider are perhaps over-simplified
by considering the five-point function. We give a systematic treatment
of signature phase factors by relating boundary-values onto cuts in in-
variant variables to boundary-values for the angular variables of the
Sommerfeld-Watson transform. This also enables discontinuities to be
taken in a straightforward way. However, the five-point function has the
special simplification that the gram-determinant constraints do not
appear as they do for the higher multi-particle amplitudes. These con-
straints make any discussion of boundary-values onto cuts considerably
more complicated1°’2°’2l). Nevertheless, we anticipate that when the

19) are used in conjunction with the Bergman-Oka-Weil

Steinmann relations
theorem?222) to break the amplitude up into components with only certain
combinations of simultaneous singularities, a simple discussion of
boundary-values and signature factors will still be possible for the
higher amplitudes. We expect that the breaking up of amplitudes in this
way will be important for dealing with the problem of multiple helicity

9-11)

sums , which again only arises when considering amplitudes with at

least six external particles.

Factorization is also particularly simple in the five-point function

in that no problems arise with phase factors2?s21)

Again we anticipate
that the factorization of generalized "helicity amplitudes" that we show
follows from the factorization of four-particle amplitudes, will be the
basic building block for proving the factorization of higher amplitudes
and their discontinuities. The factorization of these helicity ampli-
tudes (by helicity amplitudes we mean amplitudes where all helicity

labels are linked to some angular momentum, which may be that of a Reggeon)
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is derived from the unitarity relations these amplitudes satisfy. Since
the asymptotic behaviour in all Regge or helicity-pole limits is expres-—
sible in terms of what we call helicity amplitudes we can immediately

show what factorization holds in any such limit. We hope that the gene-
ralization of our results to higher amplitudes will lead to the rules for

23) as well as

the factorization of discontinuities recently given by Weis

providing a check on the non-factorization of the eight-particle ampli-

tude in a helicity-pole limit recently suggested by Moen and Zakrzewskizu).
The study of Reggeon scattering amplitudes now has the motivation

that these amplitudes can be directly measured in inclusive experiment825’26).

An important point is that these amplitudes are defined through helicity-

pole limits of inclusive cross-sections (or the corresponding multi-

particle amplitude) which pick out a definite "t-channel" helicity for

the Reggeon. We regard this as the correct definition of a Reggeon am-

plitude and distinguish it from that defined in terms of a Regge limit of

a multi-particle amplitude. The amplitudes we consider reduce to physi-

cal t-channel helicity amplitudes when the trajectory goes through a

physical integer point. They also satisfy generalized unitarity relations.

The t-channel discontinuity of a Reggeon amplitude can be expressed as a

normal unitarity phase-space integral plus an extra term which is an

integral over real unphysical values of the momentum transfer variables.

This extra term can be regarded as resulting from the "structure" of a

Reggeon.

We show that we can also define "s-channel' Reggeon amplitudes which
will satisfy a unitarity relation in the s—channel. The s- and t-channel
Reggeon amplitudes are related through a generalization of the usual
crossing relation for helicity amplitudes. This crossing relation can be
expressed either in the form of a complex helicity integral or as an in-
finite sum over helicities. We find that there are some subtleties in
the way the s— and t-channel pole structures of a Reggeon amplitude are
related through the crossing transformation. That t-channel Reggeon
amplitudes do not satisfy simple s-channel unitarity relations has im-
portant implications for the Reggeon amplitudes measured in inclusive
experiments. We discuss why this is also important in comparing the
s-channel derivation of cut discontinuities by Abarbanel27,28) with the

t-channel derivation13’15).
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We should note the overlap of part of the work presented in Sections
2 and 4 with the papers by Weis!®) and by Abarbanel and Schwimmer!!) .
Weis has given representations of multi-particle amplitudes in terms of
invariant variables which are based on Sommerfeld-Watson representations.
The advantage of using representations in terms of invariants is that
kinematic singularity problems do not appear and the representations can
be compared with models in a straightforward way. In particular the
connection with the dual resonance model is particularly striking and
perhaps indicates the advantage of using the Sommerfeld-Watson represen-—
tation instead of the dual resonance model for phenomenological analyses
that are really testing only the Regge and analytic (and not the dual)
properties of an amplitude. We prefer to use the full S-W representation
because this involves partial-wave amplitudes whose unitarity and facto-
rization properties we know and for which we have Regge cut discontinuity
formulae. We can also explicity see the factorization into physical he-
licity amplitudes at particle poles. One topic which we discuss only

10)

briefly but which is extensively discussed by Weis is nonsense wrong

signature fixed-poles.

In section 2 we go over the development of the Sommerfeld-Watson
transform given in Ref. 9 with the difference that we discuss signature
more completely. We give a complete discussion of the representation of
the two Reggeon/particle vertex that emerges from the Sommerfeld-Watson
representation, both as a helicity integral and in the form of an asymp-

totic series in the Toller angle.

In section 3 we give a general method of defining Froissart—Gribov
continuations which should be applicable to amplitudes with the general
Landau singularity structure suggested by perturbation theory. This
section is perhaps rather technical and certainly is not essential for
understanding the other sections of the paper in which we assume the
existence of Froissart-Gribov continuations. The method we give starts
from a general integral representation of the full amplitude in terms of
angular variables, which is derived from the Bergman-Oka-Weil theorem.
Since this representation breaks the amplitude up into terms with only
right- or left-hand cuts in the various invariant variables the concept
of a signatured multi-particle amplitude1°) can be introduced using this

representation and it is clear that this analytic definition of signature



-6 -

coincides with the group-theoretic definition®). As in Ref. 9 we are not
able to rigorously define Froissart—-Gribov amplitudes simultaneously
satisfying the necessary Carlson condition in two angular momenta. How-
ever, we discuss why we expect that the asymptotic behaviour of the ampli-
tude can be discussed using the full S-W transform. 1In section 4, we

show that the asymptotic behaviour of the amplitude in all Regge and
helicity-pole limits can then be expressed in terms of Froissart-Gribov
amplitudes evaluated at points that can be rigorously reached by Carlson
continuation. Therefore, the exact unitarity relations for these ampli-
tudes can be used to prove factorization of the full amplitude and its

discontinuities in the various asymptotic limits.

Section 5 is devoted to Reggeon amplitudes and contains the deriva-
tion of the unitarity equation for these amplitudes as well as the cros-

sing relation for s- and t-channel amplitudes.

SIGNATURE IN THE SOMMERFELD-WATSON TRANSFORM

One of the obvious advantages that the S-W transform has over the
group-theoretic approach to two-body Regge theory is the simple way in
which the phase of a Regge pole contribution is simply given by the sig-
nature factor. This emerges naturally from the S-W transform because of
the direct way that the S-W transform reflects the cut-plane analyticity
of the amplitude. Since the transform is obtained from the t-channel
partial-wave expansion the integral representation for the amplitude
initially holds in a region where the amplitude is analytic and real (for
t below threshold). Provided that the representation converges it can
be continued away from this region and in particular can be used to study
Regge asymptotic limits which are taken in regions close to singularities
of the amplitude where, of course, the amplitude is no longer real. Since
the Froissart-Gribov amplitudes are real, it follows that (provided the
representation converges) the phase of the amplitude must be given by the
phase of the Legendre functions in the representation. To determine this
it is only necessary to determine how the limit has been taken with
respect to the cuts of the Legendre functions. That is boundary-values on
to the cuts of the full amplitude in the invariant variables have to be
re—interpréted as boundary-values in the angular variables in which the

cuts of the Legendre functions appear. This process is straightforward
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and familiar for four-particle amplitudes. However, we want to generalize
it to five-particle amplitudes. We know that in this case the phase of
Regge pole contributions is not quite so straightforwardzg). Nevertheless,
we shall show that a careful treatment of signature in the S-W transform

will give us the phase of the amplitude in a simple way.

To obtain the S-W representation of the five-point function we must
introduce the '"group theoretic'" or angular variables which are the ana-
logue of the t-channel centre-of-mass scattering angle for the four-
point function. We introduce the variables corresponding to the tree
diagramz’g) of Fig. 2.1. Before discussing the physical significance of
the angular variables we give the expressions which relate them to the
invariant variables. We use a slightly different notation to that used
in Ref. 9. We write t; = Q%, ty = Q% and denote all other invariants by

(P, - Ps)? = S15, etc., so that

{
¥
ook ototon) + (et F et

with S5 given by z1 > —-z1, S35 by t1 < to, z1 > 2z, and Sys by t; <> to,
zy > -z,. Also

)

=

Sia = 2w = 4 (4, £7) “coshy — 4y (£-4nd))? sinhy 2,

+% (_t.'(,tz_umz)))ig{nh’; 2, + ((t‘*‘bm‘)(‘tz‘l‘mz)))ix (2.2)

5 5
X (cosk's ® 2, - cosw ("z-“)i("z:)‘)

where sinh C = A% (t1, ta, m2)/2(t1t2)%. S>3, Si1u, Sy are given by
similar expressions to (2.2). The definition of z;, z, and cos w through
(2.1) and (2.2) is complicated. However, the physical significance of
these variables is simple, at least in the physical regions where t; and
t, are energy variables. In the physical region for the process

1+ 2>3+ 4+ 5, t1 is the total energy and t2 is a sub—energy variable
We can then write z; = cos 071 where 06; is the centre—-of-mass scattering

angle for the process P; + P, >~ Ps + Q2 and z» = cos 0, where 62 is the
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centre—of-mass scattering angle for the process Q1 — Ps > P3 + Py. w is
the Toller angle between the two scattering planes. Similarly z; and 2
are the cosines of scattering angles in the physical region for the pro-
cess where tp is the total energy and ti is a sub-energy variable. We

shall refer to channels where t1 and t, are positive as direct channels.

In channels where t; and t, are both momentum transfer variables and
are negative (for example the channel where 1+4->2+3+5) 2y, z and
cos W continue directly into the Bali, Chew and Pignotti variables!).

That is zj and z, become hyberbolic cosines of boost variables, while w
remains an angular variable. In a six-particle amplitude where particle

5 can effectively have negative mass it is possible to go to physical
regions where w becomes a boost variable and asymptotic limits in which
cos w - © can be considered. (These are helicity-pole limits, of course).
Note that real values of the invariants only corresponds to real values

of z;, z, and cos w, when either ti, ts > 4m? or t1, tz < 0 because of the
various square root branch-points in (2.1) and (2.2).

The partial-wave expansion of As in the physical regions where t)

.. . iw
and t, are positive is (u =e™ )

As‘ - Z Z u” Pé:l‘nl(z') Pﬂ"“‘(z,‘) az,l,_n('thfﬁ) (2.3)

DhotL:o Inlg¢ ph!ﬂ. 2

We have discussed the problems of the convergence of this expansion in
the presence of physical region singularities in Ref. 9. The simplest
way to remove this problem and to make all our discussions of signature,
etc., straightforward is to assume that we can analytically continue the
amplitude as a function of the internal mass®) to a point where there are
no physical region singularities. (The problem only arises for the con-
tribution of a small number of sub-energy threshold branch points which
we do not expect to be of significance in determining the asymptotic be-
haviour of the amplitude so that we shall not discuss it in detail here.)

We then have from (2.1) and (2.2) that for t, and t,; above threshold we

can keep away from cuts in S;s, S2s, S3s and Sus by keeping |z1|, |zz| <
We can then reach the cuts in S;u, S13, S23, S2u by taking cos w large.

It then follows that the boundary-value for cos w is simply determined
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by the boundary-values onto the cuts in S14, S13, S23, S2u. As a result
we have the simple prescription that the take "physical" (i.e. + ig)
limits with respect to these cuts (for zi and z; real) we take cos w
cos w * ie for cos w - *o, Having reached the cuts in S;4, etc., we can
then approach the cuts in S1s, S25, S35, Sus simply by taking

|z1], |z2] = © so that physical limits with respect to these cuts cor-

respond to z1,2 > 21,2 + i€ as z1,2 > +oo,

For t1, ty < O the Froissart-Gribov coefficients which appear in
the S-W transform will be real analytic and so the above boundary-values
for the angular variables should be sufficient to determine the phase of
Regge pole contributions to the asymptotic behaviour. As we shall show,

this is essentially the case.

The S-W transform of the sum over n in (2.3) is straightforwarde’g)

\
el
3

a_ u (2.4)

A=

1)
i
et

Sf‘—“——— [a26) + a2 ][+ 7 ()]
siaTin

(2.5)

where the 2 labels refer to continuations made from n 2 0, and T3 is a

signature in n. The next step is to note®) that
-n -y 7,
AT + 7 2 4’€% 3
8.2(n) = (1-27) *(1-27)" % at(n)
<
<

are regular at z;,z = *1 and have only "dynamic" (as opposed to kine-

matic) singularities in z; and z,. Therefore, if we make an expansion

AT3 . . . . .
% and a<3 in terms of Jacobi polynomials we can anticipate that

inserting the correct signature factors in the S-W transform of this

expansion will correctly reflect the phase of 523 and 523 at large z; and

n/2

AT
of a

z,. For |le, |22| < [ it is clear that we can absorb 1 -z}
a - zp"/?

for large u is linearly related to the invariants, it is this quantity

into (iu) and that since it is (1 - zi )2 (1 - z%)2 u which
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which should be given *ie boundary values in the physical limit. (We

shall see later that only §§3(n) contributes to u + ®, while only ﬁza(n)

contributes to u > 0.)

Therefore, we rewrite the helicity transform (2.5) as

N oo O IS EI CA DA GO

AL SinTin
T

(n)):( (‘_,,:)h(, z'&) u} + Ty ((I =% l 2,) M)ﬂ]

VV\.J
o'\ v’
A

Now we write
o0

ot ’ ("‘i "“\) (n, n)
A 'Cs v ? \
Cn = E;A Eié P ( ) P (zé) )
k=0 Iyn=o (- (la-n ﬂ Q 2.7

(n n)(z) is a Jacobi polynomlal of order (£ - n). [Note that

L
since PEE ng(z)CL-z >n/2 2 (z), (2.7) can be inserted into (2.4) to

regain (2.3). ] If we now assume that we can SW transform (2.7) we obtain

ATy - (n, ﬂ) ~ C“:"'D
a *(n) —:_-F Z; oy dls [P(i—n) 2)+% @’—n) (zb]

2 Smﬂ@-QSMﬁQ

where P

(2.8)
LR )R] oF (2t

where T1 and T, are signatures w.r.t. (2; - n) and (%2 - n) respectively.
If (2.8) together with the analogous expression for 323(n) is inserted
into (2.6) then the full SW transform of As is obtained. Since the phy-
sical limit as |Zl’2| > © is 21 2 > 212 + i€ as z1,2 > *o it is clear
that if aE (21,%2,,n) is real, then the phases of asymptotic contributions

to As are determined.

To explicitly determine the asymptotic behaviour from the SW trans-

form it is, of course, necessary to use a generalization of the Mandelstam-
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Sommerfeld-Watson transform. For completeness we give the necessary
30)

equations , that is
o7y -—l.*nT" - ", . ' N
G P{gns) T Q= - G (@)
SintT (Lem) Weos Tl (24n+t) (2.9)
g 1 9 !v.,ﬂ) A .
together with
( Py (2) = (’ } (2 (=) )
-1 2) Q ‘/ - ~ g
e "“‘ﬁ'c)1r (;_,_) ~ 2 m= i"'(n--ij ZL (2.10)
-1 - - ‘
2= (-0 k)

If (2.9) is inserted into (2.8) the term involving O (z) will not con-
tribute to the Regge asymptotic behaviour since if a generallzed Mandel-
stam symmetry31) holds at half-integer £ the appropriate f£-contour can

be moved arbitarily far to the right (giving a continually decreasing
asymptotic behaviour) without encounting Regge poles or cuts. Therefore,
to obtain the Regge asymptotic behaviour from (2.8) we can replace

P;n(z)/sinlﬁ (2-n) by

2 2
25 P (n-0) M {2-wa1) z (2.11)

T3 cosm s F D) (ke wal)

. .. 2 . . .
Since the coefficient of z~ in (2.11) is real analytic we can absorb all
the factors apart from f(n-%) to define a new partial-wave coefficient

bE(Ql,Qz,n) and so obtain from (2.6) and (2.8)

Y) N x
A #oo{ Z: \&Jn (—zz_ M) *t& (A-'¢- LA)’ } (“0'9|510.2- b>(9!,0¢l,ﬂ>
4

Sin Y n

l)

2y}

< 1 (n-0) P (net) 20w F ()™ AR h(z 12)

AEETR
¢ ]
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Since Ty and T, are signatures in (£; - n) and (&2 - n) we have that
T, = T1T3 and Tp = T»T3 where T; and T, are signatures in 2; and %,, res-
pectively. Therefore, the contribution to (2.12) of Regge poles o and

0, with signatures T; and T2 is

Z, = N
1Z2a oo &in TN

A$ ~ g dn s;('zn'zz“\)“*’z?: (z,z,u\)ﬁ] bf (ety,dy 7"‘) r (“'db r’(”‘"“z)
C?

. Aa-
o L 23 v 23] | 2 e (22) “] (2.13)

SESRY

We should note that the complicated singularity structure of five-particle
amplitudes makes the whole problem of the region of convergence of the

SW transform much more difficult than for the four-particle amplitude.

We have partly discussed this problem in Ref. 9 and we shall comment
briefly on it at various points in this paper. The presence of complex
singularities in the amplitude means that the representation may not con-
verge at all near the high-energy physical regions where we want to take
asymptotic Regge limits. If this is the case then there are reasons we
can give for ingnoring it as a potential problem. The simplest way out
would be to say that we are only considering the contributions of normal
threshold and pole singularities (to the integral representation of the
next section) which are real, since we believe these are all that contri-
bute to the multi-Regge asymptotic behaviour. Since this may not be true
we can instead say that we extract the Regge asymptotic behaviour in some
region where the representation converges and continue this to the re-
levant physical region. To justify this, we can appeal to the correspond-
ing SO(2.1) expansion. In general the convergence of this expansion is
complementary to that of the SW transform?). However, the net result
will be the same as ignoring the divergence of the S-W transform. As we
are emphasizing in this paper the S-W expansion contains the most infor-
mation about the amplitude and so it is obviously simplest to use this

expansion directly.

We could obviously obtain a general expression for the two Reggeon/

particle vertex contributing to the asymptotic behaviour (2.13) by simply

2|2

extracting Izllallz and dividing through by the two-particle/Reggeon
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vertices Bal(tl) and Buz(tZ)' However, we shall obtain a more familiar
form for this vertex if we close the contour C_ to the left in the n-plane
to obtain an asymptotic expansion as u > «. There will be contributions
from poles in IXn - 01) and /Xn - 02) and also potentially from poles at
negative integers arising from the sin mn factor. However, because we

are deriving an asymptotic expansion for u > ® we must also pull the C_
contour in {> - <} to the left. [Since the spinless five-particle ampli-
tude we are considering is a function of cos w = 2(u + 1/u) the amplitude
is symmetric under u +>1/u and we could obviously obtain the same asymp-
totic expansion by considering u > 0. This would simply involve moving

both Cg and C_ to the right instead of the to the 1eft.]

The singularities in the left-half n-plane that might contribute are
the poles at integer n arising from sin wn together with nonsense wrong
signature poles of bE(jl,jz,n) at jp - n=-1, =2, ... j2 - n=-1, -2, ...
However, the signature factors in (2.13) will prevent the nonsense poles
from contributing. The contributions from integer n will simply cancel

those from the > integral if

P N-a) 7 (N-e3) BF (a0, N) = [ (-N=et)) T (N-ety) bf(d,,dz,N)(z.m

for N a positive integer. This property is reminiscent of the Mandelstam
symmetry in % referred to earlier. We shall discuss why we expect this
property to hold in the next section. If we assume that it does then we
only need consider the contributions of the poles of fM(n - 01) and

f(n - a2) to the asymptotic expansion of (2.13) as u > «. It is important
to note that all the contributions from integer n are cancelled precisely
because the contour C_ is not quite the mirror reflection of the C, con-

tour in that the pole at n = 0 lies to the right of both contours,

At (a1 - n) 0 we must have T; = T3T1 = +1 and so T3 = T; and the

pole at (a1 - n) 0 gives

b@:‘ " ,1')(“1) odgs¥ u) " (d.- ‘l‘«l} [(’z lzz“)d‘ +h (7.210\)0‘ .] [ ("zz)dx—d:!- Z.'Cg(zn)drd‘]
Sin W o,

(2.15)
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= ]z!'d‘l'zg )(A‘ b~ r'{d ‘!1\[ -l T-“ ptﬂ'(d" ') !f’?.'z]
5"\ \Td-."“ (2.16)

The contributions of the other poles of (n - o31) and (n - a2) can be

extracted in the same way and it can be checked that we can write

d ol \, BE ~ ~ :
/‘\5 e %z 72V (6, 1,0) 3 ()3, (£2)

(2.17)
thaﬁvoo

where

(A T
V%~  qulV, " T a2 Vf' *

lul5e0 ! (2.18)

and (assuming that for large u the asymptotic series converges and we can

neglect the background integrals in n)

ap, v"'f.'tg: [t [T, o, 2][5 F(A-ota-N) b @ty -1 Ul ] (2.19)

Ein 1 (- NS (M-13 L

with Vzl 2 given by the same expression with 1 and 2 interchanged.

Since n = S,3/ “oou it is clear that (2.19) is equivalent

S15Sus |U| 1T -
to the familiar expressions for Vi! 2 and V,' 2 as power series in
n 18,29,32) (2.18) together with (2.19), provides a convenient way

of expressing vI1T2 for several reasons. Firstly it is clear that for
large u the asymptotic behaviour (2.13) can be expressed entirely in
terms of the Froissart-Gribov amplitudes aE(al,az,ul;N,tl,tz) s
ai(al,az,aZ;M,tl,tz) N,M =0,1,2, ... and it is these '"helicity amplitu-
dés" which we shall be able to define uniquely in terms of the Carlson
condition in the next section. As a result we can prove factorization of
these amplitudes from unitarity directly and so factorize out B;B, from
the right-hand side of (2.19). It also follows from (2.19) that VT1T2

has poles at 01 = integer (02 nmot equal to an integer) while V21T2 has
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poles at o, = integer (a1 not equal to an integer). Therefore vilo2

contributes to the particle amplitudes obtained by taking a; to an inte-
ger and VEITz does not. This structure has proved most important in the
recent discussion of Pomeron decoupling theorems33537) because of its
relation to the singularity structure of As as we discuss further in

section 4.

It is also interesting to compare the nonsense decoupling (which
takes place at integer a1 and 02) using both (2.13) and (2.19). This
decoupling follows naturally from the (2.13) because of the singularity
structure in the n-plane shown in Fig. 2.2. It is clear from this
figure that at integer a; a finite number of the poles of /Moy - n) pinch
with the poles at n = integer from sin T™n to give a pole with a finite
number of helicity amplitudes in the residue. The > integral gives the
helicity amplitudes fromn = 0 ... a1, while the < integral gives the
amplitudes from n = -03 .. -1. This decoupling, that is the reduction of
the vertex to a polynomial in cos w in the residue of the pole at
oy = integer, is not evident from (2.19) as it stands. Since (2.19) must
give the helicity amplitudes with both positive and negative n the pole
at a; = M which appears to occur in all terms in the sum over N because
of the sin m (a; - N) factor must only occur for N £ 2M. 1Imn fact
bI(al,az,al—N) will have the necessary nonsense zeros essentially because

of the factor f{f+n+1) in the denominator of (2.11).

FROISSART-GRIBOV CONTINUATION OF THE
FIVE-PARTICLE AMPLITUDE

In this section we give a method for defining Froissart-Gribov ampli-
tudes which is potentially applicable to amplitudes with the most general
singularity structure of perturbation theory. The method is a generali-
zation of that given in Ref. 9 and essentially parallels the usual method
for defining the Froissart-Gribov continuation of the four-particle
amplitude. We first write an integral representation for the amplitude
in terms of the angular variables z;, z; and u. From (2.2) it is clear
that for fixed t;, t», As will have kinematic singularities at z;, zp = *1.

However, continuation around any of these branch-points simply results in

Ag (cosw) —» A5 (-cos w) (3.1)
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and so if we first define amplitudes As which have definite signature with

respect to cos W by
+
A5 = AS (cosw) + /4\5 (—cos w) (3.2)

and then write

. - ! -
A; = Ay, As = C““('""»*)%('“Z:)iAs (3.3)
ﬁ? will be non-singular at z;, z» = *1. We can therefore obtain an inte-
gral representation for these amplitudes by applying the Bergman-Oka-
Weil (BOW) theoremg’zz) to them regarded as functions of z;, z2, u with
t; and t, fixed. This theorem is a generalization of Cauchy's theorem
for a function of one complex variable. We can write the resulting re-

presentation in the form

.

=‘Z gdu’dz,’dz; 1':. (ﬁax gk) PAL?“ (ﬂ:z:,z;’t“—t;z) (3.4)

tejek

A

AN

where

v R v v .
X = (qfu ’ q‘z,, %z,) Y=Ei,3,k G-

The q functions are a generalization of the usual dispersion relation de-

nominator. They are functions of 2z, z}, z2, 25, u and u' and satisfy

(w-v) o+ (2l-2) 4, +(ziza) o= 1 veidn 0

They must also have the property that as functions of u, z;, z2 they are
analytic in the domain of analyticity of K% when z!{, z} and u! 1lie on
any combination of cuts and poles of K?. The sums over i,j,k in (3.4)
are over the intersections of the cuts and poles of K? (taken three at a
time). Sijk is a generalized spectral function and can be expressed in
terms of A% evaluated in all possible combinations of boundary-values

onto the cuts involved.
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The specific construction of the gq-functionms is not really essential
for the following method and the existence of such functions is not in
doubt. Nevertheless, it is interesting to discuss their <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>