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Abstract

Nuclear level density calculations are performed
using a model of fermions interacting via the pairing
force, and a realistic single particle potential. The
pairing interaction is treated within the BCS appro-
ximation with different pairing strength values. The
single particle potentials are derived in the frame-
work of an energy-density formalism which describes
self-consistently the ground states of spherical nu-
clei. These calculations are extended to statically
deformed nuclei, whose estimated level densities in-
clude rotational band contributions. The theoretical
results are compared with various experimental data.
In addition, the level densities for several nuclei
far from stability are compared with the predictions
of a back-shifted Fermi gas model. Such a comparison
emphasizes the possible danger of extrapolating to
unknown nuclei classical level density formulae whose
parameter values are tailored for known nuclei.

1. Introduction

The nuclear level density is a quantity of fun-
damental importance in many calculations and analyses
of experimental data. A lot of studies have been devo-
ted to its evaluation since Bethe's pioneering work!)
(see e.g. refs.2™™) for reviews).

By far, the so-called partition function method
is the most widely used technique for calculating le-
vel densities, particularly in view of its ability to
provide closed analytical formulae at the expense of
some approximations. The prototype of those expres-
sions is the famous Bethe formula for the level densi-
ty of a gas of noninteracting fermions confined to the
nuclear volume, and having equally spaced energy le-
velsl). In an attempt to improve or even achieve the
agreement with experimental data, various modifica-
tions to the original formulation have been proposed,
in particular to allow for shell, deformation and
pairing effects. However, these models still contain
more or less drastic approximations in order to retain
the analytical nature of the level density formulation.
In particular, simple continuous single particle level
densities are adopted. In such models, parameter ad-
justments overcome the inability of matching known
data, mainly the s-neutron resonance spacings at an
excitation energy close to the neutron separation
energy, which are known for a wide variety of nuclei.
However, such a procedure does not at all ensure the
correct energy dependence of the predicted level den-
sities. This situation essentially results from the
improper treatment of the energy dependence of the
shell and pairing corrections.

There have been several attempts to cure these
deficiencies, namely on unds of (i) approximations
of the BCS pairing model® 7), (ii) a kind of macros-
copic-microscopic approach (e.g. refs.8:%), and refe-
rences therein), or (iii) more phenomenolo%ical models,
like the "constant-temperature" (e.g. ref.3) for refe-
rences) or "back-shifted" (e.g. ref.l0) for referen-
ces) level density formulae. All these methods are
able to lead to analytical level density formulae con-
taining a certain number of free parameters whose va-
lues, determined by comparison with experimental data,
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show in particular strong shell, deformation and pai-
ring effects.

In such conditions, the question of the reliabi-
lity of these methods naturally arises when dealing
with nucleil very far from the stability line (some-
times even close to the drip lines), the level densi-
ties of which enter as crucial quantities in many
problems. Some procedures have been proposed for eva-
luating the various level density parameters relevant
to these nuclei. They essentially rely on known data
complemented with the shell and pairing corrections
predicted by some mass formulae (e.g. refs.lls12)),
It is our opinion that such procedures are rather un-
secure, namely in view of the poor quality of the
adopted mass formulae. At least, they should have to
be confronted with more quantitative studies before
being as routinely used as they are very often today.

In fact, many numerical studies already perfor-
med in the framework of the partition function method
avoid many of the approximations allowed for in order
to obtain analytical level density expressions. These
calculations have the advantage of retaining the dis-
crete nature of the single particle spectra associa-
ted to realistic average potentials. In addition, they
can take more properly pairing effects into account.
These computations have achieved some success in re-
producing experimental data. However, they are not
free from difficulties and uncertainties.

One aim of this work is to examine if some of
those difficulties can be removed by a different choi-
ce of the single particle potentials. The adopted ones
are derived in the framework of an energy-density
formalism constrained by the requirement of reprodu-
cing nuclear binding energies at best (see ref.20),
and references therein). In addition, the self-consis-
tent nature of the calculated potentials (at least for
spherical nuclei in their ground state), and the abi-
1lity of the method to predict ground-state properties
quite satisfactorily allow us to put some confidence
in results concerning nuclei far away from the stabi-
lity line. Another aim of this paper is to examine
the extent to which the pairing treatment can affect
the level density predictions, particularly for highly
unstable nuclei, and to compare these predictions with
those of currently used level density formulae.

Secs. 2 and 3 briefly summarize the basic formu-
lation adopted for the level density calculations, and
some properties of the selected single particle and
pairing models. Sec. 4 presents a comparison between
our level density predictions and experimental data,
as well as some results for nuclei very far from the
stability line. These latter predictions are confron-
ted with those derived from an analytical level densi-
ty formula. Some brief conclusions are drawn in Sec. 5.

2. Basic formulation of the level density model

In order to define the notations, and to clearly
specify the assumptions made at various stages of the
model calculations, we briefly summarize the adopted
general formalism (see e.g. refs.3:7213719) for more
details).
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2.1 Spherically symmetric systems

2.1.1 General formalism. We first consider
spherically symmetric nuclel with N neutrons, Z pro-
tons, projection M of the total angular momentum, and
energy E, corresponding to an excitation energy
EX=E-Ey, Eg being the ground state energy (other first
integrals of motion have also been considered, like
the isospin; see e.g. ref.?!)). The neutron and pro-
ton systems are always assumed to be in thermodynami-
cal equilibrium, and any residual quasineutron-quasi-
proton interaction??) is neglected.

If each nucleon system is described in terms of
the usual BCS hamiltonian (see e.g. ref.??)), its
thermodynamical behavior can be described by the lo-
garl*%trlngx Q of its grand partition function, given
by!3716)

Q= -85(e ~AE) + I, I In{l+exp(-8(E +tym )}

—BEE‘GKK’XKXK’ 4 £
where B, Aza/B, and y=u/g are the Lagrange multipliers
which fix the energy, the particle number, and the
angular momentum projection, respectively. The para-
meter g is also the reciproqual of the thermodynamical
temperature t, while A is identified with the chemical
potential. Note that the neutron and proton systems
have the same g and y values. On the other hand, m
is the spin projection (defined positive) of the
k-th doubly degenerate single particle level with
energy e (assumed to be temperature independent),

E = {(e -2+ 2}1/2 (2)

K K K

being the corresponding quasiparticle energy. In this
expression, A  is the gap parameter, solution of the
gap equation

. (3)
where

X = g§x1 Athh{B(EK+£YH&)/2}/(4EK) Y
In Egs. (1) and (3), G- is the pairing matrix ele-
ment which measures the strength of the pairing inter-
action between the levels k and «”. Note that Egs.
(1)-(4) explicitly exclude blocking effects, which
will always be neglected in nuclear excited states.

At an excitation energy EX, a spherical nucleus
with N neutrons and Z protons has a density p(EX,N,Z,
M) of intrinsic levels with angular momentum M. That
density is given by the inverse Laplace transform of
the total grand partition function @ = On*Qp, where
On(p) refers to the neutron (proton) system only, and
is expressed by Eq. (1). This transform leads to a
Darwin-Fowler integral which can be evaluated with a
satisfactory approximation by means of the saddle-
point technique, except in particular for certain low
excitation energies (see e.g. ref .za)r). This approxi-
mation leads to the classical result )

p(EX,M) = exp(S)/{(2m)*D}1/2 | (5)
where S = Sp+S, is the total entropy of the system,
while D is the 4 x 4 determinant of the second deriva-
tives of @ with respect to the Lagrange multipliers
involved in the problem. For use in Eq. (5), S and D
have to be evaluated at the saddle point defined by

N = 30/30n; Z = 3@/3ap; M = 30/du; EX = 30/38 - Eg,(6)

where on(p) is the o multiplier for the neutron (pro-

T) Here and in the following, N and Z are not mentio-
ned explicitly anymore in the list of arguments of the
level density

ton) system defined in connection with Eq. (1). The
explicit expressions for S and D, as well as for the
quantities appearing in Eg. (6) can be found in e.g.
vefs, 13-16),

On the other hand, the BCS ground-state energy
Ep in Eq. (6) can be easily evaluated from the t = 0
limit of Eq. (3), E = 3Q/38, and Eq. (6) for N and Z.
Blocking is traditionally neglected in the calculation
of Ey for use in level density estimates, the quasi-
particle approximation (Sec. 2.1.7) being adopted ins-
tead when dealing with odd-N and/or odd-Z nuclei. This
approximation can, however, be rather easily avoided.
The explicit form of the corresponding ground-state
equations can be found in e.g. ref.24) (see also Sec.
2.1.8).

The solution of the system of Egs. (3) and (6)
provides the values of all the required unknowns for
the calculation of Eq.(5) for given N, Z, E* and M on-
ce the pairing matrix and single particle spectrum are
known for the neutron and proton systems. In practice,
and especially in the framework of realistic single
particle spectra and pairing models, the solution of
this problem is far from being trivial, and prohibi-
tively time consuming when dealing with many nuclei
and/or large excitation energy ranges. This is the
reason why various levels of approximation have been
considered. Before describing them briefly (Secs.
2.1.4-6), let us, however, make some remarks.

2.1.2 Nuclear phase transition. An interesting
property of the above mentioned system of equations is
that all the A 's go to zero at some critical tempera-
ture t., for edch nucleon system. This temperature
only depends upon the angular momentum, and can in
fact be zero for high enough values of this momentum.
This ]groperfty has been discussed in some detail in e.g.
ref.15), At such a critical point, a second order pha-
se transition from the paired to the unpaired regime
occurs, and translates into a discontinuity of the
determinant D (Eq.(5)). Such a sharp phase transition
is probably spurious in nuclear systems, which are ex-
pected to exhibit large fluctuations, namely in the
AK's, and may be avoided by the use of average quanti-
tles rather than the most probable values derived from
the solution of the above mentioned system of equa-
tions!®), No attempt will be made in the following to
introduce such a correction.

2.1.3 Continuum corrections. Various of the equa-
tions of Sec. 2.1 involve sumations over the eigen-
states of a single particle potential. Normally, no
divergent behavior of those summations is expected
when using infinite potentials, at least if the matrix
elements G . exhibit the well-known feature of decrea-
sing with Iricreasing energies e .. In practice, ho-
wever, the required single partie¢fe basis may be too
large to handle, so that some truncation procedure is
normally applied.

In finite potentials, somewhat different summation
problems arise. In particular, at high enough tempera-
tures and/or for nuclei far away from the stability
line, single particle states farther away from the Fer—
mi energy than the binding energy of the last nucleon
may contribute significantly. This problem can be hand-
led?%) by replacing in the >0 region the various sum-
mations by integrals over a continuum single particle
state density related to the derivatives of scattering
phases with respect to e26), As these derivatives may
be positive or negative, some cancellation of the bound
state contribution by continuum scattering states is
possible. This cancellation is in fact complete in the
limit of infinite temperatures.

In most calculations, however, the phase shift
analysis is avoided by a discretization of the conti-
nuum into "quasibound" states. The smallness of the
GKK,'S and AK's for these levels provides a natural
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cut-off in the equations which contain summations in-
volving pairing quantities. However, several criti-
cisms can be made about this technique?%:27), which
cannot be fully trusted in particular when a substan-
tial fraction of the nucleons can be excited in the
>0 region.

2.1.4 The spin- and parity-dependent level
densitles. The analysis of experimental
data often requires the prediction of the density of
levels of a %iven spin I and/or parity m. As sugges-
ted by Bethe'!), p(EX,I) can be evaluated from

D(E*al) =

On the other hand, the statistical methods described
up to now are normally not able to provide very relia-
ble parity distributions. An approximate method has
been proposed?) which,in fact, shows that both pari-
ties become rapidly almost equally probable with in-
creasing excitation energies. On such grounds, it is
usually assumed that

o (EX,M) - p(EX,M+1). N

p(EX,I,m) = p(E%,I)/2 (8)

for any excitation energy.
From p(EX,I), various other quantities of inte-
rest can be derived, like the observable level density

pobscz*) = ip(Ex,I) , (9)

the state density (sometimes also referred to as the
total level density)

W(E®) = £(21+1) p(EX,I) , (10)
I
or the s-neutron resonance spacing
D= fn{p(EX,IO—1/2)+p(E*,Io+1/2)}’1 , (11)

where f~1 is the probability of having resonances of
the required parity (f_=2 in the approximation of Eq.
(8)), and Iy is the ta{r*get spin (only the second den-
sity in Eq. (11) is relevant if I(=0).

2.1.5 The spin-independent pairing approximation

In most level density calculations based on the parti-
tion function method and on the BCS approximation, M
is generally not included from the start as a first
integral of motion. This reduces to three the number
of Lagrange multipliers, and the problem can be simply
reformulated by putting y=0 in the general equations.
In such conditions, the pairing correlation becomes
independent of the angular momentum, as are in parti-
cular torn,p (Sec. 2.1.2). In this approximation, the
equivalent of Eq. (5) gives the state density

w(EX) = exp(S)/{(2m)3D}1/2 | (12)
The level density p(EX,M) is then obtained from this
equation by assuming!) that the nucleus spin projec-
tions on the quantization axis have a gaussian distri-
bution with an average value of zero, and a mean squa-
re deviationl!3~1%)
2 =

o Im 2sechZ(BEK/Z) ,

1

3 Im (13)
o being classically referred to as the spin cut-off
parameter. In such conditions,

p(EX,M) = w(E¥)exp(-M2/202)/(2102)1/2 | (11)

which, through the use of Eq. (7), leads to the well-
known expression

p(EX,I) = w(EX) (2I+1)exp{-I(I+1)/202}/{2(2m)1/2 43},

(15)

The validity of the spin cut-off approximation
has been discussed in several places (see e.g. refs.
15,28)), In brief, such an approximation appears to
be the poorest at rather low temperatures and high
angular momenta. These are just the conditions in
which the angular momentum plays a key role in the
pairing properties. This question is very briefly
reexamined in Sec. 4.3.

2,1.6 The constant-G approximation. In many cal-
culations based upon the BCS approximation, it is ge-
nerally assumed that the pairing matrix elements of
greatest relevance (i.e. those involving single par-—
ticle levels in the vicinity of the Fermi surface)
are equal to some constant G, referred to in the fol-
lowing as the pairing strength constant. The level
density calculations then greatly simplify, as the
system of Egqs. (3) is replaced by the single gap equa-
tion

2/G = %

Tgst) Etgh{s(EK"‘gYmK)/Z}/(ZEK) .

(16)
When used in conjunction with infinite single
particle potentials, Eq. (16) is, however, diverging.
In order to avoid this, and to obtain results in
agreement with experiment, the constant-G approxima-
tion thus requires some suitable truncation of the
shell model space, and a renormalization of G. The
most usual truncation procedures involve the conside-
ration of a suitable energy range, or of a given num-
ber of single particle levels around the Fermi surface.

The values of the pairing strength constants can
then be evaluated on grounds of "experimental" odd-
even mass differences P, .. The extraction of such
quantities from known datd is, however, far from being
trivial, as the contamination by parasitical (e.g.
shell or deformation) effects is not easy to avoid.
Among the various existin% prescriptions for evalua-
ting Ph,p (see e.g. ref.2%)), the one proposed by
Beiner agpears able to minimize these contamination
effects??). The derived P, , values (which are some-
times approximated by smooth values close to 12a-1/ 2
A being the mass nurber) then serve to calculate G, P
through a condensation energy computation3?). ’

2.1.7 The quasiparticle approximation (QPA).
The condensation energy method allows the evaluation
of G, p with due consideration of blocking effects,
but is numerically less attractive than a commonly
used approximation which neglects blocking, and relies
on the identification

P = B = {(eg-0)2+82}1/2 (17)
for each nucleon system, e, being the energy of the
last occupied single particle level. This equation,
used in conjunction with the t=0 limit of the particle
number equation (6), can provide the G value through
the t=0 limit of Eq. (16). The validity and limita-
tions of this approximate treatment (referred to as
QPA) have been discussed in several places in the
literature (see e.g. ref.24)).

The QPA applied to an ensemble of nuclei with
known Pn, leads to G , values which do not exhibit
strong déViations from’a smooth trend. This gives some
support to a commonly used approximation of pairing

strength constants varying smoothly with the particle
number.,

In the spirit of the QPA, the state densities of
nuclei with odd-N and/or odd-Z are very often evalua-
ted from (see e.g. ref.l7?))

mee<E*)=woe<E*—E1n>=meO(E*-Elp)=woo(E*-E ), (18)

ln—Elp
where the first and second subscripts e(o) refer to
evt?n(odd) neutron and proton numbers, respectively,
while Eln,p is given by Eq. (17).
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2.1.8 Contribution of vibrational states. The
various level density expressions given up to now
uniquely refer to intrinsic states. The inclusion of
collective vibrational modes in level density models
for s?herical nuclei has been considered in e.g.
ref.31), These considerations may also be extended to
deformed nuclei (Sec. 2.2). However, the contribution
of vibrational states is neglected in all the calcu-
lations to be reported below, and will be studied
elsewhere.

2.2 Extension of the level density model to stati-
cally deformed nucleil

2.2.1 General formalism. In deformed nuclei,
the occurence of collective rotational motion leads
to an increase of the nuclear level densities’»>17519,
31), Assuming axial symmetry, and the existence of a
rotational band on top of each intrinsic state with
quantum number K (component of I along the symmetry
axis), the level density p(E*X,I) can be evaluated from

1 +1
D(Ex,I) =3 I
K=-1

pintr(E*—Erot(K,I),K) , (19

where the intrinsic level density pinty can be evalua-
ted as described in Sec. 2.1, K and Q. (projection of
thg smglt? particle angular momentum on the symmetry
axis) having to replace M and m _, respectively. In
Eq. (19), the rotational energy
B 2
Erot(K’I) = QJL{I(I+1)-K } (20)
can be evaluated if the moment of inertia J, associa-
ted to the collective rotation about an axis perpendi-

cular to the symmetry axis is known. An energy depen-
dent J, can be computed from (ref.32), Eq. (4.128))

Shuwg
24
P

2 sh
g, = gMuR2<1+§a)(N{1—g<§K§9>}+Z{1-g< ), (21)

where M, is the atomic mass unit, R the mean nuclear
radius, § a deformation parameter (defined as in
rgf.32)), huwg=41A-1/3, bn,p the spin-independent pai-
ring correlation functions™ (Sec. 2.1.5), and

g0 = In{x+(14x2) 1/ 2Hx2(14x2)}-1/2,  (22)
We have verified that Eq. (21) is able to predict

ground state J) values which are in general within 20%
of the experimental ones.

The validity of the approximations leading to Eq.
(19) has been discussed in e.g. ref.3l). It is namely
concluded that the separation of the rotational and
intrinsic degrees of freedom remains valid up to tem-
peratures of the order of &hwp. At higher temperatu-
res, the expression (see e.g. ref.17))

op (BX,D) = (2I+1)pintr(Ex,K=I+%)/(202) (23)

is expected to provide a more realistic estimate of
the level densities, pintr being evaluated from e.g.
Eq. (14). A closely connected question concerns the
energy dependence of the nuclear deformation. In most
level density calculations performed up to now, the
ground state deformation is adopted at all energies.
The Yalldity of such an approximation remains to be
examined in detail. The question of the departure from
axial symmetry, and of the vibrational contribution
(Sec. 2.1.8) may also be of interest (e.g. ref.3!)),

2.2.2 Pairing strengths for deformed nuclei.
The evaluation of the palring matrix for deformed nu-
clel requires a substantial amount of computer time,
so that the constant-G approximation (Sec. 2.1.6) is
particularly useful in these cases. The possibility of

some dependence of the pairing strength upon defor-
mation has been raised several times. However, as dis-
cussed in e.g. ref.33), the situation is still far
from being clear.

3. The adopted single particle model
‘and pairing strengths

The single particle properties (spectrum, defor-
mation) required for the level density calculations
are derived from an ener%;y-density formalism descri-
bed in detail elsewhere??), Let us simply emphasize
some points of special relevance or importance in the
level density context:

(i) the ground state single particle potentials for
spherical or quasi-spherical nuclei are derived in a
self-consistent way under the requirement of reprodu-
cing nuclear binding energies at best. Deformed poten-
tials are not fully self-consistent, and are obtained
by deforming self-consistent spherical ones;

(ii) the ability of the method to reproduce various
ground state properties quite satisfactorily, and its
self-consistent or "close to self-consistent" nature
allow us to put some confidence in extrapolations far
from the line of nuclear stability. In these regions,
the adopted model makes several predictions which
might have important consequences on the level density
estimates. In particular, the sequence of magic num-
bers and/or the degrees of magicity may depend upon
the distance from the stability line;

(iii) several sets of calculations have been perfor—
med with different choices of the pairing strengths.
In one case, the pairing strength constants are eva-
luated from the QPA and Beiner's prescription for
estimating Pn,p (Secs. 2.1.6,7). Such calculations
include a%l bdund single particle levels and suitably
chosen quasibound states up to 2hwg. Smooth Gn o va-
lues parametrized as

e = 2.25m%7; 6 = 2.00/2%7 (24)

n P
are proposed from these computations. In another case,
the same single particle levels are used to calculate
pairing matrices on grounds of a $-interaction model,
the single pairing parameter encountered in this case
being selected in order to fit P, p at best;

(iv) average pairing constants <G, > defined from the
pairing matrices show rather substahtial deviations
from the behavior (24) far from the stability 1line33).
In addition, strong deviations of the odd-even mass
differences from the empirical P, , « A"1/2 are also
encountered far from stability.

4, Some results

4,1 The s-neutron resonance spacings

These quantities are known for a wide variety of
nuclei at an excitation energy close to the neutron
separation energy. This large body of informations is
compared to predictions of the level spacing D (Eq.
11)) using the constant-G approximation (Sec. 2.1.6)
in conjunction with the spin-independent pairing ap-
proximation (Sec. 2.1.5). Fig. 1 presents such a com-
parison, the Gy p values being derived from the QPA
and Beiner's method for the extraction of P o, while
£ =2 is used in Eq. (11). All the displayed 180¢A<200
niclei are assumed to be deformed, and their level
densities, as well as those of the rare earths and
actinides, are evaluated from Egs. (19)-(22). The cal-
culational procedure adopted for constructing Fig. 1
is referred to as the standard prescription in the
following.

In absence of any fitting to level density data,
the standard calculations achieve an overall fair
agreement with experiment. This is especially the case
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Fig. 1 Comparison between theoretical D(TH) and experimental D(EXP) values of
the s-neutron resocnance spacings at an excitation energy equal to the neutron
separation energy. The experimental data are taken from several compilations3®~
41), while the calculations are done with the standard set of assumptions defi-
ned in the main text. The vertical bar for a given A represents the range of
D(TH)/D(EXP) values derived for several isobars and/or several experimental data.
For clarity, symbols x are used in place of very small vertical bars

in the A£70 region, in the vicinity of various magic
nucleon numbers (note in particular the very good
agreement at A=208), as well as in the rare earth and
actinide regions. However, some deviations and syste-
matic structures are also observed. In order to exa-
mine the extent to which these features may depend
upon some particular ingredients of the standard pres-
cription, some other sets of computations have been
performed. In particular,

(i) Ericson's?) prescription is used in order to eva-
luate £ (Eq. (11)). Except in some specific cases
(especillly with Ag50-60), the derived values at the
relevant excitation energies are very close to f =2
used in the standard case. Thus, the general patjéer*n
of Fig. 1 remains unchanged;

(ii) instead of the experimentally derived G , va-
lues, Eq. (24) is used. The corresponding levéE spa-
cings are globally the same as those of Fig. 1. Of
course, this is not surprising, as Eq. (24) represents
a smooth fit to the "experimental" G ,'s. However,
some slight and systematic differences are noticed in
certain mass regions, like in the 70gAg¢80 and 150gAg
190 ranges, where the standard results are somewhat
less satisfactory, while the reverse holds for the
actinides;

(iii) in order to analyse the sensitivity of the level
density results to the underlying single particle po-
tential models, D for spherical nuclei have also been
calculated using a Woods-Saxon potential tailored for
providing a high-quality fit to the single particle
s%ectra of the doubly closed shell nuclei from 160 to
208pp 3%), The corresponding D values agree remarka-
bly with those of Fig. 1. These latter results also
agree with, but are however systematically somewhat
lower than the D values calculated with a Woods-Saxon
potential whose parameters are evaluated on grounds
of a Thomas-Fermi approximationl?) (it is, however,
somewhat dangerous to assign these differences to the

adopted single particle spectra only, as several
other features of the two models are different). Or-
dinary Nilsson and folded Yukawa potentials have also
been used in certain level density calculations (see
e.g. ref.!’) for references and some comparison bet-
ween the various derived level densities);

(iv) a limited number (due to the required computer
time) of calculations have also been performed with
the $-interaction matrix mentioned previously, and
compared with the results of set (ii). The derived
densities are very similar (see also ref.18)),

Let us now briefly discuss some of the main dis-
crepancies between theory and experiment which show
up in Fig. 1.

4,1.1 The 70gAg85 range. Our calculated level
densities for those nuclei are too low by factors
~20-30, In a search for the origin of such a discre-
pancy, some computations have been performed with the
slightly deformed single particle potentials predic-
ted by the adopted energy density formalism. The full
contribution of the rotational bands helps reducing
the predicted D's by an average factor of the order
of 10. However, such an inclusion may not be totally
justified, as the temperatures at the excitation
energies of interest are not much smaller than &hwg
(Sec, 2,2). On the other hand, Eq. (23) leads to re-
sults which are very close to the spherical ones;

4.1.2 The 100gAg130 range. Deformation effects
have been proposed as a solution to this classical
guzzle in level density calculations (see e.g. refs.

7535%)), Our calculations indeed confirm that some of
those nuclei might have ground state deformations.
For example, 6~0:.15 is found for nuclei like !10pg
or 126Xe, If the full rotational contribution is ta-
ken into account, the corresponding D's are reduced
by ~10-100 in the EX<10 MeV range, for which t<
Shwg. However, some of the nuclei in the considered
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range (and in particular Sn) do not have significant
ground state deformations. In such cases, a reduction
of D might result from the existence of a significant
number of deformed intrinsic states at excitation
energies close to the neutron separation energy. Scme
calculations performed in the formalism of Sec. 3 do
not contradict this possibility, and we are planning
to investigate such a question in greater detail. Let
us finally note that a decrease of D by a factor ~100
can be achieved in the spherical case if, in that
mass region, the standard pairing strengths are redu-
ced by about 20%. However, there is no a priori rea-
son justifying such a reduction. It may also be of
interest to mention that this mass region is especial-
ly difficult to handle experimentally;

4,1.3 The 190gA£200 range. The formalism of Sec.
3 predicts slightly deformed nuclei in that region.
When the contribution of the rotational bands is ta-
ken into account, the corresponding level spacings
appear to be smaller than the experimental data. In
view of the uncertainties in the derived single parti-
cle potentials in that mass range, some calculations
have also been performed with a built-in spherical
symmetry. The corresponding D's essentially agree with
the previous results. As the condition t<<shwg is not
necessarily satisfied at the relevant excitation ener-
gies, use has also been made of Eq. (23). The resul-
ting D's are about 10 times larger than the experimen-
tal ones. Note that this is in contrast with the si-
tuation encountered in Sec. 4.1.1, where the spheri-
cal results are in close general agreement with those
of Eq. (23).

In summary, the predicted D's are very sensitive
to deformation and/or to the exact contribution of the
rotational bands in the mass regions of highest dis-
crepancy between theory and experiment. In order to
clarify the problem, a further detailed study appears
necessary, including in particular scme energy depen-
dence of the deformation, the contribution of vibra-
tional states, or even other residual interactions
(e.g. quadrupole pairing36)).

4.2 The energy dependence of the level densities

A much smaller amount of reliable experimental
data are available concerning the energy dependence
of the level densities than about the resonance spa-
cings at an excitation energy close to the neutron
separation energy.
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Fig. 2 Comparison between the observable level densi-
ties calculated from Eq. (9) on grounds of our stan-
dard set of assumptions (denoted RHO(OBS)(TH) in the
figure), and the corresponding values derived from ex-
periment37) (denoted RHO(OBS) (EXP)). The comparison is
performed for three excitation energies E

Such an energy dependence has been examined in
some detail for AgH0 nuclei3?), and some of these da-
ta at 3 excitation energies are compared in Fig. 2 to
our predictions based on the standard set of assump-
tions defined in Sec. 4.1. At EX=3 MeV, most of the
considered nuclei are still in the paired regime, the
reverse being true at EX=15 MeV. It appears that a
quite fair agreement with the rimental data is
achieved at all the considered E*, even if relative-
ly light nuclei are involved. The energy dependence
of the level densities thus appears to be quite sa-
tisfactorily predicted on grounds of our standard set
of assumptions. This energy dependence is also quite
similar to the one calculated with the é§-interaction
pairing matrix.

4.3 Validity of the spin cut-off approximation

Some computations of the observable level densi-
ties have also been performed without the aid of the
spin cut-off approximation (see Eq. (15)). However,
in view of the required computer time, only about 10
of the nuclei displayed in Fig. 2 have been conside-
red at E¥=3 MeV. The results obtained in such a way
are within a factor of about 2-3 of those obtained
in the standard calculations. Some additional compu-
tations performed in a more extended energy range and
for heavier nuclei confirm this result. It thus
appears likely that the spin cut-off approximation is
quite satisfactory in the energy and angular momentum
conditions of relevance in the construction of Fig.2,
as well as of Fig. 1. This question has also been
examined in detail by Déssing?®), particularly at
higher energies and angular momenta.

4.4 Level densities of nuclei far from stability

In order to examine the influence on the level
densities of variations in the characteristics of the
single particle spectra and pairing correlations when
going away from the stability line (Sec. 3), some
preliminary and exploratory calculations have been
performed for the N=60 and N=126 isotonic chains bet-
ween the neutron and proton drip lines. All these nu-
clei are assumed to be spherical.

The level densities predicted for some of these
nuclei with the é-interaction pairing matrix and with
the constant pairing strengths of Eq. (24) are compa-
red in Fig. 3 for several excitation energies. While
the two methods give rather similar results in the
vicinity of the stability line (note, however, some
shell effect structure around the Z=50 and 82 magic
numbers), they have a tendency to exhibit larger de-
viations further away from the stability line, the
level densities calculated with the pairing matrix
being higher than those resulting from the use of Eq.
(24), particularly for very neutron-rich species at
relatively high excitation energies. This trend has
not been studied in detail up to now. However, and at
least for N=60, it might result from the increasing
role of quasibound states in the above mentiocned con-
ditions. The pairing matrix elements involving such
levels being lower than those associated to bound sta-
tes, some reduction of the effective pairing strengths
may result, accompanied with a level density increase.
Of course, Eq. (24) cannot account for this effect.
In the more neutron deficient region, only protons
quasibound states can play a role in the considered
conditions, and the trend is less clear. This is pro-
bably due to the fact that the effective pairing
strength reduction associated to those levels is less
severe than for neutrons33). The N=126 case cannot be
totally accounted for in such a way.

The use of pairing matrices is thus recommended
when dealing with nuclei far from the stability line.
Of course, in view of the uncertainties which may af-
fect the quasibound level approach (Sec. 2.1.3), it
would be desirable to perform some phase shift analy-
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Fig. 3 Corpparisgn between the state densities w(EX) (Eq. (12)) evaluated on grounds of the
§-interaction pairing matrix (denoted w(E*)(matrix)), and those derived from the G values given

by Eq. (24) (denoted w(EX)(const G)).

This comparison is performed for two isotonic chains

(N=60 in part A, and N=126 in part B), and for several excitation energies whose values (in MeV)
label the curves (SN symbolizes the neutron separation energy)
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Fig. 4 Comparison between the observable level densities calculated from Eq. (9) (denoted
pobs (this work)), and those derived from a back-shifted Fermi gas modell2) (denoted pgpg(BS)).
The values popg(this work) are evaluated either with the $§-interaction pairing matrix (curves

labelled M), or on grounds of the G values given by Eq. (24).

The comparison is performed for

the chains N=60 (part A) and N=126 (part B), as well as for several energies whose values (in
MeV) are indicated in the figure (SN symbolizes the neutron separation energy)

sis before drawing firm conclusions.

4.5 Comparison with other level density models

Fig. 4 compares the level density results used
in the construction of Fig. 3 to the predictions of a
back-shifted Fermi gas modell2?) (referred to as BSFG
in the following). It namely appears that, in the
N=126 case, the two models agree fairly well in the
explored energy range (3gE%¢15 MeV) close to the sta-
bility line (let us remind that the BSFG model is
fitted to experimental data in that region). When mo-
ving away from the stability line, more and more pro-

nounced differences appear, their extent depending
upon the degree of neutron enrichment or deficiency,
as well as upon excitation energy. In particular, the
two sets of results may differ by factors 3100 rela-
tively close to the neutron drip line, and at EX>10
MeV. Of course, in those conditions, further calcu-
lations have to be performed in order to check the
validity of our quasibound level treatment.

In the N=60 case, our results slightly underes-
timate the level densities around the stability line
(Fig. 1). Taking this reservation in mind, diverging
trends also appear between our calculations and the
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BSFG predictions, particularly in the neutron-defici-
ent region. On the neutron-rich side, the situation
is somewhat less clear.

The divergences between the two sets of predic-
tions are likely due to differences in the treatment
of the shell and pairing effects. In particular, the
BSFG model under consideration makes use of smooth
single particle level densities, and of energy-inde-
pendent level density parameters a (Sec. 4.6). Fur-
thermore, the adopted shell and pairing corrections
are derived from a rather low-quality mass formula.
0Of course, further and more systematic calculations
(involving also deformed nuclei) are required in or-
der to draw more detailed conclusions about the dif-
ferences between our calculations and the predictions
of other models very far from the stability line.

4.6 The level density parameter a

In the simplest and most widely used level den-
sity formulations, the entropy S is simply related to
the temperature through S = 2at, a being commonly
referred to as the level density parameter.

This parameter plays a pivotal role in the level
density estimate (see Egs. (5),(12)), and is classi-
cally related to the single particle level density at
the Fermi surface. In the vast majority of analytical
level density formulae, a is considered to be energy
independent. Many such models for a have been propo-
sed recently in the literature 5 relying in par'l:lcular
on Thomas-Fermi approximations38), or on microscopic-
macroscopic methods inspired from techniques develo—
ped for predicting nuclear masses (see e.g. ref.?),
and references therein). Such models provide formulae
for the smooth part of a (excluding shell effects)
which conta:m 1n par'tlcular volume, surface and cur-
vature terms38), An 1sosp1.n and shape dependence of a
has also been considered in such frameworks, and a
dependence upon the last neutron and proton separa-
tion energies has been stressed as well?).

Several of these predictions have been compared

to our results. At low enough temperatures, our cal-
culations show a more or less pronounced energy de-
pendence of a which cannot be accounted for by the
above mentioned simple models. When these effects
(essentially associated to shell and pairing energy
dependence) die out, our predicted a's can be more
directly compared with the simple model results. We
find "asymptotic" a values in the ranges 0.10ga/Ag
0.11 and 0.095ga/A50.10 for the N=60 and N=126 isoto-
nes of Figs. 3 4, respectlvely. These values agree to
within €10% with those derived in ref.38) (when use
is made of the S-VI effective mterac‘tlon) but di-
verge more strongly with those proposed in ref 9.
In addition, our results do not confirm the relation
between a and the last neutron and proton separation
energies put forth in this latter work. We are plan-
ning to perform more systematic calculations in order
to examine this question in greater detail.

5. Conclusions

The level density model presented in this paper
is considered to constitute an interesting tool for
predicting nuclear level densities, particularly at
relatively low excitation energies, and far from the
line of g-stability. Certain remaining difficulties,
however, emphasize the need for some further improve-
ments.

In fact, limitations of various natures affect
the model. On the statistical side, a minor shortco-
ming is expected to arise from the use of (i) the
saddle point approximation, at least at very low tem—
peratures, (ii) the spin cut-off approximation, at
least at low energies and very high angular momenta,
and (iii) most probable instead of average quantities,

this being responsible for the spurious phase transi-
tion at the critical temperatures.

On the nuclear side, it would be of interest to
(1) construct self-consistent finite temperature
single particle potentials, (ii) examine in greater
detail the influence of the associated nucleon effec-
tive masses and of their energy dependence on the
level density predictions38), and (iii) try inclu-
ding other residual interactions than those conside-
red in this work. In view of the high sensitivity of
certain predicted level densities on the pairing cha-
racteristics, a more careful evaluation of the pai-
ring strengths based namely on the condensation ener-
gy method rather than on the QPA would also be desi-
rable. The study of a possible nuclear shape depen-
dence of the pairing strengths would also have to be
pursued. In this connection, a more careful examina-
tion of the contribution of rotational and vibratio- .
nal collective states appears necessary. This problem
is intimately related to the question of the possi-
ble energy dependence of the nuclear deformation.
Finally, let us remind that the role of the continuum
on the level density predictions has to be carefully
examined, particularly when dealing with nuclei close
to the drip lines and/or high excitation energies.
We are planning to examine some of those questions
in a near future.
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DISCUSSION

J. Theobald: Mainly from excitation functions for
photo fission one knows that the Bohr-Bjgrnholm cor-
rection due to rotational level contributions gives
rise to high Tevel densities at high excitation
energies (E*>10 MeV). Therefore Ignatjeik had intro-
duced an empirical function (g-function) to take out
this correction with increasing excitation energy.
If you subtract from the densities of your low tem-
perature approach the ones of your high temperature
approximation, do you find just this q function?

M. Arnould: This is an interesting point we did not
look at up to now. However, it has to be stressed
that only excitation energies < 8 MeV are involved
in the comparison between theoretical estimates and
the s-neutron resonance spacings (Fig. 1). In such
conditions, the condition t <« dhw, is safely ful-
filled, and the low temperature approximation (Eq.
(19)) is not expected to drastically overestimate
the level densities.

J.B. Wilhelmy: What is the magnitude of the collec-
tive enhancement effects in the rare earth and ac-
tinide region? Are these enhancements required to
obtain adequate agreement with the experimental data?

M. Arnould: Typically, collective enhancements amount
to factors of the order of 10-100. From Fig. 1 it
can be seen that this enhancement is required in
order to reach some agreement with the experimental
data in the actinide region, as well as for therare
earths, except perhaps the heavier ones.
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