CERN - Data Handling Division
DD/81/13
September 1981

A SIMULATION OF THE FASTBUS PROTOCOLS

A.W. Booth

Paper presented at the
Topical Conference on the Application of Microprocessors
to High-Energy Physics Experiments
held at CERN, Geneva, Switzerland
4 - 6 May 1981

- 387 -

A Simulation of the FASTBUS Protocols

A W Booth

CERN

Geneva, Switzerland.

Abstract

FASTBUS is a standard bus system being developed for high speed
data acquisition and processing in the next generation of large
scale physics experiments. Prototypes are being built according
to a draft specification. The FASTBUS protocols have been simu-
lated using a pouwerful softuware tool which is a computer descrip-
tion language. This Instruction Set Processor Specification lan-
guage, ISPS, has been used in the design and development of
several microprocessor systems. It’s applications are diverse,
including automated design and the generation of machine relative
software, as well as simulation. The results of the FASTBUS simu-
lation are presented, with an overview of the ISPS harduare
description language. An additional facility is discussed, uhich
supplements the simulation by providing a visual presentation of
the FASTBUS signals, that is, a timing-graph generator.

1. Introduction

FASTBUS, U.S.NIM Committeel1], 1is a high speed data acquisition
and processing standard intended for use in large scale physics
experiments. FASTBUS systems are built up from tuo kinds of seg-

ments, referred to as backplane segments and cable segments. Back-
plane segments are housed in crates uhich can be linked together by
cable segments. Figure 1 shous an example of a simply-connected

FASTBUS system. Communication can take place between any two points
in the system, with the routing handled by look-up tables in Segment
Interconnects which connect Cable Segments to Backplane Segments.
Bus protocols, for communicating devices in the system, appear as
floucharts in the draft specification. To test the integrity of
these flouwcharts and provide the first step towards a large FASTBUS
system simulation, a simple model of a FASTBUS Backplane Segment uas
developed using a harduare description language. In this model, com-
munication between masters and slaves is simulated, as well as a pri-
ority arbitration mechanism which resolves contention if simultaneous
requests for bus mastership occur. .

The simulation is supplemented by computer generated timing dia-
grams, Boothl2], which provide a visual display of FASTBUS signals.
This paper contains a brief description of the harduware description
language, and a detailed account of its use for FASTBUS simulation.
For an introduction to FASTBUS itself, see Rimmer(3].

2. The Harduare Description Language

The Instruction Set Processor Specification (ISPS) language, Bar-
bacci [4], is a computer hardware description language which has been
used to describe the behaviour of a number of microprocessor systems.

- 388 -

These include the Intel 8080, Motorola 6800 and Rockuwell 6502. ISPS
however is not confined to describing processor behaviour; it has
been used as a vehicle for research in many areas, including auto-
matic design of digital circuits, Hafer & Parker[5], compiler-compi-
ler research, Cattell6], verification of machine language programs,
Crocker[7], and simulation of new architectures, Parker[8].

In the field of high energy physics, ISPS uwas successfuly used in
the development of the MICcroprogrammed Engine (MICE), Halatsis[9],
van Dam[10], a fast microprogrammed processor (and PDP 11 emulator)
for on-line data filtering in high energy physics experiments.

2.1. The ISPS Notation

Although ISPS can be viewed as a programming language, the aim of’
the notation is to describe computers and other digital systems as
well as general computational algorithms.

The ISPS notation, Barbaccil11], describes the interface and
behaviour of harduware units. The interface (i.e. external structure)
describes the number and types of carriers used to store and transmit
information between the wunits. In the simplest case, a unit is a
carrier (e.g. a bus, a register, a memory, etc.), completely speci-
fied by its bit and word dimensions as shoun in fig. 2. The descrip-
tion of the 8080 in fig. 2 begins by specifying the memory state,
which is declared as an array of 64K words, each 8 bits uwide. The
memory has a name ”M”, and an alias ”memory”. In ISPS these aliases
are a special form of a comment and are useful for indicating the
meaning or usage of a register’s name. Similarly, in the definition
of the processor state, the PC uhich is declared as a single word
having 16 bits, has the alias ”program.counter”. ISPS allous the
user to select fields of a previously declared entity and treat them
as individual entities. This can be seen in the definition of the
instruction register in fig.2. By declaring a “GROUP” field, for
example, a user can treat bits 6 and 7 of the instruction register as
a separate entity. Each time the ”GROUP” field is uritten into, it
is automatically reflected in the instruction register.

The behavioural aspects of the units are described by procedures
which specify the sequence of control and data operations. For exam-
ple, Fig.3 shous a procedure which loads an Instruction Register uith
the contents of the memory location pointed at by the Program Coun-
ter, and then calls another procedure to execute the instruction.
The next instruction is then loaded and so on.

A compiler and simulator exist for ISPS. These programs are urit-
ten in BLISS-10 and run on the DEC PDP-10 computer. The compiler
parses the users ISPS description and produces an output file which
is eventually transformed into an executable module, see Booth[12].
The Simulator has a set of basic commands, for example, starting and
stopping procedures, setting or interrogating registers and memories,
tracing and monitoring variables,etc.

3. Wired-OR Connections

ISPS lends itself very uwell to describing bus systems, since a bus
is simply a “‘carrier”’. However, bus lines which can be driven by
many sources must be declared such that, in a wired-OR configuration,
the line will take the 1logical value 1 if driven by any of the
sources. There are various uays to achieve this in ISPS, but one
which preserves a readable description is to describe the bus as a
procedure, and to call for its update each time a source changes its

value, as in fig.4.

- 389 -

In the actual simulation of a hackplane segment, only those bus
lines which can be driven simultaneously by several sources are
described in this way, e.g. arbitration request (AR) and arbitration
vector (AL} lines. Although, for example, the address synchronisa-
tion line (AS) can be driven by many sources, it should in principle
be driven by only one source at any one time, i.e.the bus master. To
monitor the error situation where more than one source attempts to
drive AS, then its declaration must be changed to a procedure.

4. Signal Propagation

Another consideration is wuhether (i) a signal should be seen to
propagate along the bus, or (ii) all devices on the bus should see
the signal at the same time. The former produces a more realistic
simulation of the bus, although the latter is simpler and maybe ade-
quate . Once a Master-Slave connection has been made, there is lit-
tle advantage to be gained by simulating signals propagating along
the bus. Houever, before the Master-Slave connection is made, con-
tending Masters must arbitrate for use of the bus. In this situa-
tion, a model of the bus where signals are seen to propagate, is bet-
ter for modelling the FASTBUS arbitration mechanism{1].

In the present work a non-propagating scheme was used, even for
arbitration, as the prime purpose of the model was to test the flow-
charts. Although the model is not very realistic for demonstrating
the FASTBUS arbitration mechanism, 1t is adequate to test whether or
not the logic in the arbitration flowcharts is valid. A propagating
bus scheme has since been used in the simulation of a FASTBUS to
CAMAC interface, Ashboe-Hansenl[13].

5. Simulation of a Backplane Segment
The first part of the ISPS description 1is a declaration of the
FASTBUS lines, wire-ORed where necessary, see Fig.5.

The behavioural aspects of the description consist of a procedure
for each of the FASTBUS flouwcharts. Some examples of flouchart names
are as follous:-

Arbitration timing controller
Arbitration at master

Master address cycle

Slave data cycles, etc.

To test the protocol procedures, several bus devices, Masters and
Slaves, are also described. Certain procedures run continuosly, e.g.
Arbitration Timing controller and Slave Address Cycles, uhile others
are invoked by a procedure “call’. The follouwing example illustrates
a simulation session involving three Masters and a Slave. Using the
basic commands of the simulator, the arbitration request line (AR) is
set for all three masters. Each of the Masters is given a different
arbitration vector, and the control parameters of the Master with the
highest vector are set to address the Slave and perform a single word
read cycle. At the start of the simulation or at any user defined
break points, commands can be given to trace or monitor any signals
of interest, or to continue uith the simulation.

-~ 390 -

6. Computer Generated Timing Diagrams

The ISPS Simulator can urite traced variables to an output file
and/or the terminal. This feature is used by a program uritten to
produce timing diagrams of ISPS simulations. The Timing Biagram Gen-
erator (TDG), Booth[2], 1is written in FORTRAN and run on the IBM 370
computer. 1t interprets the file of traced variables produced by the

simulation. For one simulation run, a variety of diagrams can be
obtained. They can be generated for both normal and abnormal working
modes of the system, and are particularly useful for design and
debugging in the prototyping stage of a project. The TD6 interacts
with the user to elicit variable names, time range, and title of the
diagram. An example of a diagram taken from the FASTBUS simulation

is shoun in Fig.6.

7. Finding Errors

A combination of the simulation and the generated timing diagrams
spotlighted certain errors in the floucharts. These errors uere cor-
rected in the simulation before formal updates to the floucharts were
proposed. In some cases, these errors could have been found in a desk
check. In cases wuhere 2 or more procedures interact, errors have
been much easier to locate under simulation conditions. An example
of this is the situation where a master does not wait for a handshake
after transmitting the final word of a data transfer.

8. Conclusions

The ISPS harduware description language has been used to simulate a
FASTBUS backplane segment and test the FASTBUS protocols. Certain
errors were found and corrected in the simulation. The first stage
of a large FASTBUS system simulation is almost complete, the next
stage is to simulate a Segment Interconnect and a cable segment so
that two backplane segments may be joined together.

Acknowledgements
0f the people who have helped me in my work, I would like to thank
especially the follouing:

E.M.Rimmer
P.Asboe~Hansen
J.Joosten
M.lLetheren
R.Nierhaus

References

[1] [U.S.NIM Committee, 19801, FASTBUS Modular High Speed Data Acqui-
sition System for High Energy Physics and other Applications, Tenta-
tive Specification.

{21 [Booth,1981], Ccomputer Generated Timing Diagrams to Supplement
Simulation, Paper submitted to the International Conference on Compu-
ter Harduare Description Languages and their Applications, Kaiser-
slautern Univ., September, 1981,

[3] [Rimmer, 19801, An Introduction to the FASTBUS system, 0D/80/27,
CERN.

[4] [Barbacci et al,1977]}, The Symbolic Manipulation of Computer
Descriptions: The 1SPS Computer Description Language, Technical
Report, Bepartment of Computer Science, Carnegie-Mellon University.

[5] [Hafer & Parker,b 1978}, A Register-transfer Level Digital
Design Automation: The Allocation Process, Design Automation Confer-
ence Proceedings no. 15, ACM SIGDA, IEEE Comp. Soc. Tech. Com. on
Design Automation, June 1978, pp. 213-219.

- 391 -

[6] [cattel, 19781, Formalisation and Automatic Derivation of
Code Generators, Ph.D. Thesis, Department of Computer Science, Carne-
gie- Mellon University.

{7) {crocker, 19771, State Deltas:A Formalism for Representing
Segments of Computation, Ph.D. Thesis, Computer Science Depart-
ment,UCLA.

[8] [Parker, 19781, Description and Simulation of Microcode

Execution, Proceedings of the 5th Annual Computer Architecture Sympo-
sium, ACM SIGDA, IEEE Computer Society.

{9l [IHalatsis, 1980] Architectural Considerations for a
Micro-programmable Emulating Engine Using Bit Slices, Proceedings of
the 7th Annual symposium on Computer Architecture, IfEE-CS and ACM,
La Baule, France.

[16] [van Dam] Simulation of a Horizontal Bit Sliced
Processor Using the ISPS Architecture Simulation Facility, DD/806/30,
CERN. (fo be published in IEEE Transactions on Computers: Micropro-
gramming Tools and Techniques).

{11l [Barbacci, 19811, Instruction Set Processor Specifica-
tions(1SPS): The Notation and its Applications, IEEE-CS Transactions
on Computers, Vol. C-30, No.1, January 1981,

{12} {Booth, 19801}, Running 1SPS on the PDP-10,
CERN-FBDOC#N 35, 1980

[13] [Asboe-Hansen, 198%1] To appear

A_SIMPLY~CONNECTED FASTBUS SYSTEM

HOST

Pl

CABLE SEGMENT

Bl b7 ™~

Sl SI
|) |)

J I f I
: 1O
6//”‘”;::T21;LE SEGMENT

Sl

BACKPLANE
r] ! I 5 eament

P1 Processor Interface

tablesBackplane Segment Interconnect
Buffered Interconnect

FASTBUS Master Device

FASTBUS Slave Device

Bl

TR TR T]

FIGURE 1

- 392 -

%% MEMORY.STATE ¥*¥
M\memory[0:63K1<7:0>,
¥% PROCESSOR.STATE #¥

pPC\program.counter<15:0),
BR\double.registers[0:3]¢(15:0>,
R\registers{0:71¢7:0>:=DR{0:3]¢15:0),
BC(7:0>:=R{01<7:0>,
C<7:0>:=R[1]<7:0>,
D¢7:0>:=R{2]<7:0>,
EC7:0>:=R[31<7:0)>,
H¢7:0>:=R[4]<7:0),
LC7:0>:=R{5]¢7:0),
SP\stack.pointer<15:0>:=DR[3]<15:0),
PSI\status.word(7:0>,

*¥ INSTRUCTION.FORMAT ¥**

IR\instruction.register<7:0>,
EBITC):=IRC3),
GROUPC1:0)>:=IRC7:6),
DFIELDC2:0>:=1R(5:3>,
DRFIELDC1:0)>:=1R(5:4),
SFIELDC2:0>:=1RC2:0>,

Fig.2 An ISPS Description of the Memory State,
Processor State and Instruction Format of
the INTEL 8080 microprocessor.

LI\Load. instruction:=
BEGIN
IR = MIPC} next
PC = PC+1 next
EXEC() next
restart LI
END,

EXEC\Execute.instruction:=
BEGIN
! comment This procedure executes the instruction
END,

Fig.3 Example of ISPS procedures

- 393 -

BUS.LINE()()>:=
BEGIN
BUS.LINE=SOURCE.1 OR SOURCE.2 OR
END,

PROC() : =
BEGIN
!
! IN THIS PROCEDURE, SOURCE.1 DRIVES THE BUS
'
SOURCE.1=1 NEXT
BUS.LINE()
END,

Fig.4 Updating a Bus Line

AS\address.sync(),
AK\address.ack<>,

DS\data.sync¢(>,
DK\ data.ack(>,

CB\control.block<>,
NH\no.handshake<),
EG\enable.geographicq),
AD\address.data¢31:0),

RD\read(>,
BK\busy.ack (>,
Ni\negative.ack(>,

PE\parity.enable(),
PA\parity<>,

COMMENT : The arbitration request line is a wired-OR of
master requests

- e s e

R\arbitration.request()¢>:= begin AR=REQUEST NEQ 0 end,

COMMENT : The arbitration vector line are a wired-oR of
master asserts

- e e 3>

Al\arbitration.vector()¢5:0):= begin ALCO>= ASSERTIO] NEQ 0;
ALC1>= ASSERTI1] NEQ O;
ALC2>= ASSERTI[2] NEQ O;
AL{3>= ASSERT{3] NEQ 0;
AL<4>= ASSERTI[4] NEQ 0;
AL¢5>= ASSERTI{5] NEQ O
end,

AG\arbitration.grant(),

GK\grant.acknouledge<y,

WM\ uwait¢y,
SR\service.request(),
RB\reset.bus<),
St\serial.line<),
SLR\serial.line.return<y,

Fig.5 1ISPS description of FASTBUS lines

uotieInWIS SNIISVA
oyl woly ueyel weiderq JUTWIL 9°314 EOJ&IHZHI\“

‘g8e 2°8S1i 8 88} 8 9S 80
i | i | i | i

4y
1 I oY
| D Iy

I _ A9
8V i
N ey S L PV N
SV I
| €IV INW

| POV N

STV I

I BV 2K
| R bV CH
LI] 2V 2H
€IV CWW
bV CH
— . SV 'CH

Lyr=C2WO0ML ¥3LSYN ZL=CIWI3NO ¥3LSVHK 37340 NOILVYLIBYY

- 394 -

