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ABSTRACT

The correlation functions 'which describe the
exclusion effects in quasielastic electron nucleus
and neutrino nucleus reactions are studied, showing
similarity and difference between them. The calcu—
lation of the total structure factors in electron
scattering is done for the cases of deuterium, 4He
and 120. The effects of the configuration mixing
mechanism tend to deviate the values given by the
simple shell model towards the supermultiplet rela—
tions,then showing the intermediate coupling nature.
But they are not large, and practically only affect
the spin flip terms, which contribute to the neutrino
and muon capture reactions - due to the axial cur—

rent -~ but insignificantly to the electron scatter—

ing.
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INTRODUCTION

The theory of quasielastic neutrino reactions in nuclei, when formulated
in the framework of the closure approximation 1), separates the nuclear structure
effects from the interaction for the elementary process in free nucleons. This
is achieved by introducing three correlation functions depending on the structure
of the target, which tend to vanish when the momentum transfer increases, then
giving an incoherent cross—section. Their values suppress the differential
cross—-section, showing the Pauli exclusion effects, if the momentum transfer is
small. In this context, Wigner supermultiplet symmetry 2 or simple spin orbit
shell model 1) were assumed to obtain the behaviour of the correlation functions.
A similar approach can be constructed for electron nucleus interactions, and
3)-5) . 1,

particular, Bishop et al. 6 have tested several sum rules in the case of 16O.

sum rules have been obtained under specified kinematical conditions

The present paper has two purposes. One is to obtain the differential
cross—section of the electron nucleus reaction under the same approximations as
those usually made in the corresponding neutrino case, in order to see how the
nuclear structure effects can be separated, comparing similarity and differences
between the two reactions, and studying how the exclusion effects are manifested.
The other one is to investigate the modifications which affect the relevant
correlation functions when realistic wave functions are used in the calculation.
It must be remarked that from data of total muon capture rates, Bell and
Llewellyn Smith 1 suggest that the very simplest shell model wave functions

exaggerate greatly the effect of the spin orbit splitting.

A theoretical comparison between the two reactions was already under—
taken by Lgvseth 7) using a Permi gas model, but then the exclusion effect does
not appear in a "natural way, corresponding to the introduction of antisymmetric

wave functions. Similar considerations can be applied to Refs. 8) and 9).

In Section 2.1 we obtain the expressions giving the differential cross-—
section of the electron nucleus reaction in the one photon exchange approach
using the impulse and closure approximations. In the general case this leads
to consider six correlation functions, two of them corresponding to isoscalar-
isoscalar terms, two to isovector-isovector terms and two to the interference.
The behaviour of the cross—section in the limits of very small and very large
momentum transfers is studied in Section 2.2. This reproduces, respectively,
the Mott cross—section and the incoherent scattering. For nuclei of zero iso-
spin, the isovector functions are related to the corresponding neutrino reaction

. . 2 . . .
ones, and the cross—section vanishes for q -0 when the elastic reaction is



subtracted, this being a clear manifestation of the expected Pauli exclusion
effect. In Section 3 we are dealing with the applications. In Section 3.1

we study the deuteron case, where the functions depending on the nuclear
structure are reduced to two of them, and the results of Ref. 10) have been
used. It is pointed out that the equality to the sum of the proton and neutron
cross—sections is practically valid for all values of q2 when the elastic
contribution is included. The case of 4He is considered in Section 3.2, assu-
ming a closed shell model. The effects of the configuration mixing mechanism
are studied in Section 4 for the case of 120, and its implications on the
neutrino and muon capture reactions are also considered. In.Section 5 some
discussion of the obtained results is given. Finally, the Appendix shows an

interesting relation between some isoscalar and isovector correlation functions.

ELECTRON NUCLEUS CROSS—SECTION

2.1 Impulse and Closure Approximations

Let us consider the elementary reaction
e (pp) + N (P,)) = € (r',,u') + N(P',2") (1)

where N stands for proton and neutron and the four momentum and helicity are
indicated in parenthesis. In the approximation of one photon exchange the

invariant T matrix element is given by

T:= .g-: " w (P A)[F (D yH + (i F, (sz)v"”qu] w (P,3)
(2)

— r [
fﬁsulp,lu)yl‘u.(p./*)
where the four-momentum transfer is defined by q=p-p'=P'-P, and

ﬁ(g,lb)u(f, v):=2M va . In the reference frame where the initial nucleon is

at rest, we can write
a2
? (3)
> >
Jz 0+ 5.0

where the two spinors satisfy X;v" XA = é:u t. The parts of non-spin flip

are defined, respectively, by



N= M (1—3_22)-/2 2° 6, (97)

~
X

R . . . (4)
p= - (- 2;74\) (3 x ) 6,(9%)

where use has been made of qF ﬁF = 0. GE(qz) and GM(qz) are the electric

and magnetic Sachs form factors

6 (1) F(g7) + £ £, (57) Gm(37) = Fils?) +2MF (57) (5)

We shall assume the dipole dependence for the electric form factor of the proton

and the scaling law for the magnetic form factors

2 \-Y
e (97 = (1 - 5 ) Gy (472 (14 ) G (57) G892 i G, (49 (6)
where M%::O.71 Gev2 and /up (/“n) is the anomalous magnetic moment of the

proton (neutron). The electric neutron form factor GE (q2> shows a systematic
n
deviation from zero in the results of Ref. 11) for elastic electron deuteron

scattering. For all values of q2, GE < 0.05.
n

Let us now consider the scattering with nucleil

e (p.p) + AP X)) > e (p, p) s A (P Ay) (7)

where A' denotes the final nuclear state which can be bound, equal or diffe=-—
rent o. the initial one A, or broken. In the impulse approximation the
differential cross—section corresponding to a fixed angle © Dbetween the

incident and outgoing electrons is given by

do . (2n) 7L fds’.ei_" £'243P S(E +€-E'-E
e 9% *zsu'; )

(8)

— A ‘a 2)+ »-‘ X (] 2
AT P Tt ”wm T (10 0 I >



- 4 —_

where (} i and (,Lf denote the initial and final nuclear wave functions,
and the isoscalar J(” and isovector J(2> operators have been introduced
as J(” =%(Jp+Jn) and J(2) =—1—(Jp-Jn). We are not interested in the detect-—
ion of the final state and then a summation over all final nuclear states can
be performed. But in general <_f depends on the channel and an assumption has
to be made : it is considered that kinematics of processes (1) and (7) are
equal, regarding the nucleus as a collection of free nucleons. Using then the

closure approximation, we obtain

- + (z)" (1) (z)
do . g_‘ ! oI %) J"’ t, Tkt W >

where an average over the initial nuclear polarizations is understood. Taking
the 2z axis along -(i), from Eq. (3) several operators appeaypy in the construct-—
ion of the matrix elements in Eq. (9). The contribution of the incoherent terms
j=k 1s easily calculated. The j#£k terms can be expressed in terms of the

following correlation functions, depending on the nuclear structure

) -t (
‘DS,‘I('tL 2 : <¢: ldsze 3 " )(/ o'dO'xk'G'zd.G}k)“p;>
(2) (3. (X - X '
Doriu (@) <hil 2, €T ey 7 (40 0 0 ) 1
(10)
uz) AT - Xe)
'DS,‘TTL (31) = -<¢l: ,Zke ! ‘ rsJ (l ) U!J' o.xg ’ q.!j GEE)1¢;>
{7
and then the result is
2 LA -> )
i%: (_g';) { { Pl (A+Dg))+|[5")]é(A+D, )

CLESE'M sidby 14 LE 020,
M (11)

@ -2+ lﬁ"’l‘(n-»f))-z[x"’ N-z4dg )+ fgm/?'z)?ﬂ 24D, )J}
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where A is the number of nucleons in the initial nuclear state, Z the
number of protons and N of neutrons. From the value of the trace of the

leptonic tensor, we obtain

P) ()%, 4M’(l—3-2,)1[4£(:+ ) q}r;é")of)

4

2 \-4 (p) . (%) (12)
e - - 2 P
F’(P) 13‘”*:-#’(",,3;:) [AE(£+§;4)—'32(I & )]G Gn

with p,q:=1,2 indicating the isoscalar and isovector componetts.

Tt is interesting to write the differential cross-section in a form

which is a consequence of using the one photon exchange approximation

de . 49 2) 4 & tq¥ 8 B(9?
Lgl-dnngA(q)a‘ 9% 3 ($)§ (13)

where the Mott cross—section for the proton is given by

dow (_ej)"_iﬁf_f{ﬁ + LE swi)"
dn 4n 45"’:.'“"9/,3/ M 0 (14)

Comparing with Egs. (11) and (12) the structure functions A(qz), B(qz) are

At (1- 2.) 169%0+29) + 69 -22)-2 660 (-2 +37) + 8.(37)]

(15)

2
UN(A Dm) l-z)-ﬁ(A :D(z)) -2 Cf,:) GM)(N- (42)) ]

B{Q :—-— [G

We see that the isovector terms present exclusion factors (A—Dé2)) and

(A—DT2 ) similar to those which appear in weak interactions 1).

2.2 Behaviour of the Structure Functions

From Eq. (15) we can study the values of the structure functions for
large values of v—q2. If —q2 - ®, the nuclear matrix elements (10) go to

zero, and then



2 -1
2 3 2 2
A(q)-—» (1’-;1:) [z Gep + N Gg, +B($’)]
(10)
2 2
2 -9 <
B(3?) — mz[zcmp+~@“]
obtaining, as was expected, that the reaction is incoherent from each constitu-
ent in this limit. It csn be remarked here thatl the effects of the nuclear

e}
structure in the magnetic terms - i.e., B(q“) - will rot be very important
A
.. ‘

. . . . 2 .
for the behaviour of rhe cross=zection at all values of q°, Dbecause if ~q

is small these terms do not contributce praciically.

We are going to study now the value of the electric terms in the limit

of small —q2. It is easily seen that
(z2)
2. 200) = A (a-d) »a) = a-(2-N)? De (0)= (A-1)(H-2) (17)

and therefore the isoscalar term Gé1) prescnts a factor A2, that is, the

reaction for isoscalar photons is coherent and no reduction of the cross-
2

section is present. HHowever, for the isovector G 2)e and cross terms
Gé1)Gé2> the corresponding factors at —q2==O are (N—Z)2 and A(N—Z),

respectively. From these results we obtain A(qg) _qiiﬂ Z2, and then

de _, z°? dom
ds2 -9%0 ds

reproducing the Mott cross—section for an object of Ze charge.

)
For nuclei of zero isospin, the functions Dé1E)L vanish and furthermore
1ty
the isovector functions DgQ% 1 are related to the corresponding ones to the
’ -

neutrino reaction DS .1 introduced in Ref. 1). This is so because only a
79—

scalar operator in the isospin space can contribute in this case and ZBJ Z3k

and 2 I; Z; are equivalent. The structure functions are then

-4 3 (2)
At = (1- 2) 7 6 a+ ) + 62 (4-07) + B4 ]
(18)
2 < (2) 2 (2)
B(s7) = -2, Lo+ 0/ + 6904 -2(7) ]



On the basis of Wlfner supermultlplet symmetry spin independent forces

12) 2)_D(2 _p{1)

can be ignored and Taking into account spin orbit

T,L- 01,1
splitting this relation is valid for closed shell nuclei 13). In the Appendix
it is shown that Dé” =-D§,1) and D£2) (1) is satisfied for closed gub-
shells; for example, the p?ri configuratlon (1s1) (1p ) in 0 verifies
. 2 2
these relations, but not DS _'DT,L'

The coherent contribution to A(g2) in the limit —q2—>0, which
physically corresponds to the behaviour of the elastic channel Ael(qz), is
completely due to the isoscalar term for N=7 nuclei, as it 1s seen from

‘ (17). This i1s not present in the neutrino reaction and has nothing to do
with exclusion principle effects. It will be interesting to compare the
"gquasielastic" structure function A qel (q2)==A(q2)—Ael(q2) with the incoherent
quantity ZA (q )+NA (¢®) in order to see the exclusion effects. This will
be the programme undertaken in the applications. In the limit -q2—+® .

(q ) presents the correct behaviour because the elastic contribution

qel
2 -
Ael(q ) _nga)o due to the nuclear form factor.

APPLICATIONS

%.1 The Deuteron Case

( For the deuteron gJ._1 T= O) 12 is 1?m§d1ately verified that

1) _p(2) o{1) _p(2) 1) - .
-D _.2DS, T -D DT nd D ..DL _.2DL due to the isospin

structure. Furthermore, 1f the d wave is neglected DS= BDT:=3DL.

¢

From Eq. (18) the structure function A(q2) can be written as

Alg?) = A, (33) + AL (3%)
(19)
(1- & ) [ 466,049 6, @)D (47) - 2 e,emp(«f)c 49D, (5]

and similarly for B(qg). As GE ~ 0 and considering the behaviour of

n .
DT(qZ) we see that in the case of deuterium the nuclear structure is not ime=
portant for the sum of elastic and quasielastic cross~sections. In a sufficient

approximation

ii! 2 :&E + ELI
dsz ld dn lp aL.rz.lm (20)



- 8 -

In the literature this sum rule has been applied to obtain the structure of the
neutron from the quasielastic cross—section, using the so-called "area method";
for large momentum transfers this is the same because the elastic cross—section
does not contribute practically. In this sense we can see the study of the
magnetic structure of the neutron in Ref. 14). However, if it is applied to
lower and lower momentum transfers, negative neutron cross—sections can be
obtained as it happens in Ref. 15). It must be remarked that in the case of
deuterium we obtain that this sum rule is practically valid at all values of
q2, but applied to the total events, including elastic. In this context a
great deviation only can be explained by significant values of the electric

neutron form factor.

Figure 1a corresponds to the value A(q2) calculated as Ap+An, or
taking into account the nuclear structure functions D., D with G, =0
2 2 2 pr2y=1 11),16) s' T En
and Gy == M (=a7/4M7)(1 = a"/M7)7 Gy .

We sce that practically
n P .
there are no differences among the four different cases. The two functions

DS and DT have been taken from Ref. 10), where they were applied to the

neutrino deuteron reaction, and correspond to the result of using generalized

17)

Hulthén wave functions for the s and d waves.

The values of Aqel(qz), Fig. 1c, have been obtained from A(q2) and

the experimental results 11) of Ael(qz), Fig. 1b. In this zone of small

values of q2 three values of Aqel(qz) obtained from experimental resulis

15)

are also given for compari-

son. They correspond to -q2 = 0.,0584, 0.0974, 0.179 GeV2, and have been

obtained taking, at the same point —q2, values of the cross—section corres—

of the quasielastic differential cross—=section

ponding to different angles & and fitting A(qz) and B(qz) in order to
reproduce the behaviour A(q2)+2tg2 gB(qz). A reasonable agreement is found.

Due to the sum rule for the total deuteron cross—section, Eq. (20), in
this particular case we can say, loosely speaking, that the wvalues of the
elastic cross—section are a measure of the exclusion factors due to nuclear
structure for the quasielastic scattering. For -q2==0.1 GeV2 the reduction

is only about 10%.

3.2 Application to 4He

4He is a double closed shell nucleus corresponding to the configuration

(1sl)4. In Eq. (18) the correlation functions are given by
2



() <¢(”He>|z;e"* R TIIRTHRN
o (21)
2P, 2P 2tz 4 7 e T g e

vy o

The operators in (21) are scalars under O(B)XSU(Z)T. As in this particular
case only £4=0 waves are present for each nucleon within the nucleus, the

substitution
-

x:) . .
o fo QTNFD) 4, (131151)

. -
-t § (xi -

e

can be made. In this way we obtain immediately

0 ) 3
21 s 3 D) s a2 | [ de et R ) §,0310) | (22)

where R1s(r) is the radial wave function of the nucleon in the 1s shell.
Using the harmonic oscillator solutions with scale parameter b=1.39 fm, which

reproduces the root mean square charge radius, the result is

) ! Lz,-o,(/
Ds( )(g‘) = :’)(?) 1 e * } (23)

With this structure, the function A(qz) can be written in a simple way

as

; LY
Ale?) = 4 (1'3—:)1{6:)6(4+3e"l’12’)

4
(24)
2 1%
WY g2 Y <z)) ( L !ql)
+ [ 6 ",,iz(cn +6 {-¢e?
M
Figure 2a corresponds to the values of A(qz) calculated with G, =0 and

GEn;éo using the same dependence as in the deuteron case; Fig. g% is the
experimental elastic form factor taken from Ref. 18), and Fig. 2c is obtained

as qe (q ) = A(q )—A (q ). The broken line corresponds to the incoherent
behaviour 2A (q2)+2A (q ). We see that the quasielastic structure function
Aqel(q ) presents the expected exclusion when it 1szcompared Zo the one corres—
ponding to the sum of protons and neutrons. For -q~ =0.1 GeV the reduction

is of the order of 15%.



CORRELATION FUNCTIONS IN 120

In this section our purpose is to show how the correlation functions can
be modified when the configuration mixing mechanism is introduced in the des~
cription of the wave function. To this end, the nucleus 120 has been chosen
due to its known large deformation and because it is a good example of seeing
how the relations given in Section 2.2 are broken when both Wigner supermultiplet

symmetry and simple closed subshell description are destroyed.

120 is described by the care (1SL)4 adding eight nucleons in the 1p
R
shell coupled to J =0, T=0. Cohen and Kurath 19), using effective inter—

actions in this shell, have obtained the wave function

1Hp%(0,0)> = € [hpay, > & Cy lpy, (10) 4p2 (10)> + Caldpas (04) dp,2 (04)>
' (25)

+ €, “Pa/, (3 2)“’4/:((; !z'>> +C “F!/lg'(oo) JP‘/ (00)>

where the amplitude values are
Ci= 06424 C,= 06245 €;= 0.2610

C,= 0.2548 €= 0.3/190

which show the large deviation of the pure configuration (1p£)$. This wave
function has been applied, with success, to static processes 219), partial
muon capture to 12B and beta decay 12B—9120 20).

Our procedure of calculation of the correlation functions takes advantage
of considering that only the scalar part, under O(3)xSU(2)T, of the operators
contributes. Then, with the state coupled to (0,0), the reduction to matrix
elements between states of two nucleons is very easy and independent of the

particular operator.
Under 0(3) the scalar operators associated to DS’ DT and DL are

obtained under the substitution

-k Z de (1510 §, (131 %) S, (1,2)

-;Q.. (xl‘xa) -¢-8 /(z?u)(-&? 1)
e V - 4 ________i (I . 1g! 2
0',‘ néze_l. QL+ J ?,r>\{¢($ () (26)

Le(reLl-so)cie’ Luo)[u(.,) “I'7,02.2)



: 2) g-0 ) B IS
e G, Tz, —> hn 2{71 v V(zé;lL)(:,C;'* ) {e (lglﬁ) de (lg!fz)

L
CieLioo) c(ue'Ltloo) T, (1,2)

where 82(1,?) is the scalar constructed from the spherical harmonics of

rank £
™ ~ - A
5,(1--?/) = % ('l) yem ('G) \/em(fz)
and TL(1,2) is the scalar

k ko A -k
TL (1,4) = Zk ("l) yL(e) (fl) yl. (C') (fz)
where g%(z)(f) is a tensor of rank L given by

« 2 k-m
gL(Q) (¥) -‘% C(lele'k-M) Yy (%) v,

Then use of Eq. (15.5) of Bef. 21) gives the matrix elements of SL
and TL between states of two nucleons coupled to a given value of the angular
momentum J. The isospin dependence of the isovector functions is factorizable
in a simple way. The value of 1/% ?i'?j between states of two nucleons

coupled to a given value of the isospin T=0, 1 is given by (—1)1+T/2T+1.

If the two=nucleon matrix element corresponds to an expected value of

the operator between states of non—equivalent particles j1 and J the

)2’

antisymmetry has been taken into account using the prescription of adding

the exchange term with a sign (=q)31Fd=I=T,

Collecting all these indications and performing a straightforward
reduction 21) to two nucleons matrix elements, we have obtained the correlation
functions given in Table I, as function of the radial integrals IE(X,y)

defined by
I, ("'5) = L dr r? 1?: (r) 1?3(1')4.‘ (3 r) (27)

where x,y=s,p indicate the shell in which the radial function R(r) has to
be taken. This is interesting because until now the potential well has not been
specified. For each function, the first row indicates the result for the simple
shell model, the second one the corresponding value when the wave function (25)

is used.
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A regularity in Table I is given by the terms of crossing between the
two shells, represented in the last three columns. The direct contributions
Io(s,s)Io(p,p) and Io(s,s)IZ(p,p) disappear in DT and DL because then
the value L=0 in Eq. (26) is not possible, which is necessary for the single
particle operator yg(z)(f) between states coupled to (0,0). Dé2) is eli-
minated by a similar reason in the 1s08pin space. Furthermore, in DS1) the
same value of 4 for the two particles is needed, as is seen in the first
expression of Eq. (26). Then Io(s,s)IO(p,p) does not contribute. This last
reason is also applied to Io(p,p)Iz(p,p) for DS1 and Dé2). The exchange
contribution If(s,p) can be calculated separately as follows. If we define
K, (K2) as the coefficient of fractional parentage of separating a psz (pi)
nucleon in the wave function (1p)8 of 1ZC(O,O), we obtain for this cgntri;u—

tion to the correlation functions

K> JZT (23+2) (a1+)f (s, P, , TT) + K}ﬁﬁ(u'u)&fﬂ)f(@,z Py, J'T')

where the function f indicates the expected value of the operators between
two nucleon states. The cross term K1K2 vanishes due to orthogonality. As
we are studying the exchange term, the isoscalar operators can be written as

ItT s, ,
DU)—* fozr “) ' (23+1)(47+1) fexel\ (S‘/z P3/, 'J) - K:’ﬁ'(ﬂ) ' ("'J”)("’T ”)f@rcl: (Sve F‘/z’J')

whereas the isovector operators are given by

7 v, )
>@_ Kf/:ZT(.;) (2344) §ouh (50 Page ,3) = ¢ K:'f;f'(") (33°41) foxol (St Py 3')

As Z’l; (—1 )T(2T+1)=—2 and 'LZ‘ 1=2, D(1> and D(z) are equal but
opposite, independent of the particular operator under O0(3) and of the
configuration mixing. The J dependence of the function f is given in the

form of a Racah coefficient 21) and we have

) {
Z(.NH){J i '!l’ = 4
J L 42 7
where j2:=%,%~ and L=1 for DS and L=0,1,2 for the other operators.
Using this rela@io?, it is immediately seen that the j2 dependence in fexch
is always (-1)J2+?(2j2+1) for the three operators. As K$+K§:=1, the result
is the same in the three cases, and independent of the particular configuration

mixing used to describe the wave function of 120. This is the result which can

be observed in Table I.
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Another result, independent of the details of the wave function, is the
dependence £ =0 of the electric correlations. In Eq. (17) their values in
the forward direction have been given independently of the model. As electron
scattering is dominated by these terms at small values of -q2, we shall see
that the configuration mixing does not affect greatly the total structure
function A(qz). However, in the neutrino reaction the spin flip terms are
important in this zone due to the axial current, and the results can be

sensitive to the particular model.

If we use the harmonic oscillator potential well, the radial integrals
(27) can be solved in an analytic way, and then the correlation functions are

each of the form
*  12)1=>)2

e {czo) vcl) (L6151 + c@) (465 ‘)z( (26)

where the parameter b=1.66 fm reproduces the empirical root mean square
chérge radius. In Table II we give the values of the C's for the six
functions; in each case the first row is the simple shell model and the

second one the result of using the wave function (25). The vanishing value

of ¢(1) in DéQ) is due to the use of the harmonic oscillator wave functions,

as was noticed in Ref. 1).

In Figure 3 we give the results of 1-A-1Dg2) and 1—A_1D£2) when (25)
is used, compared with the shell model version — broken lines — and with
1—A—1D82 , in order to show the breaking of the supermultiplet relation. It
ig interesting to observe that the intermediate coupling nature of (25) is
manifested through the deviation of the T, L ~values from the simple shell

model towards the S value.

In Figure 4 the values 1+A D(1) and 1-A‘1D§2), using the wave

function (25), are plotted, compared w1th the result for closed subshell ~
the same for both ones -~ and with 1-A—1D 2). The same comparison for the

S
functions 1+4A” D(1) and 1—Af1D£2) is given in Fig. 5.

When the results obtalned for the correlation functions are applied to
Eq. (18), the structure functlon A(q2) of 120 given in Fig. 6a is obtained.
It can be pointed out that the exclusion effect is so imbortant in this case
that total wvalues A(qz) are suppressed in a zone of --q2 with respect to
the incoherent contribution 6A (qz)-+6A (q ) -~ broken line. The values of
Ael(qz), Fig. 6b, have been taken from the experimental results 22) of the

elastic charge form factor. Then Fig. 6c gives the quasielastic contribution

(a®).

qel
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We can apply the obtained correlation functions to the calculation of
the reduced muon capture rate 1) in 12C, although the result is very sensitive
to the choice of the average neutrino momentum V= IEI. In our case, the
use of the wave function (25) implies a variation with an effective power
~ 2,8=2.,9. If we take V= 80 MeV we obtain /\r(120)=0.185, to be
compared to 0.209 for the simple shell model and to 0.113 for the shell model

Dé1). The experimental result is 0.125+0,005.

We have studied in detail the behaviour of the six relevant quantities
1447 Dé1% 1, 1-A" DéZ% 1, separately for each of the states used as a basis
in Eq. (25), which w111 be denoted as 1,2,3,4,5. We summarize the results.

1+A 1D(1) decreases qulckly from the value 12 for —q2.-0 towards
the asymptotlc value 1; for -q =0.06 GeV2, 1.2 is already obtained. The

differences among the five states are not significant.

1=A" D(z) only manifests some difference among the five states in a
zone around 0.07 GeV2. For this value, 0.845 is obtained for the state 5 and

0.823 for 4 which give the extreme contributions.

For the other quantities the most significant differences appear at
—q2—+O. For 1+A D( )(O) we obtain 0.297 for the states 1, 2 and 3, 0.148
for 5 and 0.074 for 4. Concerning 1-A" D( )(O), the values 0.37 for 4,
0.297 for 1, 0.278 for 2, 0.198 for 5 and 0.173 for 3 are obtained.

CONCLUSION

From this study it has been shown that the structure functions which
describe the quasielastic electron nucleus scattering are given in terms of
several correlation functions, from which the exclusion effects are manifest
for small values of the four-momentum transfer squared —q2, when compared
to the corresponding incoherent quantities of protons and neutrons. This
behaviour is also the expected one for the neutrino nucleus reaction comparing
with the free neutron cross-section, as it has been emphasized in the literature.
The assumptions and approximations of the theory are similar in both cases, in
particular the use of impulse and closure. It must be remarked that closure
also includes the contribution of the elastic electron scattering, which gives
the coherent behaviour Z2 if —q2-90, and it has to be subtracted. For
T=0 nuclei the elastic reaction is only due to isoscalar photons and they

have not an equivalent in weak interactions.
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Our expressions for the structure functions have been applied to the

1
cases of deuteron, 4He and 20. In particular, in the deuteron case, the

obtained reduction has been observed experimentally, showing from comparison
that the theoretical approach used here can be valid in a sufficient approxi=-

mation.

The effects of the configuration mixing mechanism on the correlation
functions have been studied in the case of 120, and a comparison with the

results of the simple shell model is given in Tables I and II. They are not
important for the scalar functions DS1) and Dé2>; on the other functions

the over—-all effects are showing a deviation towards the well-known relation

given by the supermultiplet symmetry. The differences between the predictions

of the different models are stronger for very small values of -q2, and they

appear in the neutrino and muon capture reactions where the spin flip terms
(1) _ p(2)
for a closed subshell description is not badly broken when one introduces the

are important due to the axial current. The relation given here D

configuration mixing; both quantities are deviated in the same sense from

the simple description.
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APPENDTIX

(1) __5(2)
DT,L"_DT,L due to a closed subshell. The
quantities in which we are interested are the expected values of the relevant

operators between configurations j2(23+1). With the operator acting on two

21)

Here we show the relations

different particles, this is reduced to

S (33« (eT#d) f(23T) | (a.1)
posti ble
J, T
where f denotes the expected value of the operator between two equivalent
nucleon states coupled to J, T. Only values with J+T=o0dd are possible due
to antisymmetry. The sum in (A.1) can be extended to all values of Jd, T

introducing the factor %[j—(—1)J+T]. Then the isoscalar operators give
J+T ]
D o L Z (-0 ] waed) et ed) £ (2 9)
¢ 17 ‘

while the isovector operators are given by

D")_’ _.a_L JZT [1-t-0)"7] )T g341) FO%9)
which is reduced to

D(:) = % (-J)J(JJf'l) )((Jz' J) + .2,4} (e&J-)-J) f (J-z, J)

3 .
2
- z (-0) (33+4) § (2, 3)
Then the equality is wvalid for the functions depending on the angular momentum
in which X (23+1)£(3%,5) =0. For D

tional to

this quantity is always propor—
S,T,L

J . . . '&J.
? (33+1) (-1)" {L ; : { : (J‘I-H)v(-l) <§L'o

(A.2)

For the DS functions the value L=0 -~ it corresponds to £ in the first
line of Eq. (26) - it is possible, and the relation does not hold. However,
it is easily seen that the tensor yg(f‘) in Eq. (26) does not contribute when
parity restrictions are taken into account. Then the relation is valid for

DT and DL‘
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c(o) c(1) c(2)
(1) 132. —64. 5.3%
D
S 132, -64. 5.59
D
T ~9.11 -2,01 -1.67
(1) -8.44 -3%.56 -1.78
D
L -9.11 -1.78 -1.80
(2) 12, 0. 1.78
D
S 12. 0. 2.0
8. 44 1.78 1.78
DéZ) :
9.28 1.41 1.90
8,44 3.56 1.78
50
9.28 2,62 1.78

TABLE II : Values of the C's defined in
Eq. (28) for the different corre-—
lation functions in 120. The
first row is for the simple shell
model, the second one for the wave
function of Eq. (25).
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FIGURE CAPTIONS

Figure 2

Figure 3

Figure 4

FPigure 5

Figure 6

a) Total structure function A(qz) in deuterium and incoherent
value Ap(q2)+An(q2) for different values of the electric

form factor of the neutron.
b) Elastic structure function Ael(q2) in deuterium.

c) Quasielastic structure function Aqel(qz). The points have
been obtained from the experimental results of Ref. 15).
a) Total structure function A(q2) in 4He for different values

of the electric form factor of the neutron.
4

‘b) Elastic contribution Ael(q2) in 'He.

¢) Quasielastic structure function Aqe1<q2) in 4He. The

broken line is the corresponding incoherent quantity

2 2
2Ap(q )+24 (a%).
) i (2) . 12 .
Isovector exclusion functions 1-=1/12 DT 1 in C using
9

configuration mixing, compared with the simple shell model
result — broken lines — and 1-~1/12 Déz).
Exclusion factors 1+1/12 Dg1) and 1 -1/12 Dgz) in 12C
using configuration mixing, and its value (the same for both
quantities) in the simple shell model -~ upper broken line ~

compared with 1-=1/12 Dé2).

o)

Same as Fig. 4, but corresponding to the functions 1+1/12
(2 L

and 1=1/12 DL .

Same as Fig. 2, but applied to the case of 120. The corresponding

incoherent quantity is 6Ap(q2)-+6An(q2).
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