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ABSTRACT

We present data on the semi-inclusive distributions of rapidities of
secondary particles produced in pp collisions at very high energies., Our
experiment was performed at the CERN Intersecting Storage Rings (ISR).

The data given here, at centre-of-mass energies of /s = 23 and 62 GeV, in-
clude the single-particle distributions and two-particle correlations at
fixed charged multiplicity n, as well as the inclusive two-particle cor-
relations. The semi-inclusive correlations show pronounced short-range
correlation effects which have a width considerably narrower than in the
case of inclusive correlations. We show that these short-range effects
can be understood empirically in terms of three parameters whose energy
and multiplicity dependence are studied. The data support the picture of
multinarticle production in which clusters of small multiplicity and small

dispersion are emitted with subsequent decay into hadrons.
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INTRODUCTION

In the past two years, many experimentsl) and theoretical analysesz) have
been performed which sought understanding of the dynamics of multiparticle pro-
duction in high-energy collisions through data on inclusive distributions, It
was realized from the beginning that measurements of single~particle inclusive
distributions alone were insufficient to understand details of the production
mechanisms, Correlations in phase space among the particles produced in a high-
energy collision were expected. Experimental studies have verified the existence
of such inclusive correlations between charged particles3—5) and between photons
and charged particless). These data show an important positive short-range cor-
relation among secondaries of the pp collisions. The lack of any strong
s~dependence of the correlation in the central region is a remarkable fact that
might have consequences in the phenomenology of high-energy reactions, However,
straightforward interpretation of the data is made difficult by the presence of a
long-range component in the rapidity correlations®), It is widely understood that
the simultaneous presence of distinct production mechanisms (e.g. diffractive and
non-diffractive) can produce such long-range effects; experimental observation

12,7,8)

of diffractive events at the highest energies indicates that this pheno-

menon does indeed existg).

The existence of long-range correlations due to interplay of diffractive and
non-diffractive mechanisms is, however, only a simple example of a more general
property. If high-energy particle production proceeds through a set of separate
channels giving rise to different single-particle distributions, then the cor-
relation function, as defined in the following, will contain terms due to the
difference in their rapidity distributions, In particular, the differences in
single-particle distributions for different values of total charged multiplicities
will generate such effects, Thus elucidation of true dynamical correlations is
facilitated by a study of the two-charged particle correlations in events with a
fixed charged multiplicity n (semi-inclusive Eorrelations). Such data have been
presented from FNAL measurements®s1?), Preliminary data from the Pisa-Stony Brook

Collaboration at the CERN ISR have also been reportedla’e).

In this paper, we present data on the semi-inclusive single-particle dis-
tributions and the semi-inclusive two-particle correlations. These data have been
obtained at the CERN ISR for collisions between protons at centre-of-mass energies
Vs = 23 and 62 GeV. The paper is organized as follows: Section 2 defines the
various distribution functions and kinematic variables, Section 3 presehts the ex-
perimental method and apparatus, and Section 4 discusses the analysis of the data
and the various corrections which have been applied, We present our results in

Section 5, and conclude in Section 6 with a discussion of the data. In particular,
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we show that the semi-inclusive correlations can be understood in terms of a short-
range component of universal width and whose amplitude, if expressed in terms of
n/{(n), is also essentially energy-independent, We also show that the data are
consistent with a simple and fairly general clustering property among the secon-

daries produced in pp collisions.

KINEMATICS AND OBSERVABLES

In this section we collect together the various definitions and relations
among the differential distributions of particles produced in multiparticle re-

actions, together with some kinematic definitions used in this paper.

We define the single-particle inclusive density

(1)) = L 4O
and the two-particle inclusive density
(2) ¢ y = L_d’o (2)
P Y1 !Y2 - g dY1dY2 ’

where 0 is the total inelastic proton—-proton cross-section and y is the rapidity,
y = sinh™} (pL//E%_:—EE§, of an observed secondary particle of mass m and longi-
tudinal and transverse momentum components (pL,pT). The invariant cross—sections
in (1) and (2) have been integrated over transverse momenta. The two-particle

inclusive correlation function is defined:
C(y;,y,) = p(z)(yl,yz) - p(l)(yl)p(])(yz) . (3)

In most of the previous experiments, a normalized correlation R has been presented
in order to minimize the effect of the uncertainty of the detector efficiencies
which are needed to obtain the absolute densities p(l),p(z) from the experimental

rates:
0 (1,7, - 6D yp P (v,

. (&)
oM (oM 3,

R(y1,¥,) =

In the present work we have developed reliable means for estimating the corrections

to p(l) and p(z) and thus prefer to present the correlation defined by Eq. (3).

For -the semi-inclusive data, we define analogous quantities, making use of
the topological inelastic cross—sections On for a fixed number n of charged par-
ticles. The semi-inclusive densities become

(1) -1 _n 5
o, () v , (5)

and




2 , 4%
P, (¥15Y,) = b:m . (6)
The semi-inclusive quantities are related to inclusive counterparts through
Lo =0
n
n
(1) = go(1)
Lo et (y) = optt(y) (7
n
z Onplgz)(yl ’yz) = Op(z)(Y1 9}'2) .
n
The semi~inclusive correlation is then
= (2 1 1
C (y1,¥,y) = pé ) (y1,7,) - oé )(yl)oﬁ Dy, - (8)

The relationship between the inclusive and semi-inclusive correlations can be de-

rived to be (see, for instance, Ref. 2c)

Cy1oyy) = L 0 C (rysyy) + L o [oe® e - oM™, - oM 6],
n n

(9)

where o = Gn/c. This equation demonstrates the assertion made in the first sec-
tion that the inclusive correlation contains a "crossed term" part, due only to
differences in single-particle semi-inclusive distributions, which is non-zero
even in the absence of "true'" correlations among two charged particles. True
dynamical correlations can only be present in the first term in Eq. (9), which

is the one containing two—particle densities, and is accessible only through
measurement of semi-inclusive distributions, In the present experiment, we obtain
directly all the quantities entering into (9) and thus determine the relative im-

portance of the true correlation term and the crossed term,

The normalization properties of the distributions are of importance in our

analysis. It is well known that
[lc(yysy)dy dy, = (a(a - 1)) - (n)? = £, . (10)
Similarly, the semi-inclusive correlation has normalization

fle 31,92)dy1dy, = -0, (11)

and at fixed values of y,,

fe_(71,y)dy, = -0l (1) . (12)

We note that the integrals of the semi-inclusive correlation are negative quantities,
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Finally, we introduce the approximate rapidity variable n = -1n [tan (ecm/z)]
appropriate to our experiment in which angles, but not momenta or masses, are de-

termined, The variable n is equivalent to y if (p%/mz) >> 1,

EXPERIMENTAL PROCEDURE

The experimental apparatus employed in this work is essentially that used in
the measurement of the total proton-proton cross-section, and has been described
in detail elsewherell). It consisted of scintillator hodoscopes around each of
the ISR beams downstream from the interaction point, as shown in Fig, 1. There
was in addition a hodoscope I covering the wide—angle region around the inter-
action point, Each of the downstream arms consisted of eight hodoscopes, whose
structure is illustrated in Fig, 2. Hodoscopes H,, H,, H,, H,, TB;, and TB, par-
ticipated in forming the trigger, H,6 and H,0 were subdivided in narrow bands of
polar angle and into azimuthal quadrants or octants as shown,- The hodoscope L
surrounding the intersection at large angles was similarly subdivided into seven
polar bands and azimuthal quadrants as shown in Fig, 2. Counts in these scintil-

lators form the basis for our n-distributions.

The combined hodoscope system covers most of the full solid angle, the major

gaps occurring in the range 1,0 < Inl < 1.3, The trigger employed was

{(,°H,) + (H;°H,) + (TB,*TB)}, . <{(H;*H)) +’(H3-Hu) + (TBl'TBz)}right .

This trigger was sensitive to about 977 of all inelastic events,

"Rejection of background, due primarily to interactions of single beams with

residual gas or with beam pipes, was made through analysis of time~of-flight dif-

- ferences between different pairs of hodoscopesll). In the present work, we have

required the observed times—of—flight to be well within the window for beam-beam
events, Events in the tails of the time distributions were eliminated so as to
reduce background contaminafion. Using runs with only one circulating beam, we
have checked that single-beam backgrounds have negligible effect on our results,
We have also determined from experimental studies that random counts in the hodo-—

scopes have negligible effect on our data,

The analysis of the data presented here is based on approximately 10% in-
elastic events at the lowest and highest ISR energies, ¥s = 23 and 62 GeV., Thus
statistical errors are small for single-particle distributions and are also small
for correlations in most regions of the phase space, The primary source of error

is systematic,

Sources of systematic error derive primarily from the finite resolution of

the counters, from the production of secondary particles in interactions with




material surrounding the interaction region, and from strange particle decays.
The finite size of the hodoscope counters causes a loss of rate if more than one
particle strikes the same element. Secondary particle production may proceed
through photon conversion in the vacuum pipe or hodoscope material, hadronic’
showers in the same material initiated by primary collision products, or by elec—
trons knocked out by charged particles., These secondary processes increase the
number of observed particles, They also affect the distributions in that the
number and angular distribution of secondaries depend on the primary particle type
and momentum as well as on the detailed structure of the material present in the
vacuum pipes and hodoscopes, Showers of secondary charged particles (hadronic
and electromagnetic) give clusters correlated in space which affect the two-
particle distribution., The decays of neutral strange hadrons also tend to in-
crease the observed multiplicity. The combined effect of resolution, secondary
production, decays, and missing solid angle is to increase the mean observed

charged multiplicity by about 20% over the true valuel?) at /5 = 23 GeV,

Observation of a count in a hodoscope element reauires a minimum momentum of
about 80 MeV/c, The measured rate in any element is thus the integral over abso-
lute momentum above this threshold for fixed 6., The loss of particles below the
momentum cut-off is negligible. Owing to the centre-of-mass motion in the ISR
lab, frame, there are small changes in c.m. angle within the annular rings of ‘H,
and H,. The same effect occurs for L, augmented by the fact that its elements
are not annular rings, In all results presented here, we use the value of centre-
of-mass rapidity n averaged over the ring, obtained through a Monte Carlo calcula-

tion. The resulting values of n for each ring of counters are given in Table 1.

DATA ANALYSIS AND CORRECTIONS

In our experiment the dominant uncertainties are systematic and depend on
the corrections which we apply to our data. Thus we discuss our analysis pro-

cedures at some length in this section,

The experimental definitions of the inclusive particle densities defined in

(1) and (2) are

(1)
_ 1 N
p(?)(n) = ﬁ;"ETﬁT“ . (13)

and

—

N2 (i)
0(2)(n1,n2) = = 2 . : : (L)

N; e(npeny)
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NI is the total number of inelastic events contained in the sample; N(l)(n) is
the number of charged particles detected by the counter ring positioned at 1 for
these events; N(Z)(nl,nz) is the corresponding number of coincidences of charged
particles in the rings at n; and n,; and e€(n) is the efficiency for counting in

the ring at n 13),

The number NI of inelastic events is obtained from the full sample of events
aftrer time-of-flight cuts by subtracting events which correspond to elastic scat-
tering., Elastic events are recognized by their topological properties in the
sample; in principle, they are collinear two-prong events, In order to eliminate
elastic events in which one or both protons interact in the beam pipes, we use the
criterion that any'event giving charged particles only at 6 < 75 mrad (inside the
central hole of H,) is classified as elastic, The events identified by this cut
satisfy the known cross-sections and shape for elastic pp scatteringlu—ls), but
also include a small fraction of inelastic events., We estimate that at Vs = 23 GeV,
the elastic requirement includes ® 0.5 mb of the inelastic cross-section, while
at Vs = 62 GeV we estimate ® 0.9 mb, In addition, some good inelastic events were
lost by the rather restrictive time-of-flight cuts imposed to minimize background,
We have checked that our results are insensitive to precise location of these cuts,
The final sample of inelastic events corresponds to 30.0 mb at Vs = 23 GeV (out of
32,5 mb) and to 32,9 mb at Vs = 62 GeV (out of 35.5 mb). The primary loss of in-
elastic cross-section occurs for the lowest multiplicities, owing to the elastic
event definition, which includes some diffractive-like events, and to the trigger
requirement of at least one particle into the left and right arms of the hodo-
scopes, which fails when all particles in one cone are contained in the downstream
pipe. Fof multiplicities greater than half the mean we expect no loss of events

in the semi-inclusive distributions.

The counts N(l)(n) are obtained for the full aéimuthal ring of counters at
fixed polar angle. Similarly the counts N(Z)(nl,nz) are summed over the various
azimuths of counters in the rings at n, and n,; one exception to this azimuthal
sum is discussed below in connection with the analysis of the correlation function.
We have assumed that azimuthal correlations in inclusive or semi-inclusive distri-

butions are weak3»6217518)

The efficiencies € in (13) and (14) take into account the geometrical accep-
tance and also the effects of secondary particle production, decay, and finite
counter size. They can be interpreted as the effective width in rapidity of the
various counter rings. These efficiencies are computed in a Monte Carlo program
which incorporates as nearly as possible all the features of the apparatus and
the known particle distributions. The major contribution to the systematic error
on our results comes from uncertainty of their evaluation. Details of these cal-

culations are summarized below.




Analogous experimental definitions to (13) and (l4) are used for the semi-

inclusive densities (5) and (6):

L S m
L n : (15)
No€ (@)

n

{1 ()

(2 (ny,n,)

1
N e (e () 16

pI(IZ) (Th ,ﬂz)

In these expressions, the subscript n refers to the total observed charged multi-

plicity in the event.

We turn now to a brief description of the Monte Carlo calculation used to
determine the efficiencies. The primary inputs to the calculation were the single
particle angular distributions measured at the ISR'®) and FNAL2®) and the data on
multiplicity distributions?!). The n-dependence of pél) was included on the basis
of our raw data and those of FNAL“), but no dynamical correlations were taken into
account. Calculations were aléo made for studying the sensitivity of our ef-
ficiencies to the input distributions using modified multiperipheral models?2)
and a nova modelza). The detailed geometry of the experiment, as well as the
irregular vacuum pipe of the ISR and the support structures of the hodoscopes, was

included,

A careful attempt was made to account for all possible sources of gain and

loss of particles from the original number generated in the collision. Extra

0
S

from FNAL and ISRz“). Secondary hadrons, produced when a particle traverses the

particles, produced from the decay of K) and A, were simulated according to data
material of the ISR vacuum pipe or the detector assembly, were generated according
to the known features of nucleon-nucleus and meson-nucleus collisions in the ap-
propriate energy range. Gamma conversions in the material around the interaction
region produce e*e” pairs which can add to the observed number of particles in

the hodoscopes. The gamma sources are the primary m°'s and those m°'s produced

in secondary hadronic interactions. The generated multiplicity of m%'s is based
on high-energy measurements?¢s2%), Delta-rays can be produced whenever a charged
particle traverses material. The spectra of these delta-rays are sharply peakéd
at low electron energy; however, in some circumstances the low-energy electron
may strike a counter before being absorbed. It is further possible that a delta-
ray, produced in one counter element, may penetrate to a neighbouring element,
giving a spurious count, Finally, there is a loss of counts owing to multiple
particle hits of a single hodoscope element which tends to decrease the value of

the observed multiplicity.

A complete documentation of the Monte Carlo procedures will be presented

elsewhere. Here we simply present a summary of the importance of the various .




- 8 -

effects mentioned as computed at Vs = 23 GeV. Table 2 shows how these effects
influence the mean multiplicity for three angular ranges corresponding to the

hodoscopes H,, H,, and L both separately and added together.

Several important tests of the Monte Carlo calculation have been performed.
In Fig. 3a we show the agreement of our raw single particle distribution p(l)(n)
with the distribution obtained by the Monte Carlo calculation incorporating the
various mechanisms for gains and losses discussed above. Figure 3b shows the same
compafison for the semi—ipclusive distribution pél)(n), with n = 14-16. We con-
clude that the combination of the input distributions and Monte Carlo simulation
of the experiment reproduces our data well, The rise in p(l)(n) and pél)(n) from
n =0 to |n| = 1.5 is due to the secondary interactions (mainly y-conversions) in
the vacuum pipe (bicone) surrounding the interaction region, and also to the
transformation between y and n. Two values of p(l)(n) appear in the overlap
region of H, and H, between !nl = 2.80 and |n| = 3.65. H, shows a higher counting
rate due to secondary particle production in the vacuum pipe between H, and H,,
and in H, itself. The fact that we can reproduce this large difference in p(l)(n)
between H, and H, gives us confidence in the validity of the Monte Carlo calcula-
tion. We have disregarded the H, data in the region of the overlap for our sub-

sequent analysis,

As seen from Table 2, the effect of our apparatus is to increase the observed
multiplicity over the true multiplicity. We have checked that the Monte Carlo
calculation can indeed reproduce the observed multiplicity distribution starting
with the true distribution at Vs = 23 GeV. 1In Fig. 4 we show the comparison of
our uncorrected data with those produced by our Monte Carlo calculation with FNAL

21)

data as input.

A set of events corresponding to fixed observed multiplicities contains
events whose true multiplicity spans a considerable interval oWing to the com-
peting effects of secondary particle production and particle losses, In Fig. 5
we show the distribution of true multiplicities contributing to a fixed observed
Value; we note that the average value is displaced and that thevdispersion of
trﬁe multiplicities is rather large. Our semi-inclusive distributions are there-

fore weighted averages on the true multiplicity.

The primary use of the Monte Carlo in our analysis is the calculation of the
efficiencies £(n) -and en(n) appearing in Egqs. (13)-(16). 1In the absence of the
mechanisms discussed above for particle gain and loss, the €'s represent the in-
terval in n spanned by each hodoscope element., The n—dependence of e was found
to be small ($ 107 for n between 10 and 30) except for |n| < 1, where the large
physical size of the counters causes a larger loss of particles at high multi-

plicity. At n = 0 and the highest multiplicity, €, differs from € by about 25%.
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The fact that fixed observed multiplicity in our experiment corresponds to a
distribution of true multiplicities creates an additional complication in the cal-
culation of the semi-inclusive correlations, The reason is due to the presence
of a crossed term similar to that noted in (9). To show this effect explicitly,
we denote by az the probability of an event of true multiplicity m to contribute
to the sample of fixed observed multiplicity n., Then, in analogy with (9), the
observed semi-inclusive correlation at observed multiplicity n is

C(obs)

n
n (nlinz) = z u'mcm(nlinz) +
m

. gl a;{[prgi%nl) - pé”(np][péz)mz) - pn(f)(nz)]} ,  an

n s e e . , .
where m;, = Zm 0. m = average of the true multiplicities contributing to fixed ob-

served n and pél)(n) = zm u;pél)(n). Since zm u; =1, we find
0

¢s®V nyany) = € (muny) + {[z oo 0e ) ()] - o) (nﬁpéi’(nz)} . as)

m

The second term of (18) represents a correction which must be subtracted from the

" observed semi-inclusive correlation to obtain the true correlation, denoted in

(18) as Cmo(nl,nz). It is Cmo(nl,nz) for which data are presented below; the

fact that it is averaged over near-by true multiplicities is found to be of no im-
portance. We have performed this correction to the data using ug from the Monte
Carlo calculation and the known dependence of pél)(n) on n, The sign of the second
term is positive for most mn, and n,. This can be seen qualitatively for

n; ®*n, ® 0 since pél)(o) % n and thus
[I% agprg‘)(o)prfll)(o)] > [prflz)(O)prgz)(O)] .

. . n . .
In the limit that o = Gmm the correction vanishes.
0

A final feature of the data analysis must be explained. Examination of the
various mechanisms for producing spurious particles via secondary interactions
shows several which make showers of secondaries localized in space. We have
studied the effect of this spurious clustering by making use of the quadrant
structure of our hodoscopes in azimufh. We calculate separately péz)(nl,nz) for
the cases where particles 1 and 2 fall into the same azimuthal quadfant, adjacent
quadranfs, or opposite quadrants. This treatment of the data shows similar re-
sults for the adjacent and opposite pairings with noticeably larger values for
the same quadrant pairs. An effect of the same type and size is bredicted by our
Monte Carlo calculation as a consequence of secondary interactions., Therefore,
although we cannot exclude the existence of a small dynamical contribution, we
have removed all this effect by computing péz)(nl,nz) excluding all the same quad-

rant pairs and applying a correction factor. A similar procedure was also followed
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in our earlier determination of the inclusive correlations and was discussed
elsewhere®). This correction factor would be 4/3 in the absence of all azimuthal
correlations. In fact there are small azimuthal correlations which favour emis-
sion of particles near A$ = 7 compared with Ap = 0 3’6’16). We include this effect
by correcting péz) by the factor (4/3)(1 - A), where A is taken from the azimuthal
correlations and is about 0.02. This value of A has a non-negligible effect on

Cn' Since Cn contains the difference of two similar quantities, p(z)(nl,nz) and
p(l)(nl)p(l)(nz), a 2Z correction on p(z)(nl,nz) implies a variation of the cor-

relation function beyond its intrinsic systematic errors.

We have checked our results for internal consistency. This check, using the
sum rule (12), is made to the final data after the correction of the efficiencies
for spurious particle gain and loss and the correction to the correlation for the
cross—term arising from the spread in true multiplicities contributing to fixed
observed multiplicities shown in (18). The sum rule is well satisfied and indicates
tha; our handling of the rightmost term in (18) and the correction for azimuthal
correlations are valid. Had we not taken into account these corrections, the sum

rule (12) would have been violated by 10-20%.

RESULTS

Presentation of data for all the distribution functions discussed above,
particularly the semi-inclusive correlation with two rapidity and one multiplicity
variables, would require a very large amount of numerical information. In this
section we give a sample of our results which we feel to be representative of the

data, based on about 7 X 10° inelastic events at each energy.

The normalized inclusive correlations [Eq. (4)] were presented in our earlier
publicationa). As discussed in detail in that paper, these functions show a pro-
minent short-range positive correlation effect. For comparison with the semi-
inclusive distributions, we show here the undivided inclusive correlations
[Eq. (3)] at both ¥s = 23 and 62 GeV for Ny = 0., These distributions are plotted
in Fig. 6 and shown in Tables 3 and 4. At Vs = 23 GeV, the correlation is aﬁ—
preciable in magnitude for Inf < 2. The width of C(0,n) broadens with increasing
S, which can be qualitatively understood on Ehe basis of scaling hypotheseszs). An
important feature of the inclusive correlations to be bornme in mind for comparison
with the semi-inclusive correlations presented below is the rather broad rapidity

region in which the correlation is positive and appreciably non-zero.

We turn now to the semi-inclusive distributions. We have chosen to present
our results at three fixed charge multiplicities at both values of Vs, We have
chosen to restrict our attention to multiplicities above 10 in order to minimize
the effects due to the diffractive component. Figure 7 shows the semi-inclusive

single particle density pé})(n) at three multiplicities and both energies.
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Numerical values are given in Table 5. The dip at n = 0 is due to the y to n
transformation; the data are consistent with a y-distribution with a maximum at
y = 0.

The semi-inclusive correlations are presented for three values of n as a
function of n,, with n, fixed at three values. The data at Vs = 23 GeV are shown
in Fig. 8 and Table 6; data at Vs = 62 GeV are shown in Fig. 9 and Table 7. The
most prominent feature of these distributions is the appearance of a sharp posi-
tive peak at n; ¥ n,, the width of which is considerably smaller than that of the
inclusive correlation (Fig. 6). This short-range correlation structure is super-
imposed on a broad negative curve as is required in order that the sum rule (12)
be satisfied. The width of the short-range peak is remarkably independent of both
n and V/s.

We stress here that this conclusion is extremely insensitive to the various
corrections applied to the data and discussed in Section 4. All the corrections,
including the Monte Carlo calculations of efficiencies, subtraction of the crossed-—
term in (18), and accounting for the effect of azimuthal correlations, were ob-
served in our analysis to leave the height and width of the short-range peak un-
changed. These corrections have merely changed the size of the broad negative

curve on which the peak is superimposed.

In this experiment we measure all inclusive and semi~inclusive one- and two-
particle densities directly; thus we may assess the relative importance of the
two terms in (9). The first term, formed from the weighted sum of semi-inclusive
correlations, is shown in Fig. 10 for the two energies. It has a shape almost
identical to any of its constituents. The second term, arising from the dif-
ference of semi-inclusive single-particle distributions from the inclusive ones,
also shown in Fig. 10, is predominantly positive and displays a broad quasi-flat
central plateau. The magnitude of the crossed term exceeds the true correlation
term magnitude by more than a factor of two. Therefore, the dominant contribution
to the observed inclusive correlation function is the crossed term; the effect
of true dynamical correlations are masked in the inclusive measurements. We note
that the shape of the crossed term is similar to the observed T T correlation at
FNAL27) , Our crossed term in Fig. 10 is somewhat broader than C~ (0,y). This
may be qualitatively understood hy the fact that our p(l) and pél) include the
proton distributions which are important at 1 2 2, whereas the distributions en-
tering into C7 (0,y) do not. The magnitude of the observed C;_(0,0) is in quali-
tative agreement with that of our crossed term. The similarity of the two sets
of data suggests that like charge correlations can indeed be understood as due
mainly to the variation of pél)(y) with n and that little dynamical correlation

need be invokedze).




where the average is taken over |n|
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Qur results can also be compared with previously reported data from the
ISR!®) at the lower of our energies. The authors of Ref. 18 use a somewhat dif-
ferent definition of the correlation function, normalized to zero. In terms of
the quantities defined in this paper their semi-inclusive correlation is

11 = 1 (2) -1, 1)
C (Mysny) = @ =D Pn (n;.n,) - P, (e 7 (2) (19

In order to reduce the errors they average over n according to

11
C (nl - nz)

(- e my,n,)) (20)

2 and 6 S n £ 15 (n is here the number of

IA

charged particles in the region Inl £ 2). We have analysed our data to obtain
CII(nl - n,) and present our results at /s = 23 GeV together with those of Ref. 18
in Fig. 1la. We observe again the existence of the short-range correlation peak.
Figure 11b shows the behaviour of CII(n1 - n,) at /s = 62 GeV, The data of Fig. 11
represent the projections of the correlation function onto the line ny; + n, = 0.
We recall that this line is perpendicular to the contours of constant correlation®s?)

in the central region.

To summarize, the semi-inclusive correlations presented here have rather
simple properties. The short-range component, identified by ‘the positive-going
peak is present in all samples of the data. The shapes of these peaks are nearly
independent of multiplicity and ‘energy. The existence of this short-range com=
ponent is difficult to infer from inclusive measurements alone. Our data agree
well with the low-statistics studies of semi-inclusive charge-charge correlations
obtained from bubble~chamber experiments at FNAL“), and streamer chamber measure-

ments at the ISRle).

DISCUSSION OF THE DATA

We turn now to a phenomenological discussion of our semi-inclusive correlation
data in order to extract some physical insight into the mechanism producing the
short~range correlation behaviour noted above. It appears natural to view these
data in terms of two components which add to give the observed Cn(nl,nz). The
first term is a purely short-range correlation, while the second is a smoothly
varying negative background term.. In order not to confuse the discussion we focus
upon the correlation with one argument set to zero: Cn(O,nZ). This choice gives

a function for which the phase-space constraints are symmetric in n,.

The positive short-range term is well fitted at all n and Vs by a Gaussian
function. The negative background function is chosen according to the following

recipe. For independent emission at fixed multiplicity one would have
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-jnzt (1) |
p () (0,n,) [ —= p} (0)] pit (n,) (21)
implying

C (0,1,) = - B pél)“’)} P (n,) (22)

We choose then, as suggested by (22), to take the background function as propor-
tional to pél)(nz). This choice does not have fundamental justification, but ap-
pears to work well in fitting our data. Thus the empirical form to be fitted is

2 2
-n*/28
N /26,

. B o) . (23)

Cn(O,ﬂ) = A

As observed in Figs. 8 and 9, the shape of the short-range central peak in the
correlation is essentially independent of both n and Vs. We have made a X-square
fit to (23) at each n and Vs, letting An, Bn’ and Gn vary. We find that where Gn
is well determined by the fit, it is constant at 0.85. At the largest and smallest
n, 6n is not well determined, but is consistent with this value. In order to
simplify the analysis, we have chosen to fix Gn = 0.85 and to determine the best
values of A and Bn in a y-square fit. The resulting values are shown in Figs. 12
and 13 as a function of the true charged multiplicity. The results for An are
given in terms of the quantity [An/pél)(o)] in order to eliminate the dependence
on the density of the first particle. We observe that at both energies [An/pél)(O)]
and Bn increase with increasing multiplicities: the rate of increase with n is
larger at Vs = 23 GeV than at Vs = 62 GeV. However, it is possible to view the
results at the two energies as being essentially the same. This is achieved by
displaying [An/pél)(o)] and Bn at both.energies as a function of the‘scaled
multiplicity variable n/{n). This is shown in Figs. 14 and 15, where it is seen
that the parameters for the two energies are much more similar to each other when

plotted in terms of the scaled multiplicity.

To show the quality of the fits, we define the quantity
* - (1) ' '
¢, 0,m =C (O, + 3B p "M . (24)

In Fig. 16 we compare the data for Ci(O,n) with the values of the fit to the
short-range Gaussian term, An e_nz/zsz. We observe that the fit is good (x2 £ 60
for 41 degrees of freedom) in all cases except the lowest n at Vs = 23 GeV, For
this particular case, our choice of background term was not adequate; the data
require a narrower function than pél)(n). We summarize the data fitting by the
statement that our data are well represented by Eq. (23) in which the s-dependence
of the parameters [An/pél)(o)] and Bn ~- if it is there at all -- is quite small,

when n is expressed in-units of {(n).
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We may compare our results with the predictions of an uncorrelated cluster

model for the non-diffractive component of multiparticle productionzg’ao). These
models should be valid for n 2 {(n) and suggest that
(M) ()
(k(k = 1)) -y?/40? _ Pn (k(k - 1))
C (0,y) = —25 = 227 (1)) &7 - n () 1+ X7 D)
(25)

Here k is the charge multiplicity of the cluster decay and 0 is the width of the
distribution of the cluster decay products in rapidity. The parameter O is
generally constrained in order to fit the Pr dependence of the invariant distri-
butions by virtue of the assumption of isotropic cluster decay. This assumption
leads to a value?!) of ¢ near 0.6 units of the n-variable and is in good agreement
with our result (23) and & = /20 = 0.85. The similarity of our phenomenological
form (23) and the cluster model prediction (25) immediately allows us to determine
the value of (k(k ~ 1))/{k) from our values of [An/pél)(o)] and Bn' In Fig. 17

we show the variation of (k(k - 1)) /{k) found from An and Bn' We have found that
the evaluation of (k(k - 1))/{k) from the fitted An and Bn gave almost identical

results.

The explicit form of the function (k(k - 1))/{k) versus n can yield further
information on the multiplicity distribution within a cluster. If, for example,
all clusters were to decay into a fixed number of particles k,, then
(k(k = 1))/{(k) =k, = 1 and there is no n-dependence. If, on the other hand, the
cluster is a Poisson distribution in k, [(k(k - 1))/(k)]n 2 (n - k) {(n)) at a

fixed multiplicity n 30).

Qur results in Fig. 17 show {(k(k — 1))/{k) to be an increasing function of n,
though the increase is less than that predicted with the relatively broad Poisson
cluster multiplicity distribution. Within the context of simple independent
cluster emission models, our results imply that the cluster multiplicity distri-
bution is intermediate between delta function and Poisson -- thus that the cluster
multiplicity dispersion is of order 1. However, we should bear in mind that the
models leading to this conclusion [embodied in (25)] are most likely naive simpli-
fications of reality. 1In particular, we find it plausible that for large multi-
plicities (n ~v 2(n)) the clusters themselves may indeed become correlated. For
instance, one could envisage that large-n events may consist of several clusters,
all of which tend to decay into greater than the average number of particles.

Thus we would caution against a literal interpretation of our results in the ex-
isting cluster model framework, particularly with regard to the n-dependence of

the cluster multiplicity moments.
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To summarize, we find that the expectations based on the uncorrelated cluster
model conform to our data. The properties of the clusters are essentially inde-
pendent of Vs. Using the value of (k(k -~ 1))/(k) for the data near n = (n) we
infer that the mean cluster multiplicity (k) is about 2, This conclusion seewms
relatively independent of the details of the cluster multiplieity distribution and
is drawn from the region where the critical assumption of cluster independence
should be most valid. A picture in which clusters are produced with mean charge
multiplicity of about 2 with a dispersion of order 1 appears to us quite striking
in its simplicity. We might imagine that the clusters inferred from these data
are just the familiar class of boson resonances as suggested by various authors!®,32),

Indeed, we note that a statistical mixture of p, w, £, A, in the final state of pp

collisions would result in cluster parameters very like those which we observe.
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Table 1

Positions of the counter rings

Counter No. (n)
L4 0.00
L3 0.32
L2 0.61
L1 0.87
H,10 1.35
H,9 1,47
H,8 1.61
H27 1,77
H26 1.96
H,5 " 2,20
H,4 2,47
H,3 2.80
H,2 3.21
H,1 3,65
H,8 3.96
H,7 4.13
H,6 4,29

u,5 442
H, 4 4,53
Hk3 4,67
H,2 4.82
B,1 4,99
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Table 2

Summary of the effects giving an increase in the number of observed particles at
/s = 23 GeV. These numbers are calculated, through the Monte Carlo program dis-
cussed in the text, separately for the hodoscope arrays L, H,, H, and for them
altogether. We quote the fractional change in {n.p) observed in each hodoscope;
each effect is already affected by the finite size of counters, which tends to
lower any single mechanism's contribution. Typical statistical errors are *27 in
L, £1%Z in H,, *57 in Hy, and %1% for L + H, + H,

Aln? Aln) Aln) Aln)  All

Effect ?;3— 8,) (n) (Hy) (n) @© (n)  hodos.

1. chonver31on in vacuum 0.16 0.31 0.11 0.23
pipe or hodoscopes

2. Strange particle decay 0.05 0.17 © 0,13 0,15
3. Baryon showers 0.09 0.09 0.03 0.06
4, Meson showers 0.04 0.07 0.05 0.06
5. 6-rays 0.05 0.10 0.06 0.08
All effects together @) 0.33 0.56 0.34 0.45 b)

a) All the effects together give a contribution lower than the sum of the single
mechanisms: this happens because more than one mechanism can contribute to
fire the same counter inside the same event.

b) This figure corresponds to a 0.2 fractional change on the full solid angle
due to the incomplete angular coverage of the apparatus.




Table 3

Inclusive correlation func-
tion C(ny;,ny) at n; = 0 and
Vs = 23 GeV versus n,. Er-
rors are statistical. The
data have been symmetrized
around n = 0.

n, C(0,n,)
0.00 1.692 + 0.009
0.32 1.678 + 0.009
0.61 1,561 + 0.010
0.87 1.423 + 0.010
1.35 1.039 + 0.012
1,47 0.896 + 0.010
1.61 0.752 + 0,009
1.77 0.594 * 0.008
1.96 0.477 % 0.007
2.20 0.305 * 0.006
2.47 0.137 % 0.005
2.80 0.035 * 0.004
3.21 -0.045 % 0.003
3.65 -0.095 t 0.002 -
3.96 -0.099 % 0.003
4.13 -0.099 * 0.003
4,29 -0.089 * 0.003
4.42 -0.089 + 0.003
4.53 -0.078 * 0,003
4.67 -0.073 + 0.002
4,82 -0.051 * 0.002
4.99 -0.042 * 0.002
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Table 4

Inclusive correlation func~
tion C(n;.np) at Ny = 0 and
/s = 62 GeV versus n,. Er-
rors are statistical. The

data have been symmetrized

around n = O.

Ny C(0,ny)
0.00 2.231 + 0,010
0.32 2.209 + 0,010
0.61 2,121 + 0,011
0.87 2.039 + 0,011
1.35 1.632 + 0,013
1.47 1.479 + 0,012
1.61 1.378 = 0,011
1.77 1.221 + 0,010
1.96 1.101 + 0.009
2.20 0.917 * 0.008
2.47 0.700 £ 0.007
2.80 0.464 = 0.006
3.21 0.210 £ 0.005
3.65 0.014 = 0.004
3.96 -0,056 + 0.005
4,13 -0.072 + 0,005
4.29 -0.083 * 0.005
4.42 -0.083 * 0.005
4.53 -0.086 + 0.004
4.67 -0.092 + 0,004
4.82 -0.105 * 0.003
4.99 -0.100 + 0.003
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Table 6.1

Semi-inclusive correlation function C,(n,,n,) at fixed n;, at the
energy Vs = 23 GeV. nopg 1s the observed multiplicity and ng e
is the corresponding mean true charged multiplicity. The corre-
lation matrix has been symmetrized with respect to both diagonals.

o, Cn(”l’”z) for Nobs = 10, 11 (ntme =9.1)
n, = 0.0 n, = -0.87 n, = -1.96

-4.99 | -0.018 £ 0,004 | -0.030 £ 0,005 | -0,021 + 0.004
-4.82 | -0.018 £ 0.005 | -0.027 + 0,006 | -0.024 + 0,004
-4.67 | -0,031 % 0,007 | -0.044 £ 0,007 | -0,048 £ 0,005
-4,53 | -0,033 ¢ 0,008 | -0,074 + 0,008 | -0,052 £ 0,007
-4.42 | -0.048 : 0,009 | -0.070 + 0,010 | =0.053 & 0,007
©-4.29 | 0,037 £ 0,009 | 0,065 + 0,009 | -0,072 + 0.007
-4,13 | -0,056 ¢ 0,000 | =0,102 £ 0,010 | -0,004 * 0,007
-3.96 | -0.068 + 0,010 | -0.128 + 0.010 | -0.101 + 0.008
-3.65 ~-0,077 £ 0,007 -0,092 + 0,009 -, 081 + 0,007
=321 | -0,134 + 0,000 | 0,115 % 0,011 | =0,030 + 0,009
-2.80 | -0.195 £ 0.012 | -0.136 + 0.015 0,025 + 0,012
-2.47 | -0.262 + 0.015 | -0.114 + 0,010 0.085 + 0.016
-2.20 | -0,305 + 0.017 | -0.004 t 0.022 0,119 £ 0.018
-1.97 -0.349 + 0,019 =-0,050 + 0,024 0,205 + 0,021
-1.77 -(},353 ¢ ‘().()Z() =0,062 + 0,026 0,114 + 0,021
-1.61 | -0.360 ¢ 0.022 | -0.020 ¢ 0.028 0,121 ¢ 0.023
-1.47 | =0,377 £ 0.025 | -0.049 + 0,031 0.053 + 0,025
-1.35 | -0.390 £ 0,029 0,021 + 0,037 0,030 + 0,029
-0.87 | -0.201 + 0,026 0,194 + 0,032 | -0,020 % 0,024
-0.61 | -0.003 + 0,024 0,084 + 0,029 | -0.170 + 0,022
-0,32 0,050 + 0,023 | -0.028 + 0,027 | -0,257 + 0.020
0,00 0,068 + 0.023 | -0.156 + 0,026 | =0.287 *+ 0,019
0.32 0,050 & 0,023 | =0.300 + 0,025 | -0.337 + 0.019
0.61 -0,063 + 0,024 -0.504 + 0,026 -0,422 + 00,020
0.87 | -0.201 + 0,026 | =0,650 & 0,027 | -0.526 + 0.021
1.35 | =0,390 + 0,029 | -0,715 & 0.031 | -0.517 + 0,025
1.47 | -0,377 + 0,025 | -0.584 + 0,028 | -0,450 ¢ 1,021
1.61 | -0,360 ¢ 0,022 | -0,589 + 0,025 | -0.430 0,019
1.77 | -0.353 + 0,020 | -0.583 + 0,022 | -0.447 £ 0,017
1.96 | -0.349 + 0.019 | -0.530 # 0,021 | -0.363 ¢ 0,017
2,20 | -0.305 £ 0,017 | -0.405 + 0,019 | -0.285 + 0,015
2,47 | -0,202 + 0,015 | -0.330 ¢ 0.017 | -0,210 + 0,014
2.80 | -0.195 + 0,012 | -0.248 + 0,014 | -0,138 + 0.011
3.20 | -0.134 + 0,009 | 0,115 ¢ 0,011 | -0.040 ¢ 0,009
3.65 =0,077 £ 0,007 =0,030 + 0,000 0,000 + 0,007
3.96 | -0.068 £ 0,010 | -0.011 + 0,012 0.002 £ 0,010
4,13 | -0,056 + 0,009 0.007 + 0,012 0,000 £ 0,009
4.29 | =D,037 1 0,000 0,008 + 0,011 0.016 £ 0,000
4.42 | -0,088 £ 0,000 | -0.015 « 0,011 0,011 + 0,009
4,53 | -0.033 + 0,008 0,003 £ 0,010 0.029 £ 0,009
4.67 | -0,031 £ 0,007 | -0.002 £ 0,000 0,001 + 0,007
4.81 | -0,018 £ 0,005 | -0,018 £ 0,006 0,003 £ 0,005
4,99 -0,018 = 0,004 0,000 £ 0,008 0,002 £ 0,004
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Table 6.2

Semi-inclusive correlation function Cy(n,,n,) at fixed n;, at the
energy Vs = 23 GeV. Nohg 15 the observed multiplicity and ny, e
is the corresponding mean true charged multiplicity. The corre-
lation matrix has been symmetrized with respect to both diagonals.

C,(ny,n,) for njy o = 14, 15 (n = 14.0)

My

n, = 0.0 n, = -0.87 n, = -1.96

-4.99 -0.019 + 0,006 -0,029 £ 0.007 -0.029 + 0,005
-4.82 -0,026 + 0.007 ~-0.004 £ 0,010 -0,022 £ 0,006
~4.67 -0.037 + 0,010 -0,057 + 0,011 -0.039 £ 0,008
~4,53 -0,042 + 0,012 -0,079 ¢+ 0,013 -0.043 £ 0,010
-4.42 0,055 + 0,013 -0,088 = 0,015 -0,071 + 0,010

-4.29 | -0.055 + 0.013 | -0,08% + 0,014 | -0,090 + 0.010
-4.13 | -0.086 + 0,014 | -0,124 £ 0,016 | -0,088 + 0.011
-3,96 | -0.099 + 0,015 | ~0,143 + 0.018 | -0.097 £ 0,013
-3,65 | =0.097 £ 0,012 | -0.124 % 0,014 | -0,087 + 0,010
~-3,21 -0,219 + 0,017 -0,220 + 0,020 -0,029 + 0,016
-2.80 | -0.347 + 0.023 | -0,249 £ 0,028 0.020 + 0,022
-2.47 | -0.433 & 0,030 | -0,234 * 0,037 0,129 £ 0.029
-2.20 | -0.537 + 0.036 | -0.147 £ 0,045 0,250  0.035
~1,97 -0,668 * 0,042 ~0,235 + (1.052 0,388 + 0,042
-1.77 | -0.698 + 0.046 | -0.106 * 0.058 0.283 + 0,045
-1.061 -0,644 + (1,052 ~(,002 + 0,065 0,293 £ (0,050
-1.47 -0,743 + 0,059 -0.124 + 0,073 0,051 + 0,055
~1.35 -0,671 £ 0,069 0,134 + 0,085 0,039 £ 0,063
-0.87 -0.407 = 0,059 0,354 + 0,072 ~0,111 + 0,052
-0,61 | -0.094 + 0,055 0,376 + 0,067 | -0,228 + 0.048
0,32 0.158 + 0,053 | -0.114 £ 0,061 | -0.518 + 0,043
0,00 0,236 + 0,052 | =0,327 £ 0,059 | -0.629 * 0,042
0.32 0.158 + 0,053 | -0.500 % 0,060 | -0.595 + 0,043
0.61 -0.,094 + 0,085 -0,878 + 0,062 -0,786 £ 0,045
0.87 | -0.407 + 0,059 | ~1.356 % 0,065 | -0,966 + 0,048
1,35 | =0.671 + 0,069 | =1.377 + 0,077 | -0,970 ¢ 0,057
1.47 ~01,743 + (1,059 ~1.156 * 0,067 -0.783 + 0,050
1,61 | -0.644 + 0,052 | -1.195 + 0.059 | -0,602 + 0,044

1.77 0,698 + 0,046 ~-0,963 + (1,053 -0.552 + 0,040
1.96 0,668 £ 0.042 -0.849 + (0,049 -0.529 * 0,037

2,20 -0.537 £ 0,036 ~-0,744 * 0,042 -0,375 + 0,032
2.47 -0.433 £ 0,030 ~-0.434 £ 0,036 -0,205 + 0,027
2,80 0,347 £ 0,023 -0,297 £ 0,028 =0.099 + 0,021
3,21 -0,219 £ 0,017 -0,172 £ 0.020 -0,004 + 0,016
3.65 -0.097 £ 0,012 -0.035 + 0,015 -0.010 £ 0,011
3.96 -0,099 + 0,015 0,000 £ 0,020 0.053 + 0,016
4,13 -0,086 £ 0,014 -0,024 £ 0.017 0.055 * 0,014
4.29 -0,055 £ 0,013 -0.020 £ 0,016 0,032 + 0,013
4.42 -0.055 £ 0,013 -0,013 £ 0,017 0,024 = 0,013
4,53 -0.042 + 0,012 -0,022 £ 0.015 0,013 + 0,012
4.67 -0.037 £ 0,010 -0,013 £ 0.012 0,007 £ 0,010
4.81 -0,026 = 0,007 -0.020 + 0,009 -0,005 £ 0,007

4.99 -0,019 = 0,006 -0,001 £ 0,008 0,001 = 0,006
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Table 6.3

Semi-inclusive correlation function Cn(n,,n,) at fixed n,, at the
energy Vs = 23 GeV. Dopg 18 the observed multiplicity and ngp 0

is the corresponding mean true charged multiplicity. The corre-
lation matrix has been symmetrized with respect to both diagonals.

Cn(nl,nz) for Nops = 20, 21 (n = 21.7)

true

n, = 0.0 n, = -0.87 n, =1.96

-4.99 -0.026 * 0.016 -0.029 + 0.019 -0.006 £ 0,013
-4.82 -0.031 + 0,024 -0.006 = 0.029 0.022 + 0.021
-4.,67 -0.043 £ 0.030 | -0.124 & 0,030 -0.014 + 0.024
-4.53 -0.065 + 0,033 -0,155 + 0,033 ~0.063 + 0.024

I+

I+

-4.,42 -0.060 + 0,041 ~-0.081 * 0.046 -0,065 + 0.030
-4,29 -0,135 + 0.041 ~0,171 = 0.046 ~0.065 + 0.033
-4,13 -0.,125 £ 0.038 ~0,153 £ 0,043 -0,029 + 0.031

I+
+

-3.96 -0.178 + 0,050 ~0.261 = 0.056 -0,073 = 0.040
-3.65 -0,192 £ 0,036 -0.262 + 0,041 -0,129 + 0.028
-3.21 -0.425 £ 0.050 -0.484 + 0.057 -0.095 + 0.040
-2.80 -0.579 + 0.073 ~-0.488 = 0,085 0.039 £ 0,060
-2.47 -0,781 £ 0.097 ~0.307 + 0.115 0.198 + 0.081
-2.20 ~-1.017 £ 0.129 -0,474 + 0,116 0.392 = 0,108
-1.97 -1,506 = 0,163 -0.789 + 0,193 0.417 = 0,137
-1.77 -1.237 + 0.183 -0.642 + 0.215 0,312 + 0,149
-1,61 -1.348 + 0,211 -0,191 + 0,251 0.362 + 0.172
-1.47 -1.406 = 0.254 -0.205 + 0,301 -0.071 = 0.202
~1.35 -0.982 + 0.283 0.643 = 0,337 0.474 + 0,226
-0.87 -0,668 + 0,253 0,874 = 0.299 -0.479 + 0,193
-0.61 -0,210 £ 0,238 0,391 = 0.277 -0.674 = 0,179
-0.32 0.405 £ 0.230 0.022 + 0,261 -1.102 = 0.167
0.00 0.753 + 0,226 -0.112 + 0,253 -0.970 £ 0.164
0.32 0.405 £ 0.230 -0.815 * 0,256 ~-0.780 = 0,169
0.61 -0,210 = 0,238 -1.767 * 0.265 -0,948 + 0.177
0.87 -0.688 £ 0.253 -2.448 + 0,279 -1.405 £ 0,187
1.35 -0.982 = 0,283 -2.659 £ 0,312 ~1,541 + 0,208
1.47 -1.406 = 0.254 -2.373 + 0,285 -0,912 *+ 0.194
1.61 -1.348 = 0,211 ~2,127 + 0,237 -1.065 = 0,160
1.77 -1.237 £ 0,183 -1.757 £ 0,207 -0.834 £ 0,140
1.96 -1.506 *+ 0.163 -1,310 £ 0,190 -0,716 £ 0,127
2.20 -1.017 = 0.129 -1.296 + 0,147 -0,557 + 0,100
2.47 -0,781 + 0,097 -0,564 £ 0.113 -0,059 = 0.078
2.80 -0.579 = 0.073 -0,238 * 0,087 -0.003 = 0,059
3.21 -0,425 = 0.050 -0.281 + 0,059 ~-0.008 + 0.042
3.65 -0.192 = 0,036 -0.061 £ 0.044 0.078 £ 0.031
3.96 ~-0.178 = 0.050 ~0.037 £ 0.062 0.087 + 0,045
4.13 ~-0.125 + 0.038 -0.112 £ 0,045 ~-0.012 + 0.032
4,29 -0.135 = 0.041 -0.012 = 0.054 0,074 + 0.039
4.42 ~-0.060 + 0,041 -0.028 = 0,049 0.039 £ 0.036
4,53 -0,065 ¢ 0,033 0,050 + 0.044 0.019 + 0.029
4.67 -0.043 = 0,030 0.005 + 0,037 0.011 = 0.025
4,81 -0,031 + 0.024 -0.070 + 0.025 0.006 £ 0.019
4.99 -0.026 + 0,016 -0.016 + 0.020 0.004 £ 0,002

I+
I+

+
I+

I+

+

i+
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Table 7.1

Semi-inclusive correlation function Cn(n1’nz) at fixed n;, at the
energy /s = 62 GeV. ngLg is the observed multiplicity and ngpye-
is the corresponding mean true charged multiplicity. The corre-

lation matrix has been symmetrized with respect to .both diagonals.

Cn(”x’”z) for Nhs = 10, 11 (ntrue = 8.1)

Ny

n, = 0.0 n, = -0.87. n, = -1,96

-4.99 -0.032 + 0,007 -0.051 + 0,009 -0,061 £ 0.007
-4.82 -0.042 + 0,009 -0,066 = 0.010 -0.074 = 0.008

-4.67 | -0.041 + 0,010 | -0,082 + 0,012 | -0,060 = 0,010
-4,53 | =0.070 £ 0.011 -0,075 + 0.013 4 -0,083 + 0,011
-4.,42 | -0.070 £ 0.013 | -0.097 £ 0,015 | -0.042 £ 0.014
-4,29 | -0.10%3 + 0.011 | -0.088 # 0.014 | -0.046 + 0.012
-4.13 | -0.117 + 0.012 | -0.102 ¢+ 0,015 | -0,030 *+ 0,013
-3.96 | -0.141 % 0,011 -0.115 + 0.014 | -0,037 + 0.013
-3.65 | -0,139 + 0.008 | -0,062 £ 0.011 0.050 % 0.010
-3.21 -0.191 £ 0.009 | -0.050 % 0,012 0.108 + 0.011
-2.80 | -0.220 + 0.010 | -0.088 % 0.013 0.148 + 0.013
~2.47 | -0.226 % 0.011 -0.046 = 0,015 0,172 + 0,014

-2.20 -0.216 + 0.012 -0.019 = 0.016 0.206 £ 0,015
-1.97 -0.211 + 0.013 0.066 = 0.019 0,228 £ 0,017

-1.77 ~-0.189 + 0.015 0.056 = 0,020 0,214 £ 0,018
-1.61 -0.,135 + 0,016 0,080 + 0.021 0,182 + 0.019
-1.47 0,139 + 0,018 0.147 £ 0,024 | 0.156 ¢ 0.021
-1.35 -0.115 + 0,021 0,150 £ 0,028 0,091 £ 0,023
-0,87 -0.017 + 0.018 0.271 + 0.023 | 0,080 £+ 0,019
-0.61 0.088 + 0,017 0,214 + 0,021. | =0.036 + 0.016

-0.32 0,138 + 0,016 0.103 £ 0,019 -0.103 £ 0,014
0.00 0,203 = 0,016 -0.023 + 0.017 -0,168 + 0.013
0.32 0.138 * 0.016 -0.085 £ 0,017 -0,224 + 0,013
0.61 (1.088 * 0,017 -0.185 £ 0,018 0,301 + 0.014
0.87 -0.017 £ 0.018 -0.231 £ 0.019 -0.341 + 0.015

1.35 -0.115 % 0,021 ~0,373 £ 00,022 -0.393 + 0,018
1.47 ~-0.139 * 0,018 -0.372 £ 0,019 -0.360 = 0,015
1.61 -0,135 4 0,016 -0.373 + 0,017 -0,348 £ 0,014

1.77 | -0.189 * 0.015 | -0.380 + 0.016 | -0.371 * 0,013
1.96 | =0.211 + 0.013 | -0.390 £ 0.015 | -0.351 + 0,012

2.20 -0.216 = 0,012 -0.390 £ 0,013 -0.328 £ 0.011
2.47 -0,226 £ 0,011 }. -0.385 + 0.012 -0.346 £ 0.010
2.80 -0,220 £ 0.010 -0,361 = 0,011 -0,316 = 0,009
3.21 -0.191 £ 0.008 -0,312 = 0.010 -0.261 * 0,008
3,65 -0.139 = 0.008 -0,215 = 0,009 -0.164 * 0,008
3.96 -0.141 = 0,011 -0,171 = 0,013 -0.143 = 0,011
4.13 -0,117 + 0,012 -0.128 + 0,014 -0.119 = 0.012
4.29 -0.103 = 0,011 -0,093 = 0,014 -0.095 = 0.012
4.42 -0.070 £ 0,013 -0,114 £ 0.015 -0.039 = 0.014
4,53 -0,070 £ 0,011 -0.092 + 0,013 -0,041 = 0,012

I+

4.67 ~0.041 .+ 0.010 ~0.057
4.81 -0.042 = 0.009 -0.040
4.99 | -0.032 £ 0.007 -0.018 = 0,009 : 0.005

+

0.012 -0,022 = 0.011
0.011 -0.005 = 0,010
0,008

I+

+
=+
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Table 7.2

Semi-inclusive correlation function Cn(nl,nz) at fixed n,, at the
energy Vs = 62 GeV. Nohg 15 the observed multiplicity and Nerue
is the corresponding mean true charged multiplicity. The corre-
lation matrix has been symmetrized with respect to both diagonals.

. Cn(nl,nz) for Nops = 20, 21 (ntrue = 18.8)
2
n, = 0.0 n, = ~0.87 n = -1.96
-4.99 -0.070 + 0,011 -0,116 + 0,013 -0.120 + 0,011
-4,82 -0.066 + 0,015 -0,141 + 0.018 -0,118 + 0.015
-4,67 -0.100 + 0,019 -0,118 £ 0,022 -0,127 £ 0,019
=4,53 -0,155 + 0,021 ~0,131 + 0,026 -0.185 + 0,022
-4,42 -0,152 + 0.025 ~0,155 + 0,031 -0.161 + 0,026

-4,29 -0.128
-4.13 -0.194

I+

0.023 | -0,187 + 0.028 | -0,151 + 0.024
0.025 -0.237 + 0.029 -0,172 + 0,025
-3,96 | -0,242 ¢ 0,025 | -0.272 + 0,030 | -0.168 + 0.026
-3.65 | -0,220 + 0,020 | -0.164 + 0,024 | -0,003 + 0,021
-3.21 | -0,395'% 0,025 | -0,138 + 0,031 0.225 + 0.027
-2.80 | -0.526 + 0.031 | -0.140 * 0.038 0,352 + 0,034
-2.47 | ~0.639 £ 0,037 | -0.082 £ 0,047 0,662+ 0,043
-2.20 | -0.651 % 0,042 0.123 + 0,053 0,779 + 0,048
-1.97 | -0.725 % 0,046 0,197 + 0.058 | 0,941 + 0,053
-1.77 | -0.690 + 0.049 0,380 + 0,063 0.874 + 0,056
-1.61 -0,607 = 0.053 0.446 + 0.068 0,690 £ 0,060
-1.47 | -0.570 £ 0,059 0.404 % 0,075 0.433 £ 0,065
~1,35 | -0.447 + 0.068 0.630 + 0.086 0.646 + 0,074
-0.87 | -0.108 + 0,056 0.700 + 0,070 0,206 + 0,058
-0.61 0.143 * 0.052 0.638 + 0.064 -0,015 + 0,053
-0.32 0.304 £ 0,049 0,141 + 0,058 | -0,407 £ 0,048
0.00 0.489 + 0,048 | -0.041 £ 0,056 | -0.503 + 0,046

[T TS
[E S S T O PR Y [T

i+

0.32 0.304 £ 0,049 -0.281 £ 0,057 -0.668 + 0.047
0.61 0.143 + 0,052 -0,861 + 0.059 -0.942 * 0,049
0.87 -0,108 + 0,056 -1.077 + 0.064 -1.336 + 0,053
1.35 | -0,447 + 0,068 -1.555 + 0,076 -1.525 + 0,064

1.47 -0,570 £ 0,059 -1.545 £ 0,067 -1.362 = 0.057
1.61 -0.607 £ 0,053 | -1,404 £ 0,061 -1.352 + 0.051
1.77 -0.690 = 0,049 -1.492 + 0.056 -1.410 + 0,047
1,96 -0.725 ¢ 0.046 -1.512 + 0.052 -1.303 + (0,044

+
+

i+

2,20 -0,651 = 0,042 -1.215 + 0.048 -1.,111 + 0,041
2.47 -0.639 * 0.037 -1.125 + 0,043 -0,980 + 0,037
2.80 -0.526 % 0.031 -0,833 £ 0.036 -0,720 £ 0,031
3.21 -0.395 + 0,025 -0.550 + 0,029 -0.461 + 0.025
3,65 -0.220 £ 0,020 -0.278 + 0.023 -0.184 + 0.020
3.96 | -0,242 + 0.025 ~0.224 = 0,030 -0.133 £ 0,026
4,13 -0.194 . 0.025 -0,227 + 0,029 -0.087 + 0,026

4.29 -0,128 = 0,023 -0.120 + 0,028 -0.075 £ 0,024

4.42 -0,152 + 0,025 -0,080 £ 0,031 -0,012 + 0,028
4,53 | -0,155 % 0,021 -0.148 *+ 0,026 -0.030 + 0,023
4,67 -0.100 = 0,019 -0,083 £ 0,023 0,011 + 0,020
4.81 | -0.066 + 0,015 -0,037 + 0,019 0.018 + 0,017

4.99 -0.070 * 0,011 -0,010 + 0,015 -0.010 £ 0,013
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Table 7.3

Semi-inclusive correlation function Cn(n1’nz) at fixed n,, at the
energy Vs = 62 GeV. n,ps is the observed multiplicity and np, .0
is the corresponding mean true charged multiplicity. The corre-
lation matrix has been symmetrized with respect to both diagonals.

= 30.8)

Cn(nl,nz) for Nbs 30, 31 (ntrue

n, i
n, = 0.0 n, = -0.87 n, = -1,96

I+

-4.99 -0.085 £ 0.035 -0,129 + 0,041 -0.,105 + 0,033
-4.82 -0.127 + 0.034 -0.256 = 0,037-} -0.171 £ 0.031

-4.67 | -0.248 + 0,046 | -0,307 £ 0,053 | ~0,234 + 0.044
-4.53 | -0.188 £ 0.059 | -0,220 + 0,069 | -0.196 * 0.057
4,42 | -0,294 £ 0,065 | -0.433 % 0,074 | -0,207 + 0.064
-4.29 | -0.308 * 0,059 | ~0,410 % 0.069 | -0,292 * 0,057
-4.13 | -0.328 + 0,064 | -0.489 + 0,074, | -0.358 + 0.061

-3.96 ~0,345 = 0.065 -0.413 + 0.076 -0,186 + 0,064
-3.65 ~-0,444 + 0.048 ~-0.413 + 0,058 -0,292 + 0.048
-3.21 -0.867 + 0,072 | -0.549 + 0.086 -0.118 + 0.073
-2.80 ~-1.090 = 0.101 -0.678 + 0,121 | 0,198 + 0.103
-2.47 ~1.054 = 0,127 -0.209 £ 0,153 0.623 £ 0.130
-2,20 -1.306 + 0.148 ~0.010 + 0,180 ° 0.983 * 0,153
-1.97 -1.333 + 0,171 0.717 £ 0,211 1.067 * 0,176
-1.77 -1.304 + 0.189 0.913 + 0.232 1,843 £ 0,196
-1.61 -1.238 = 0,204 0.739 + 0,250 1,025 = 0,208
-1.47 -1.207 + 0,222 0.919 = 0,272 1.014 + 0,226
-1.35 -0.934 + 0,245 1.491 £ 0.300 1.080 £ 0.247
-0.87 -0,188 + 0,213 | 1.745 % 0,258 0,842 + 0,211
-0.61 0.147 £ 0.196 1.123 + 0,234 -0.165 + 0,189
-0.32 0.993 + 0.189 0,332 + 0.219 -0.467 £ 0,177
(.00 0.852 = 0.186 -0,015 ¢ 0,215 -0.871 + 0.173

1+

I+

0.32 0.993 + 0,189 -0.107 + 0.217 -1,013 +.0.175
0.61 0.147 = 0,196 ~1.457 + 0,224 -1.508 £ 0.183
0.87 -0,188 + 0,213 ~2.555 + 0,241 -2.291 + 0,197
1.35 -0.934 + 0,245 -3.044 £ 0.278 -2,520 £ 0,228
1.47 -1.207 + 0,222 ~-3.008 + 0,253 ~2.695 * 0.207:
1.61 -1.238 + 0,204 ~-2.836 * 0,234 -2.473 £ 0,191
1.77 -1.304 * 0.189 ~3.496 + 0,212 -2.857 + 0,174
1.96 -1.333 + 0,171 -2.632 + 0,196 -2,134 = 0,161
2.20 -1,306 £ 0.148 -2.457 + 0,170 -1.586 * 0.141

2.47 -1.054 + 0.127 -1.839 * 0,146 ~-1.355 = 0,121

2.80 -1.090 + 0.101 -1.179 + 0.119 -0.790 *+ 0.099
3.21 -0.867 + 0.072 -0.914 + 0.084 -0.580 * 0.070
3.65 -0.444 + 0,048 ~0.488 * 0,057 -0.220 £ 0.048
3.96 -0.345 + 0.065 -0.353 + 0,077 =0,167 * 0.065
4.13 -0,328 + 0.064 -0.217 + 0,077 0.031 + 0,066
4.29 -0.308 + 0.059 -0.291 + 0,071 -0,100 = 0,060
4,42 -0.294 £ 0.065 -0,289 + 0,077 -0.105 = 0,066
4.53 -0.,188 £ 0,059 -0,125 £ 0.071 0,044 + 0,061
4,67 -0.248 + 0,046 -0,270 £ 0.054 -0.102 £ 0.047
4.81 -0.127 + 0.034 -0,185 + 0,039 -0,045 * 0,034

4.99 |.-0.085 + 0.035 ~0.081 + 0,042 | -0,081 + 0.034
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Figure captions

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1

2

4

6

Layout of the experiment showing the location of hodoscopes H;, H,,

Hy, H,, TB, and L.

Hodoscope structure showing the subdivision into polar and azimuthal
regions of H,, H,, H;, H, (¢-hodoscopes), and of H,0, H,0
(6-hodoscopes).

Single-particle density versus n at /s = 23 GeV.

®: (H,). @®: (H, +L). Raw data from this experiment.

o: (4,). O: (H, +L). Results of our Monte Carlo calculation
using, as input, data from ISR!?) and
FNAL2O),

a) Inclusive distribution p(l)(n).

b) Semi-inclusive distribution pél)(n), with n = observed multi-

plicity = 14, 15, 16.

Uncorrected multiplicity distribution Pn versus n = observed multi-

plicity at Vs = 23 GeV,

@®: Data from this experiment,

O: Results from the Monte Carlo calculation using, as input, data
from FNAL2D),

The solid line shows the shape of the input multiplicity distri-

bution from which the Monte Carlo results were obtained,

Fraction of events Pm of true charge multiplicity m which contribute
to events of fixed observed multiplicity n. The arrow indicates the
value of the observed multiplicity which is n = 14, 15 in (a) and
n = 30, 31 in (b). The data are from theIMonte Carlo calculation

at /s = 62 GeV,

Inclusive two-particle correlation function C(n,,n,) versus n, at
n, = 0.
a) Vs =23 GeV; b) Vs = 62 GeV,

Semi-inclusive single-particle densities pél)(n) versus n. The
errors shown are systematic and arise from the uncertainty in the

Monte Carlo calculation of efficiencies. Statistical errors are

negligible.
a) Vs = 23 GeV.
"w: observed n = 10, 11 (true n = 9,1)
0 : observed n = 14, 15 (true n = 14,0)
®: observed n = 20, 21 (true n = 21.7).




Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

b) Vs = 62 GeV.

¥ : observed n = 10, 11 (true n = 8.1)
O: observed n = 20, 21 (true n = 18.8)
@®: observed n = 30, 31 (true n = 30.8).

Semi-inclusive correlations, Cn(nl,nz), versus N, for fixed n, at
/s = 23 GeV.

a) n, =0; b) np=-0.87; ¢) ny =-1.96.

10, 11 (true n = 9.1)

14, 15 (true n 14.,0)

20, 21 (true n 21.7).

V¥: observed n

O: observed n

@®: observed n

Semi-inclusive correlations, Cn(nl,nz), versus T, for fixed my at
Vs = 62 GeV.
a) n, =0; b) n; =-0.87; c¢c) n; =-1.96.

¥: observed n = 10, 11 (true n = 8.1)
{1: observed n = 20, 21 (true n = 18.8)
®: observed n = 30, 31 (true n = 30.8).

Short-range part of the inclusive correlation function

Zn anCn(nl,nz) and long-range '"crossed term'",

Zn @n[p(l)(ﬂl) - pﬁl)(nl)][p(l)(nz) - pgl)(nz)], both versus n, for
n, = 0. The decomposition of C(n,,n,) refers to Eq. () of the text.
a) Vs = 23 GeV; b) Vs = 62 GeV.

@®: short-range correlation '

00: 1long-range "crossed term".

Correlation function CII(n1 - n,) versus the rapidity difference
(ny, - n,). This correlation function is defined in Eq. (20) of the
text, ’

a) Vs = 23 GeV; b) /s = 62 GeV.

®:  Data from this experiment

O: Data from Ref. 18.

An/pél)(O)lversus true charged multiplicity n.  The coefficient An
is defined in Eq. (23) of the text. The quoted errors are as de-
rived from the best fit procedure to the Cn data,

®: Vs = 23 GeV

O: Vs = 62 GeV.




Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17
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Bn versus true charged multiplicity n. The coefficient Bn is de-
fined in Eq. (23) of the text. The quoted errors are as derived
from the best fit procedure to the Cn data,

®: Vs =23 Gev

O: Vs =62 GeV.

An/pél)(O) versus n/(n). An is defined in Eq. (23) of the text and
n is the true charged multiplicity.

®: /5 =23 Gev

O: /s =62 GeV,

Bn versus n/(n). Bn is defined in Eq. (23) of the text and n is the
true charged multiplicity.

®: Vs = 23 GeV

O: Vs = 62 GeV,

The short-range part of tze semi—inclusive correlation C:(nl,nz)
versus N, with n; = 0. Cn(nl,nz) is defined in Eq.. (24) of the
text., The solid line represents the Gaussian function, '

An exp [—n2/262] with § = 0,85 which is discussed in the text. n is
the observed charged multiplicity.

a) Vs = 23 Gev, '

A: n=10, 11
O: n=14, 15
®: n =20, 21.
b) Vs = 62 GeV.
A: n=10, 11
O: n=20, 21
®: n = 30, 31,

Cluster moment {k(k — 1))/{k) versus n/(n). k is the cluster decay

multiplicity and n is the true charged multiplicity. (See text for

discussion.)

®: /s = 23 GeV
O: Vs = 62 GeV.
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