SHAPE TRANSITION BETWEEN 187Pt AND 185Pt

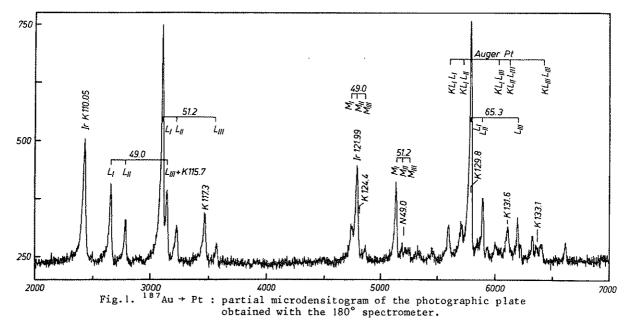
- [1] C. Bourgeois, M.G. Desthuilliers, P. Kilcher, Jocelyne Letessier, J.P. Husson and the ISOCELE collaboration
 - V. Berg, Å. Höglund**, A. Huck[†], A. Knipper[†], C. Richard-Serre^{††}, C. Sébille-Schück** and the ISOLDE collaboration
- [2] M.A. Deleplanque, C. Gerschel, M. Ishihara +++, N. Perrin et B. Ader Institut de Physique Nucléaire IN2P3 91406 ORSAY

INTRODUCTION.

Results obtained using the ¹⁷⁴, ¹⁷⁶Yb(¹⁶O,5n) reactions at the Orsay variable energy cyclotron [1,2] have shown in ¹⁸⁷Pt a decoupled band probably built on the 13/2⁺ state and in ¹⁸⁵Pt a normal band on the 9/2⁺ state which indicates a transition from an oblate shape in ¹⁸⁷Pt to a prolate one in ¹⁸⁵Pt; this may be compared with the oblate-prolate shape transition occuring between ¹⁸⁸Pt and ¹⁸⁶Pt [3]. Simultaneously, ¹⁸⁵, ¹⁸⁷Pt nuclei were studied by radioactive decay from Au using the mass separator ISOCELE on line with the Orsay synchrocyclotron. Preliminary results on the ¹⁸⁷Pt level scheme were given at the SFP conference [2]; further experiments at ISOLDE-CERN allow now to give more data on ¹⁸⁷Pt and to present the level scheme of ¹⁸⁵Pt.

EXPERIMENTAL PROCEDURES.

 γ - γ coincidences and e⁻⁻ γ multipolemeter data were recorded at the ISOCELE facility (the gold activity was obtained either by Au(p,xn)Hg \rightarrow Au or by PtB(p,xn)Au reactions); electron detection was


improved by use of a magnetic selector [4]. A double lens magnetic spectrometer [5] was used at Orsay and CERN for $e^--\gamma$, e^--e^- coincidences and lifetime measurements.

The conversion electron lines of $^{187}\mathrm{Au}$ decay were detected off-line at ISOLDE with better resolution by use of a 180° flat spectrograph (fig.1).

EXPERIMENTAL RESULTS.

+ The decay of ¹⁸⁷Au (T1/2 \simeq 8 mn): the level scheme of ¹⁸⁷Pt is given on fig.2. The ground state spin has been found by H. RUBINSZTEIN et al.[6], to be 3/2 in an experiment using ABMR method; other spin assignments are supported by transition multipolarity measurements. The M2 character of the 260 keV transition ($\alpha_{\rm K}$ = 1.2 ± .4) and the coincidences of the K 260 electron line with the 247 and 834 keV γ transitions indicate a 7/2+ level at 260 keV.

The P(E2) and P(M1) values presented in Table I have been calculated using the low energy transition multipolarities determined by the electron results

- []] radioactivity studies
- [2] (HI,xn) reaction studies
- " C.S.N.S.M. ORSAY France
- Institute of Physics, University of Stockholm, Sweden
- + C.R.N. Strasbourg France
- ++ IN2P3 CERN
- +++ Institute of nuclear study, TOKYO, Japan

E Level (keV)	Texp 1/2 (ns)	E _γ (keV)	Multipolarity	P _{exp} a	P _{sp} a,b	F _{sp} a,c
25.6	0.7	25.6	MI E2 (0.4%)	1.2 (7) 4.8 (4)	4.9 (8) 8.8 (2)	40 1.8 (-2)
51.2	0.3	51.2	M1 E2 (0.8%)	2.3 (8) 1.8 (6)	3.9 (9) 2.8 (4)	17 1.5 (-2)
57.2	20	31.6	MI	9.5 (5)	9.2 (8)	970
74.6	0.5	49.0	M1 E2 (5.7%)	2.0 (7) 1.2 (6)	3.4 (7) 2.3 (4)	1.7 1.8 (-2)
		65.3	M1 E2 (2.5%)	1.5 (8) 3.7 (6)	8.1 (7) 9.5 (4)	0.6 2.5 (-2)
		74.5	M1 E2 (2%)	4.1 (7) 8.4 (5)	1.2 (8) 1.8 (5)	2.9 0.2

obtained with the flat spectrometer and the lifetime measurements.

+ The decay of 185 Au (TI/2 $^{\circ}$ 4 mn): we may construct two level sequences rather independent, one of them built on the high spin positive parity system already seen in (HI,xn) reaction, and the other on a low spin state (fig.3).

The decay of 185 Pt produced at the Orsay Tandem accelerator by 177 Yb(16 O,5n) feeds the high spin states of 185 Ir [7] with a period 11 /2 = 70 mn: this result confirms the assumption of a 9/2 band head for the high spin system in 185 Pt. A low spin isomeric state is suggested since the low spin states of 185 Ir are fed with the period of 11 /2 = 30 mn: this state is tentatively put at 129 keV.

<u>Table 1.</u> Experimental lifetimes and hindrance factors for gamma ray transitions between low lying states of ¹⁸⁷Pt.

- a) The number in parenthesis means the power of 10.
- b) The theoretical single-particle transition probabilities are obtained by:

$$P_{sp}(MI) = 2.9 \cdot 10^{13} \cdot E_{\gamma}^{3} (MeV)$$

 $P_{sp}(E2) = 7.47 \cdot 10^{7} \cdot A^{4/3} \cdot E_{\gamma}^{5} (MeV)$

c)
$$F_{sp} = \frac{P_{sp}}{P_{exp}}$$

DISCUSSION.

+ The ¹⁸⁵Pt nucleus: the rotational band 9/2+ [624] in the nuclei $(N=107, 2\leqslant 78)$ exhibits a strong coupling pattern which indicates a well deformed prolate shape; we may note that the Coriolis perturbation seems to increase with Z (fig.4).

The N = 107 single particle state systematics presented on fig.5 suggest that $\label{eq:total_system}$

i) the isomeric state in 185 Pt, tentatively placed at 129 keV, is the $1/2^-$ [521] state and the 226.7 keV level the 5/2 $1/2^-$ [521] rotational state: the energy of the transition $5/2^- + 1/2^-$ (97.7 keV) is very similar to those of 181 Os (102.7 keV), 179 W (96.7 keV) and 181 W (103 keV) [8,9,10].

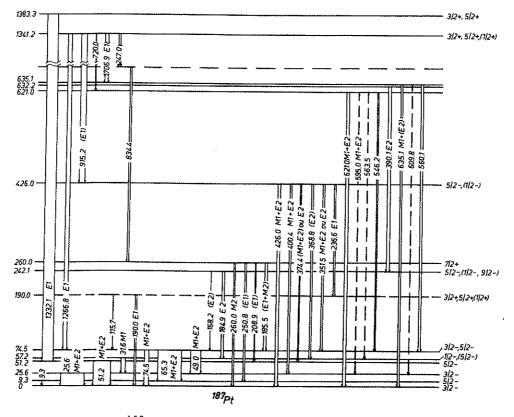


Fig.2. $^{1\,8\,7}\text{Pt}$ level scheme obtained by radioactivity.

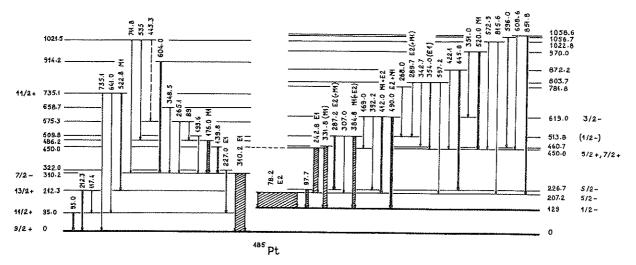


Fig. 3. 185Pt level scheme obtained by radioactivity: the 1/2 isomeric state is tentatively placed at 129keV.

- ii) the states at 207.2 keV, 513.8 keV and 619 keV may be respectively the $5/2^-$ [512], $1/2^-$ [510] and $3/2^-$ [512] states.
- + The 187Pt nucleus: On the fig. 5, the experimental decoupled 13/2+ band [1] is compared to the level system expected from coupling an i13/2 neutron hole to a triaxial rotating core [11]. A rather good agreement is found for an asymmetry parameter y=35°.

agreement is found for an asymmetry parameter Y=35°.

The unfavoured antialigned 7/2+ state observed at 305 keV above the 13/2+ level in ¹⁹¹Pt [12] decays towards a 11/2+ level; the 7/2+ state at 260 keV in 187Pt has a different decay mode and seems rather low to be such a state.

No member of the 13/2⁺ system is seen in radioactivity; this may be explained by the internal transition of the high spin isomeric state of ¹⁸⁷Au [13] contrary to the heavier odd-mass gold isotopes.

About the low lying states of $^{1\,8\,7}\text{Pt}\text{,}$ we may see in Table 1 that :

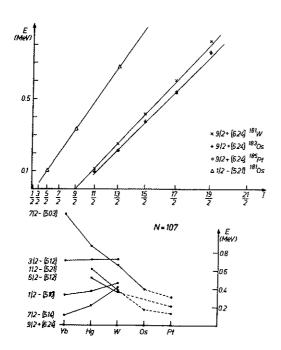


Fig. 4. Up : behaviour of some rotational bands in N = 107-105. Down : systematics of Nilsson single-particle state in the N=107 isotones.

- i) there is no pure E2 transitions between these states;
- ii) the 25.6, 51.2, 49.0 and 65.3 keV transitions are enhanced relative to the single-particle E2 estimates indicating a collective character.

Acknowledgements.

We would like to thank Dr. J. Meyer ter Vehn for the communication of his quasi-particle_plus_rotor model program. The assistance of technical and scientific members of the ISOCELE and ISOLDE collaborations is gratefully appreciated.

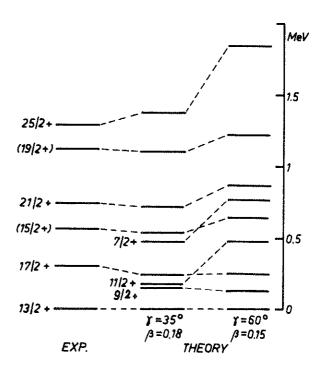


Fig.5. ¹⁸⁷Pt: comparaison of experimental and theoretical energies of decoupled 13/2⁺ band. Parameters used in the calculation are λ_F =-1.5, Δ =0.7 MeV (these parameters are defined in ref.[11]).

References

- [1] M.A. Deleplanque et al, C.R. Acad. Sc. Paris 280 (1975) 515.
- [2] M.A. Deleplanque et al, J. de Phys. C5 (1975) 36.
- [3] M. Finger et al, Nucl. Phys. A188 (1972) 369.
- [4] P. Paris and J. Treherne, Rev. Phys. Appl. 4 (1966) 291.
- [5] T.R. Gerholm, Rev. Sci. Instr. 26 (1955) 1069.
- [6] H. Rubinsztein and M. Gustafsson, Phys. Lett. 58B (1975) 283.

- [7] C. Sebille-Schück, private communication.
- [8] A. Neskakis et al, Nucl. Phys. A261 (1976) 189.
- [9] F.M. Bernthal and R.A. Warner, Phys. Rev. C11 (1975) 188.
- [10] Nuclear Data Sheet 9 (1973).
- [11] J. Meyer-ter-Vehn, Nucl. Phys. A249 (1975) 111 and 141.
- [12] T.L. Khoo et al, Phys. Lett. 60B (1976) 341.
- [13] V. Berg et al, Abstracts of the Symp. of Nuclear Structure, Balatonfüred (Sept.1975) 7.