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PION-NUCLEON SCATTERING THEORY

J. Hamilton
NORDITA, Copenhagen

Introduction

These lectures contain a selection of the topics which
may be of interest to experimenters or theorists who are
concerned with the new, and projected, very accurate low
energy TIN scattering experiments.

The selection could have been different, but there
certainly was not time for everything

The topics are:

I Low Energy 7TIN Parameters
IT Coulomb Corrections

ITT The Use of Fixed t Dispersion Relations
(Accurate Low Energy Phase Shifts)

Iv Dynamics of Low Energy 7N Scattering

v Information on g .

The standard notation of 7IN dispersion theory is
assumed. Much of the notation, and the elementary theory,
can be found in "The Dynamics of Elementary Particles and

"

the Pion-Nucleen Interaétion, Courses A and B, Nordita

Lecture Notes, Copenhagen, 1968 -~ 1970.
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I Low Energy TN Parameters

I. Introduction

We shall discuss three topics which are relevant to
high accuracy low energy TN experiments: i) parametrization
of the S-wave phases, ii) sum rules and the Pomeranchuk theorem,

2
iii) the determination of the coupling constant f: .

I.1 Parametrization of the S-wave Phases

Years ago Cini et al. (1) pointed out that the expansion
X, = &9 .,-6:.513_,__‘.‘_76‘4_ T (1=1,3)

is not a good way to fit the S-wave TIN phases oé‘(i =1,3).
These series converge poorly, and using them is an easy way
to find bad values for the scattering lengths ag, a3. Cini
et al. also pointed out that crossing symmetry gives a strong
hint about a good parametrization. Making use also of the
dominance of N;3 at low energies, we can in fact find simple
and useful formulae (2).

First we have to specify some symbols *). Let 92}&1
and iB;g be the momenta and energies of the pion in the

lab. system and the c.m.s. respectively. Then
= W

L, = Ew—M? (1)
™M

(1) M. Cini, R. Gatto, E.L. Goldwasser and M. Ruderman,
Nouvo Cimento 10, 242, (1958)

(2) J. Hamilton and W.S. Woolcock, Rev. Mod. Phys 35
p. 737 (1963)

*¥) See for example ref. (2) for notation and equations.
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where W and E are the total energy and the nucleon's energy
in the c.m.s. We shall use i, M for the (charged) pion
and nucleon masses, and we often put Mm =1 (M = 6.7). Also

the usual invariants are
S$= M4+ pT+ 2M 0
# =24 0 wp) (2)
S+t +u = ,2,/1"-/—2/"‘

where P is the 7N --IN scattering angle in the c.m.s.

The forward scattering amplitudes are j&f&&) and 7(“9)

in the lab. and c.m.s. and

Qfé%L = féi‘ (3)

In terms of the invariant scattering amplitudes A(s,t), B(s,t),

we have

I )
jLL_‘—‘,:T/A*‘%.B) j f=z:;_ﬁ1;/(4+oL3) (4)

Charge Notation and Crossing

We shall assume that the correct Coulomb corrections
and the related small corrections for mass differences etc.
have been made to the experimental data, and we shall assume
(as seems to be the case) that charge independence is then
obeyed to within a few percent. In what follows we shall
use charge independent notation.

. 3 . Gt ruy

The TN-> TN amplitudes are then written either as 7[ J'f )

where the superscript denotes the isospin T = 3/2, 1/2, or
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#+) <) . .
as { If where (+) and (-) correspond to isospin T = O

and T = 1, respectively, in the t-channel. Also
7[“‘) i ) 2 (3)
=37 +r 39

£ = 14— 47

Crossing is the exchange s &> u, t - t, and we have the

symme try
+ @)
A(’){s) ¢ty = + A (u,t)

+ —_—
BU(s’-t) = + B‘I)(a,-t) (5)

For forward scattering t =0 , and by eq. (2)

W= M pts 2Me (6)

so by eq. (4)
) *)
7L1. w ) = * 7{_ (-, (6a)

The forward amplitude in the c.m.s. is given by the

pP.w. series

Fro) = AROR (27{34““ 7[,9;‘9) *(31&»“’*21{»5‘))*‘('7)
3

L

h ) i litudes.
where ‘f:J‘ QTﬁfft&) are the partial wave amplitudes

Thus eq. (6a) suggest that when the energy is so low that
the P-waves can be neglected, a useful parametrization might

be
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W smRe )+ 2 6n Ry @ + 2@)[’*‘ 0‘?,_’)] (52)

Mk 25
e ' | (8b)
W o) — Sy Uzld,—ag)[uﬁlﬂx)j
M 29
where a3, a, are the S-wave scattering lengths for T = 3/2,1/2.

Use of Forward D.R.

We can put eqs. (8) in a firm basis and also considerably
improve them by using the once subtracted forward dispersion

relations

) * 2 P

[”L) }jéﬂ)4' (N
/1[1-,«/4”,,) W, A

4." / ‘
" [ ]
bn > i w') v, wlbw (92)

5 od
+ 9 I =) / ’
— Aw pJ/.\,'/ o (9Dp)
/«, b 'L)l. -WL
{ . (*
Here h),%’ are lab. system variables, and ¢ = 1/2 (o= i’d;,)

4+
where 0; are the total n‘ﬁ cross-sections. Also

¢)
flar = Uy Gar g o [

“
ey = () 5 (6 —ay)

b
The units are such that-% = 0,081,
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Using eq. (7) and rewriting, eq.°(9a) gives

fu Dot ) 4 2500 20 ,
'2 Moipe

and eq. (9b) gives

o P2 ) - 200 ) W

- 4 Yo, + 9> C”z%) (11b)
li M+

20

) j
oy = 2— P[ﬂ’r'wwv ot o, )

L (14 M) 7 v-0 7 bl

+ _3f°
(P (/—/‘z,,v) /w:—ﬁ*/m»)

— " -+ jA' ‘/‘IP,A (.D “lweg
l«/(/*/*/,,) Qﬁ (b +L/>'3 > 3 * (%Za)

-
ey = 2o o Pl )
D—e |
‘r‘;’[z(l*'/“/,‘) <

64 o0

. 2 L7 |
(Fh%h)(FW“th){kh"/‘4n%)

~a—

-0 R ( w2 ,-3_/53.-"‘2/433) + (D-wmaey)
w{u—/”/,,) (12b)

Here ﬁa_ o7 are the reduced P-wave p.w.a given by
- 2 —_——

bl — (2=
7—2
where o,y ,4 are the P-wave phase shifts (T = 1/2, 3/2;

J=1/2, 3/2).
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We might expect some simplifying features in the
. ¢ . .
coefficients C &D. The reason is that the S-wave amplitudes
have almost no long range N-exchange interaction whereas the
P-wave amplitudes at low energies are dominated by the long
range N-exchange interaction (see §j? below). If now we

evaluate eqs. (12) roughly by:

*

@
(1) Assuming 0 )are dominated by Niss

i.e. putting

/

0F =g Fabey 0 T =300
(ii) Usi the Chew-Low ex ressions*) for Qcﬂb
ii sing e o P 27 2
. .
then we find that [L%hi)should show litte depen-
dence on 4, up to, say, 100 MeV lab. pion energy.
The terms which have rapid energy dependence
have cancelled out in eqs. (12). A preliminary
i () (2) . ,
evaluation of C'ai)by Woolcock confirms this

result.

I.2 Fitting the S-wave Data

Isospin 3/2

L) )
Estimates (2)(3) give 4 //»9)2(‘ (#)~ =0.09 (units ){', =
c = M = 1). Since (?awulj are expected to vary slowly with
% 7 hould b 11 i
W, ) M)y - @) shou e sma up to 50 MeV or higher.

Egs. (11) give

s i

- (~
X =a; — 3 4 —ay)lo-;) + 3 41.1(5‘7“”_5 //‘“}.)) (13)

*) See ref. (2) p. 767-769 for the details

(3) V.K. Samaranayake and W.S. Woolcock, University College
London Preprint (1969), submitted to Lund Conference (1969)
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where

X — W S (20<, §
= — 3

M+ ‘2—%—— (13a)
Since the coefficient of the 7LL term is small the plot of,x
against &, should be almost a straight line in the energy
range up to 50 MeV lab. energy. This has been verified (4),

and it made possible a fairly accurate determination of the
scattering length a, (a3 = -0.091 ¥ 0.005).
With improved experimental data eq. (13) should be a

useful form for parametrizing 0%, . Writing ilﬁ;ai{-[ , We

see that the slope of the plot ‘X/“E) near threshold will be

A

R | = - :/?(al‘q’_?) + 273 (Cu.}/d "CL-Z“)) (13p)

x<

W

r

This quantity is of interest in another relation (cf. § 1.3
below) .

The basic dynamical reason why )K has a very smooth low
energy form is that the T = 3/2 S-wave scattering is mainly
caused by a strong short range repulsion. There is some
long range attraction due to (¢  -exchange and some medium
range repulsion due to IO -exchange, but the short range

repulsion dominates (cf. § IV.3 below).

Isospin 1[2

Eqs. (11) give
IRPR NN -
= = 4,+ %(4.—&\;)(%_—0 +3?)_ (C 1)4),_)4-261{1‘)) (14)

(4) J. Hamilton, Phys. Letters 20, 687 (1966)
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where — _ W 5%20(, (1kha)
- M 22
We can write
2 = 4, + (V=1) 3{@—ay+ Ty 2,
‘ &
+}’-/w‘-,)‘[é‘m(ub)+ 2C )(4,,;‘_])

(14p)

Since a, - a, > 0.275 and Chhy + 2¢ )= -0.27, the

coefficient of the linear term UQ—() is small whereas the
coefficient of the quadratic term is not small (4). For
this reason it is in practice not easy to determine a,
accurately., Certainly a linear fit to Z or o, will lead
to considerable errors. One should use a quadratic form in

(AL—I) for fitting Z at low energies.

(%)
I.3 The C Relations

Now that accurate values of the cross-sections G; are
available down to low energies, we should bear in mind the
possibility of using accurate P-wave phase shifts in order

@) ) )
to evaluate (? qu by eqgs. (12) (ignoring the D-waves).

In particular for bl?*“ we have (2)

242

o) /
wrt 3> (4 +333 + 22y, + 4a,,) —

2.

/4;[1" ’/41‘1»)
= 3_. ( _‘2' 0_(”/@’}
7? ) 7 l‘)l:..’

(15a)

C g+ ! :
hy + -;';_(4/,-#2&,3 4, - 24,,) + [_/
F0 b
M

Qo
~
13> ]df‘)/ -
4
n} 7 H/2—q

(15Db)
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= | t 7 .
where ; =1 +Vy and © 4° are lab. variables. Here
a2T',2T are the P-wave scattering lengths.

With these relations we could connect the S-wave
parametrization of § I.2 with the P-wave scattering lengths.
Various other useful relations for a — are given by

2T ,2J

H and W (2).

T.4 Sum Rules and the Pomeranchuk Theorem

(5)

There is a famous sum 1rTule

o0

L (‘4'/“/)1) ‘%(‘ﬁ—'q .=ll'_f2 / ) dl‘)l
~ 7 M4 At (=AY +2;1 5 (ot -4;109) (16)
M

*
It is derived by assuming ) (i) the convergence of the

)
integral, (ii) RL:{'L(V..)/U,__”‘>O as W_> ® , (iii) the
(--
condition [ v, - 0 as &, > °° , and a smoothness
) L Lt
condition on 0“-)/91_) for &), > oo . These enable us to

write the unsubtracted D.R.

©Q0

2
=) 21 W
QL'A_ , ) = 1 2 + 2 p/?ld“’/ )

l
2__/4."/“'; DY D or /-vJ
L

(16a)

(here 4//) i’/ are lab. variables). Now putting 4 =« gives
eq. (16).

If the Pomeranchuk theorem is untrue and 0“‘—’(4,).‘90
as = oo , eqs. (16) and (16a) are invalid. But it is

easy to modify eq. (16a) so as to get a result., Using Fig. 1

(5) M.L. Goldberger, H. Miyazawa and R. Dehme, Phys. Rev.
99, 988 (1955)

*) See, for example, Course A, p. 166 - 169
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we write

=) =)
(wy = L ( (o'
3[1_ ) 2n( fg Aw -][L ©)
]

L

L ,( Aw’ £y
e
(et bt 6,47, ) v

Letting & tend to the real axis (from above) gives the new

D.R.

) y R )
Q"'ﬁ_ w,y = f . + Mep 4'de’

74 ‘
LJ _ ‘70./‘1 2}1\. ——/7. o /Q)
_’__ {d‘\,f 74. (es)
Ani
7 wiw, (172)
where Q is some large fixed energy and _u c o, <R .
Now letting W, > gives the modified sum rule (6)
L2
2
{ ( 2 1{'1[ /
—_ l+/‘7 Zla —a — —
ow L%
(006" = 7 16")) + —— [ dw! Ti (VY
1 i 17b

R
Choosing /2 sufficiently large, we can use some asymptotic
ic form f D> i “l P, i
analytic form for 7i ) to give ‘f; w) on /4 . This

asymptotic form can violate Pomeranchuk!s theorem, if we wish.

(6) W.S. Lam and T.N. Truong, Phys. Letters, 31B, 307 (1970)
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Moreover if we now let Q go to & , the divergence in the
dispersion integral is cancelled by the integral over ’72 ,
provided 7[:.)10) obeys certain very general conditions as |&/-> o
(for example, we exclude an essential singularity in 7{_’(“ o
as lw)—> OO).
There is a rough way of seeing that the very high
energy behaviour (defined as v, =2 30 GeV) indicated by
the Serpukhov data (7) will have little effect on the
value of (a, - a3) deduced from eq. (17b). Choose R = 10 GeV.
Then it is reasonable to expect that if jefhwu is fitted
to what is known about this amplitude from 5 GeV to 30 GeV,
the values of 7[:.?1‘7) on PR. will be only a little influenced
by the particular form chosen for 7[:.)/«)) in the very high
energy region. This means that (a1 - a3) is little altered.
Detailed calculations by Lam and Truong (6) have shown
that this is indeed true. These authors also emphasize that

conversely) we cannot use the sum rule in eq. (6) to obtain

information on the behaviour of 04‘%0) at very high energies.

2L
.TI.5 The Coupling Constant 7[

In 1960 Spearman(sghowed by fitting forward TIt/: disper-
sion relations that the Wtﬁ coupling constant‘_][L must lie
in the range 0.075 <‘fl< 0.085. Using the forward disper-
sion relation for E+ (5,t=5) and effectively fitting the
energy dependence of the Born term (nucleon pole) gave (2)

P
JL = 0,081+ 0,003. In this method the dominant contribution

(7) J.V. Allaby et al., Phys. Letters 30B, 500 (1969)
(8) T.D. Spearman, Nuovo Cimento 15, 147 (1960)
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to the dispersion integral is from 0<£4, -4 £ 300 MeV, and

*
resonance. There

33

have been several later analysis of the 'f;/U} forward

2
in effect omne is getting~f‘ from the N

relations by Samarnayake and Woolcock (3)’(9), the latest
giving 71": 0.0815 % 0.002. Hhler et al. (10) get a similar
result. Better data on forward scattering and cross-sections
are needed, as well as improved theoretical methods, if we
are to achieve much higher accuracy.

The presence of Pomeranchuk violating terms in the
amplitudes at high energies may cause changes in some (but
not all) of the above calculations of jf’. However, Elvekjer£11)
using‘methods similar to those in § I.4 above, has found that
the changes in the above values of <F2-due to taking account
of the Serpukhov data(7), should be well within the errors
quoted above. Of course it is desirable that any new techniques

2
for calculating ff should suppress possible trouble from

Pomeranchuk violating terms.

Analytic Continuation

The practical methods of analytic continuation
developed by Cutkosky and Deo(12), and by Ciulli(13), should

be used. Y.A. Chao and E. Pietarinen(14) have already used

(9) V.K. Samaranayake and W.S. Woolcock, Phys. Rev. Letters 15, 936 (1965)
(10) G. Hohler et al., ZS flir Phys. 229, 217 (1969)
(11) F. Elvekjaer (Nordita, unpublished (1970))

(12) R. Cutkosky and B.B. Deo, Phys. Rev. 174, 1859 (1968); Phys. Rev.
Letters. 20, 1272 (1968)

(13) S. Ciulli, Nuovo Cimento, 61A, 787 (1969); 62A, 301 (1969)

(14) Y.A. Chao and E. Pietarinen, Phys. Rev. Letters 26, 1060 (1971)
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such techniques to good effect in the more difficult case of
KN scattering.

2
Let us speculate on how a modern determination of 7[

*
would be carried out ). Suppose we use the forward lab.

) +)
amplitude 7LL (W) (here LW = lab. energy). By eq. (6a) ﬁ ()
is an even function of W , and we shall write it as 3[ i0*) .

The singularities of g(w") are the nucleon pole at wz':/HZ‘ML
2

(cf. eq. (9a))and the cut /4,7'5 w £ . By eq. (6a), g (w>)
is regular on — 00 < (3*<O -

Suppose that we have fairly accurate measurements of

Re 4 TPy i

t ti) over the range M < W<y , and of (O ®») over
the (larger) range M £ i £ ‘1),’_ . Now we use a conformal
transformation %(L‘))’J which tranforms the whole é-))"‘-plane
into the interior of the ellipse in the 2 -plane as shown
in Fig. 2. This transformation is chosen so that the upper
and lower sides of the line A}Irl< tot< v map on to the upper
and lower halves of the ellipse. Also the line —°° < wi< L)l;._

—

maps on to the major axis of the ellipse [—%O( L2 s %x) .

It can be arranged that c.)Lz/,LL and 1;)2*: q&?'

transform to 2=—(
and 2 =+ respectively.

Now write 9‘, as a function of 2= and call it Z/z) .
Clearly ;[,r) is regular inside the ellipse, except for the

simple Born pole at =2

5 and the cut —-/i£ 2 <2

ot Thus

the discrepancy function

N AU

- .
AQMng)—#( I R (18)
-~ ,Zf"— _2—

. .
) I am indebted to E. Pietarinen for a discussion on this topic
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is regular inside the ellipse except for the Born pole.

We should use the function

1Ty = (R4 ) (2-2) Ay (18a)

so as to remove the pole at ‘ZB ; also the factor (Z 1-2;) will suppress
the effects of the singularity at Z, and therefore of any violation of
Pomeranchuk's theorem.

The function F?%) will have singﬁlarities on the ellipse,
but it is regular inside the ellipse. Thus we can use a
Legendre expansion

0
Fexy = 2. 4n B2y (19)
=y
to give [~/2) at any point inside the ellipse, The next
problem is to determine the expansion coefficients &, .

We know E‘_;) fairly accurately on —/<£2 </ from the
physical measurements, and we want to find F:(}@) , Since
that is proportional to f:L . The errors in our knowledge
of /2y on =—i<€2<L] , will however have the effect
that we cannot determine sensible values of the higher
coefficients 4, in the expansion in eq. (19). This is what

is called a stability problem.

In order to get the optimum expansion(12)(13) we must
cut off the series in eq. (19) at % =A where N depends
inter alia on the size of the errors in the measured values
of I:l}) . (For an elementary account of this procedure

see ref, (15)). Thus we use

N
—_ 2 )
Iz

(15) J. Hamilton, "New Methods in the Analysis of 7-A
Scattering" in Springer Tracts in Modern Physics,

Vol. 57 (1971)
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This finite series gives the approximate continuation of F?%)
from /<2< . The smaller the errors in the data,
the larger is N.
—_ g

Using eq. (19a) we can find /'0%3), and so Jﬁ .

Since %R is close to -1, the continuation should work well.,
.

The error in f‘ , as determined by eq. (19a), is easily

estimated(12)(13).

IT Coulomb Corrections

We shall only give a brief discussion of the principles
and the main limitations of the methods at present used to
obtain Coulomb, and related, corrections in low energy N

scattering.

*
ITI.1 Coulomb Scattering Notation )

Consider the non-relativistic Coulomb scattering of
two particles of charge + £ . The radial wave equation for

angular momentum «e is

T

N TR o)

where 1’ is the momentum in the c.m.s. and
/
S = o=
?u

2
where a = 7$/Lel' is a Bohr radius and k¢ is the reduced mass.

For ®'pP , a = 158 units (£7=/u =¢ = [/ ) and is the Bohr

*) There are many clear accounts. See for example Chap.
XTI and Appendix I of ref. (16)

(16) A. Messiah, Quantum Mechanics, Vol. I, (North-Holland,
Amsterdam (1961))
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radius of the n’ﬁ mesic atom. In almost all cases of
practical importance in T A/ scattering //<g:/ .
The regular solution of eq. (20) is 3(37/) (where

p:fr) and its asymptotic form is

fz ) ™~ Sim (p = A l0) + 5 - $47) (20a)
P>
where 02 = arg f7([+1+q)<) . We can also write

- _ 0, w4 -5 (-
/Zlyl/o) = lt,[e £M2 hpy—e “Hu )/(f;,o}J (21)

+
where M;') are solutions of eq. (20) which have the asymptotic

forms

uf)la‘;/o) ~  2xh [i'¢7/,?°-a"/5n‘%ol" %/"')]

(21a)
/0> ob

The wave function %ﬂ&) corresponding to an incoming

(distorted) plane wave can be written

00
WYy = 2—;; Zta)® D4 0 Rty (22)
=0

where 6} is the scattering angle.

Suppose that in addition to the Coulomb interaction
there is a hadronic interaction described by a potential
of finite range (range X |< ). Suppose also that spin
orbital effects are ignored for simpli¢ity. In place of

eq. (20) we have

%

oA x_ L/tn)
AR R 22V) fir) =0 7
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The asymptotic form of the regular solution of this equation

is
~ G (p- Zazz)+a—-—’,€7r+<<) (23a)
(0 L0 T T2 e
p >0
Here 4; is the phase produced by the hadronic potential
If l/lf);o then

in the presence of the Coulomb potential.

JL =0 .
Analogous to eq. (22) we can write the asymptotic form
of the wave function as
) ) lenv
L S 0l )2 ), e g ) (2
(x) ~ T L +1)1 u, - p Lhﬁzuus (24)
e < < (o
-o

\}/[V( - Ix/\b .

Hence i
Vi, ix)
(25)

Thus the differential cross-section for scattering is

A _ [fisyl* (26)
A
where
g/
’f(&) = ][cl&) e (262)
and <£J9) is the Coulomb amplitude:
(26Db)

(=) enf [riog —yn (5]

(@) = )
74 2?§“‘?€&)
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while

Co . )
floy= = 2 ) &% (7% ) I3t &) (26¢)
He =

/
The hadronic scattering is given by fflﬁ)'

Coulomb Interferance

Eqs. (26) show that

_ K / i R 27
dfo = /{_(9)[24 Z—Aq, [(‘]4/9)7[/9)§ * I'(’&J/ (27)
An c
The term Lﬁ(&nz‘gives the pure Coulomb scattering and
L%Qﬁdll gives the pure hadronic scattering. The other
term is the Coulomb interference, and since 76159 is known,

/
this term can be used to give extra information on 7/02) over
what is obtained from the Lf?e)/L term. On account of
p =
the very different ranges of the interactions, héléjl
. . / L .
dominates near the forward direction whereas H[$U/dom1nates

at the larger angles.[F7\3§

IT.2 Coulomb Corrections

Now we look at the main problem. The phase J;, defined

by egs. (23), (23a) is the phase which is measured (eas. (26)).

However Jk is not identical with the purely hadronic phase
' which would be defined by the regular solution jL
‘{LM y g e”lw)
of

T T m TR ) fewtr) = o (28)

and the asymptotic condition

J[&V[v‘) b (/° ~ 3k gy) (28a)

/D%OQ
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In order to investigate theoretical questions we need

”

to know the hadronic phase & therefore we must find

v
the correction (g;_,g}”J . For example, the isospin
3
T = 3/2 phases &:AJ measured in T*Ah—>nTh and in

;7'h,4>n'ﬁ will not be identical, but (assuming charge
By )
independence) there is only one value J; . Since
charge independence is a good symmetry in n A/ physics, we
CL s . . . . ()
shall use it in conjunction with the hadronic phases <§

LN

We shall not repeat the history of the Coulomb correc-

(17)

tions - there are good reviews available As an
illustration, we shall examine the ‘§ -wave n+ﬁ amplitude.

From eqs. (23) and (28) we have (for L =0 ),

A fj[(,» AL, o) . . ~ (29)
7, i T L A4w)) — - 2 / 7Z (~
#(4” ), yre on ») A__;_ j ;}_/Z o/(‘) on/ )

Suppose that the hadronic interaction is negligible for
r = r , and also assume that @la,.r-' >>) . Since - x> 1~
this last condition is very reasonable. (Remember that 7% =
5 MeV lab is { X~ 0.25). Then the asymptotic forms in
eqs. (23a) and (28a) are valid for 2 ~ . On integrating

eq. (29) we have

G b (f Cn) 7 7 § = 8,0) + £ podp) e

~
i ; (29a)
= -ZJ’i’fDdl'f ﬂ['iév”"} :

(17) G.L. Oades,article in Springer Tracts in Modern Physics,

vol. 55 (1971).
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This holds for -+~ S r~ . We can split the integral into
the intervals (o ,~ ), (*, ) where '~ is large, and in
the last interval use eqs. (23a), (28a). Now rewriting and

letting Ir—> oo gives

s
Cin ["J/{‘—»(l‘i"” NS ‘go"ng - ——LJ//M’ 7{,1.»1}74,”1//
o r’
20
o’ ,. -
*kf o @bt bl e Ll ) ()
/r"

This is the basic Coulomb correction equation, using
the non-relativistic method. It gives (&'WQM ) independent
of the "separation radius" F. . The corrections for P-waves
etc., and for ﬂ:ﬁ~9n°ﬁ) ﬂiﬁ-é nn , can be
found by developments of the same method(17).

For J/zz/J o = _J/C where C = 0.557 is Euler's
constant. Hence by eq. (30)

{)_.S%/ = C)ék}
If we write
»7 - -j/{guéh%kj~+C§'+éo-é;v/

a good approximation to eq. (30) is

7 :'—%k{d'/ ﬂfifﬁﬂ)* Jr églafv(%ﬂ4‘74 ZS@/) (30a)
° 7

This equation gives

? - 1 (3
= 5-4,) = 7 0&)
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Working to [9&?) , eq. (30a) yields

o
oo Sy == 2y | el F ot
) —

,’\,/

*J"f{’{%@‘ﬁ:)* (- cﬁ(z[w)(“/%::ﬁh;(z!@)f&/zq]‘)f(m)

The first term on the right of eq. (31) is the inner Coulomb

correction(18). The second term is van Hove's (outer)(19)
Coulomb correction. In the first term the factor Ur’ can

be replaced by the actual potential - which is finite as rtea

IT.3 Comments

The method we have outlined has obvious defects:

a) It is non-relativistic, and van Hove(19) suggests
that this can be remedied in part on replacing J’ 'bYJ/ﬁjﬁ%}K
where Cﬁ is the relative velocity of the pion and nucleon
in the c.m.s. Other corrections, such as magnetic moment

*
terms, have been included by various authors )

b) It depends on using a model potential for the hadronic
interaction. Of the various parts of the low energy T7-N
interaction (cf. § EZ_ below), the fl -exchange, N-exchange,
N*-exchange, terms cannot be represented by a potential,

except in a very rough fashion. Moreover, the Schrddinger

*) See ref. (17) for references

(18) J. Hamilton and W.S. Wolcock, Phys. Rev. 118, 291 (1960)
(19) L. van Hove, Phys. Rev. 88, 1358 (1952)
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equation is not appropriate except at very low energies, and

the Klein-Gordon equation encounters serious difficulties.

It is obvious that a much improved theoretical treatment
is needed. Some promising attempts are mentioned in ref. (17).

Using eq. (31) with model potentials, a number of
Coulomb corrections have been estimated. Ref. (20) contains
some recent results. I am afraid that we have almost reached
the situation where the theoretical uncertainty in the
Coulomb corrections sometimes exceeds the accuracy of the

best experiments.

Other Corrections

In 1T~f scattering'it is necessary to allow for the
channel A= fm , and also to remember that the pions
and the nucleons have different masses in 7576—9770VL
These features affect the analysis of 7f75 scattering.

It is usual to include the kinematic corrections due
to the mass differences when analysing the data. In an
interesting paper Oades and Rasche(21) have started an
examination of the dynamical effects of the mass differences.
These corrections are not negligible, and further investiga-

tions of the mass difference effects are required.

(20) A.A. Carter et al., Nuclear Physics B26, 445 (1971)
(21) G.C. Oades and G. Rasche, Ziirich Preprint (1970)
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IITI The Use of Fixed t Dispersion Relations

(Accurate Low Energy Phase Shifts)

The first use of fixed t D.R. to improve our knowledge
of TN phases was by C.G.L.N.(ZZ). However their method was
severely limited by convergence problems(23). In another
form, a similar difficulty occurs in the general fixed t D.R.;
the Legendre series over the TN-> TN partial wave amplitudes
can only be used*) to express the absorptive parts which
appear in the fixed t D.R. for -26a'¢ t < 4/¢L . Recently

(24

Steiner ) has emphasized the same difficulty in relation
to F.E.S.R. . Within these limits, fixed t D.R. have been
much used+) to determine the small phase shifts from data
on the large phase shifts.

Here we shall give a brief account of an ingenious

method which has been developed and applied by Henry Nielsen(26).

ITT.1 Nielsen'!s Method

Henry Nielsen determines very accurate phase shifts
in the low energy region, which is here defined as the range
up to 270 MeV[lab. pion K.E.). He is interested in obtaining

good values of the non-resonant phases, and in particular the

*) See also ref. (23), +) See for example ref. (25)

(22) G. Chew, M. Goldberger, F.E. Low and Y. Nambu, Phys. Rev.
106, 1337 {(1957)

(23) D.H. Lyth, Rev. Mod. Phys. 37, 709 (1965)
(24) F. Steiner, Phys. Letters 32B, 294 (1970)

(25) J. Baacke, G. HShler and F. Steiner, ZS fiir Physik, 221
134 (1969)

(26) Henry Nielsen, Univ. of Aarhus preprint, 1971.
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D-waves, In this low energy region there is some doubt
about the accuracy of several of the partial waves in the
CERN phases(27).

The input data is:

i)  up to 270 MeV (60u*£5< 854>)

a) the n+ﬁ total cross-section which is now very accurately

determined(zo).

b) the T = 3/2 S-wave phase &, . This phase is smoothly
varying and is easy to determine accurately. The CERN values(27)
will be used, and allowance will be made for the effect of

large inaccuracies in 06 .

6) the T = 3/2, P wave phase Qé/ . This is quite well

enough known for the present purpose.

ii) From 270 MeV to 2 GeV (854 <5< 2504 )

The CERN phases(27) and inelasticities are used as
input in this intermediate energy region. These values are

accurate enough for the present purpose in this region.

iii) Above 2 GeV

An analytic continuation method is used to find the
contribution of this high energy region to the D.R. 4n a
fashion which is independent of models, subtraction constants,

and the like.

The first step is to write the n+% total cross-section

in the low energy region (60 £S€85) in the form

(27) "CERN Experimental Solution" in UCRL-20030 (7N Scattering
Data), Berkeley Report (1970)
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A am - -
) 7 2 2 2 o 32
= é_]_{ngo(34-$mo(3‘+:t§mq(33+ } (32)
Substituting the wvalues of a"') «, and ives of in
& 2 3 %3 & 33

the low energy region. The P31 partial cross-section is

1 - 2% of the P33 partial cross-section and only 10 - 20% of
the 831 cross-section. Thus the P31 input is of adequate

accuracy. If the S, contribution to eq. (32) is increased
or decreased by 20% the resulting value of “}3 does not
change by more than 098. Such an increase or decrease in «b
is far greater than the quoted errorér%;. q& . The D-wave
contribution to eq. (32) is negligible.

Having o% and <X13 in the low energy region, Henry
Nielsen shows that the remaining partial waves in that
energy region are uniquely determined by the fixed t D.R.
(In fact this is also true for d}, ). He makes the very

reasonable assumption that there is negligible inelasticity

in this region.

IIT.2 The High Energy Terms

The amplitudes B(s,t) and

/ - Mls—w)
A [.\')’t’) — Alf‘f) -+ q_nl_,/é El‘)f) (33)

*

are used. The crossing symmetric variable is )
_ - ! L 2 2
y = ﬁ/&—u) = F(-Si- lt—M')“)

A’(+)()),t), B(')()/,t) are even functions of p and Al(-)()/,t),

B(+)(y,t) are odd functions of ¥ .

*) Beware of the factor 3 difference from some definitions
of y .
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Neglecting subtractions, the fixed t D.R. are

g~
Re AI(')(V,#) =

o0
e __l_._t} Pd,,/r"*’,(/ l
kﬁ_ B TRy G An A b)) yiv ty#y)
T+
(34a)
-
Re Bt ¢) =
)
él I — g : P P T (4
Z ¢ — 4+ + T | dy B o't ( { _
M Y-y Mt T ), ™ g Viry
TH
(34b)
with
= g mest)
VT.# = Q/u_} t/ZH
2M* (35)
K = 2
Gpmit

Let )f correspond to s = 83/4Land )ﬁ to s = 250/uz'. For
values of t in the range -26 4%« t £ 0, we have Vp 2= 30,
Vx4 - 6 and 0< Yy, £ 2.

)

+
We shall use F ()’,t) to denote any of A{(-), B( . We

shall write

ReFty ey = Fgtsesy + R B b+ R 14 8) + R 77 iy yy

(36)
where Fé/%t) is the nucleon pole term, and
Y;
P ) |
( = = ; ] /
Refewinr= L nipun [ e fav )
Yru
4
n o [ ‘
. T - i — i'-—l- i
'QF;;.E‘V,H= T,( P FOSE) Loy * i, [ 2 (37b)

1
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We can if we wish regard & /’;_(y)‘{') as the contribution to

F (¥ ,t) coming from a large circle Ivi= 4 .

We should remember that in order to determine partial
waves from Q¢’qgé)in the range uﬁ to s = 83/41', we need
to know /Jci:(f,{') for V_, <y <V, , and o> t = —16/4‘,".
We are therefore interested in the above equations for this
range of t. For Y, L v < Vs, ~t) lies in the
physical 7N 7N region when O = t = --16/&L . Therefore

é&,F}%e) can be determined fairly accurately from the
CERN phase shifts(27) in this region. Now eq. (36) is used

. ) 2 .
to find &F;_Etll,f) for y <Y< VPJ 0?1’:,%—%/“ in
the following way.

~ s

The term Fé(%t) is readily evaluated, using -fﬂ= 0.081,
Bas. (37a), (37b) give ReF ) kim _v,¢) for
V,<pey, 0}{,—,%—/4/41 . The wvalues of EF(y,’é) needed
in eq. (37b) are given by a convergent Legendre series in
terms of the CERN phase shifts(27). In evaluating eq. (37a)

¥ . - —
only ) J‘mzoéz and S:M"'o(;?s are used to give _lu. F(vjz)
J
(VT#< y'< ¥,) .

The functions E-I-E (y){') are analytic in the y -plane
with cuts —p0 <Y -V ) VgV« =0 . Knowing FH.E (v ¢}
on KW<y<yp (and — o<V <=y ), standard analytic

continuation methods (cf. the refs. in § I.5) show how to

find (. Wt) on <Y<V, , (02t2 -16ur).

*¥) There is a small error here due to not using all the
phases, but this disappears on iteration.
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The results of the analytic continuation method turn
out to be close to what we would get by the simple device of
/(4 -
fitting A to the form a + by>™, A (=) ana 30Y) 4o
QE, H & A e
the forms ¢y , and B&Lg to a constant. As an example the
results for t = -10/4r1 are shown in Fig. 4.
The continuation to ()@w) )3) should be very accurate

—

since this interval is far from the cuts of f&gfﬂf) and
is small compared with the interval (), 3, ) where Fimzfﬁfj
is known.

It should be emphasized that this elegant method avoids

many problems normally associated with the high energy region.

III.3 The Results

Now éL_F:({ff) can be evaluated in the low energy
region (VTH<)/<VI , o=t E—Ié/&) using eqgs. (36), (37a),
(37b). In the first run the CERN values(27) of the phases

are used as input in J_ <Y< , except «, and «

TH 33
which are kept fixed (as described in § III.1). The 6;
o)
amplitude is deduced from égl and (s) 3y this is
o

because jg+?9 is poorly determined by the method on
account of large cancellations among the fixed t D.R.!'s in
this case.

In this way A&_j£+(g) are found in the low energy region.
These values are then unitarized by going to the nearest point
on the unitary circle. The distance to the unitary circle
is always small. Now we have the phases (step 1).

Next, these step 1 phases (plus o3 andlﬁB) are used

as input and the procedure is repeated. This gives the step
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2 phases, and further iteration does not alter them. Also
it was shown that the same final results can be reached by
putting all phases, except o£3 and 0(33 equal to zero in the
initial run.

The input oly, values (from eq. (32)) are shown in Fig. 5.
The resulting D15 and D35 phases are shown in Fig. 6, and
S11 in Fig. 7. Notice that S11 is still poorly determinede
The resulting P13 phase is almost identical with that obtained
(28)

in the experiments of Bugg et al. In a number of cases

there are noticable deviations from the CERN values(27),
Henry Nielsen has pointed out that the D-wave results

are particularly useful for precise investigations of the

0 -exchange and f)-exchange interactions in low energy TN

scattering (cf. § J?.[ below).

IV Dynamics of Low Energy TN Scattering

We shall give a brief description of the exchange forces
which are responsible for low energy 7N scattering. The
nature of the interactions has been elucidated by analysis
of the experimental data, and it has in various cases been
confirmed by the predictions of low and medium energy partial
wave amplitudes (p.w.a.) which are then made possible. For

a more thorough survey see, for example, ref. (29).

*) Of course this is mainly directly due to, the large error assumed for

. . (Y]
S5 and the fact that S . is given by {, ¢y and Sz

(28) D.V. Bugg et al., Nuclear Phys. B26, 588 (1971)

(29) J. Hamilton, "Pion-Nucleon Interactions'" in High Energy Physics,
Vol. I (ed. E. Burhop) (Academic Press, N.Y. 1967)



- 131 -

It is hoped that more precise experimental results will
provide further checks and refinements of this description.
In particular, more work is required on the important
0 -exchange process, and a better understanding of the P

11

(Roper) resonance is desirable.

IV.1 Singularities of P.W.A.

By studying p.w.a. we can obtain a good description
of the low energy T7TIN dynamics because the left hand cuts
(L.h.c.) of the p.w.a. give analogues of the potential
description which is of such use in, for example, nuclear
physics. It should however be emphasized at the outset that
one cannot actually give potentials which represent the
interactions - the 7TIN problem is essentially relativistic.

The left hand cut terms describe the dynamics.

It is worth remembering that the 7IN p.w.a. are essentially
elastic up to 400 MeV pion lab. K.E., except for P.y. In P,
the channel TN —> oA is possible for ¢~ in an S-state
relative to N, so inelasticity appears from 300 MeV onwards,

and it grows rapidly with energy. The only other candidates

for inelasticity below 550 MeV are D13 and D33.

*
33°

amplitudes do indeed show some inelasticity in the region

Here TN TINX
>N 4

is possible with 7 in an S-state relative to N These

4LOoO - 500 MeV.
The singularities of a TN = 7N p.w.a. j;tl” are

shown in Fig. 8. The main features of the l.h.c. are:

2 .2
(i) the cut (M-=-/4) <s< Mz-fzy«.)" gives the long range

part of the nucleon exchange (N-exchange) term



- 132 -

(ii) the cut p< § < (M,./u,)l gives the exchange of
excited baryons, and in the cases we shall consider, it is

*
mainly N33-exchange (4A -exchange) which matters

2
(iid) the circle ISI$=M;7# gives the t-channel exchanges.

These are 0 -exchange and /0 -exchange. (cf. Fig. 9)

We should make a few more technical comments. The cuts which
are near the physical threshold o‘=UWb“Y'give the longer
range parts of the interaction (range clﬁ’). The cuts, or
parts of cuts, further off from S, give medium and short
range parts of the interaction. By short range we will mean
< 0.2 F.
On the circle, we can only calculate the effect of

g~ =-exchange or ﬁ -~exchange for the arc largs| < 66°.
This is because the Legendre series expansions used to relate
the t-channel phenomena to the s-channel 1l.h.c. are not valid
beyond this arc. It is useful to lump together the contribu-
tions from the remainder of the circle, |args| > 66°, and
from the cut —o00<«< s < 0O . We call them the short range

interaction.

As to the t-channel contributions, the T = @O effects
(+)
(e;g. o -exchange) contribute only to the p.w.a o (5)
for 7mN > 7N, and the T = 1 effects (e.g. o -exchange)
=)

contribute only to 2+ ls) .

IV.2 Reduced P.W.A,

Because we do not know much about the short range inter-

actions it is very useful to suppress their effects as much
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as possible. This can be done for orbital angular momentum
,€:> 1 , by making use of the centrifugal barrier. In

place of j&tﬁ) we write the partial wave D.R. for

/‘3-4_,(5) = ﬁtl:)/?l (38)

By requiring éilgé to be finite we have built in the
centrifugal effect. Now Iill is large on all cuts which
are far from ¢ , S0 the l.h.c. contributions Im in &)

are altered relative to the Imf%t({) in an interesting way.
The ratio of the contributions from the short range cuts to

those from the longer range cuts is much smaller in the case

of . F,

%+ ($) than when using o+ 15) . The larger is A ,

the more marked is this effect.

This procedure has made it possible to predict the non-
resonant P, D and F waves in the low energy region(29). From
information derived from an analysis*) of the experimental
S-wave T-N data, the J -exchange and /0 -exchange
contributions to the l.h.c. of E;Qj were determined. The
N-exchange and zﬂ -exchange terms are also readily found.

Now, relying on the fact that the shorter range contributions
are well suppressed, the non-resonant amplitudes can be estimated.

Furthermore, a unitary sum rule can be used to give

a fair estimate of the small short range interaction which

was ignored in the first approximation, and an iteration method

can give an estimate of the physical integral (rescattering)

%
) See § IV.3 and V.I below
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term. In this way(29) the non-resonant amplitudes can be
fairly accurately predicted up to 500 MeV (or higher), and
the results agree well with the experimental phases.

In order to give some idea of the behaviour of the
various l.h.c. interaction terms, we show in Fig. 10. the

l.h.c. contributions to fztlgj for the amplitudes P13 and

D35.

IV.3 Special Cases

We shall briefly discuss some special cases which for
one reason or another fall outside the scheme we have just

discussed. They are the S-waves and the P11-amplitude.

S-Waves

The low energy behaviour of 831 and S11 are mainly

determined by i) ( -exchange and A -exchange, ii) a
very strong short range repulsion. There is a negligible
amount of long range N-exchange and not much 4 -exchange

(or other excited baryon exchange).
The strong short range repulsion (SR) has a rangees 0.2 F,
&) )
and it occurs in the amplitude fa(;) but not in f“ ) .
o

In terms of 7N isospin, we have

5) +) =)
7[0 sy = 7[6 (s) + 2 {a «)
(4 ) - (39)

j& (sy = jglg — fg fs)

The p— -exchange gives a strong long range attraction in

)
jg sy » and /9 =-—exchange gives a medium range effect in



- 135 -

-
][l"/s) so that 7{,//5} is positive in the physical region.
(4

Thus we can say schematically that the forces are

T = 1/2: (SR repulsion) + (g attraction) +2( p attraction)

T = 3/2: (SR repulsion) + (g attraction) + (/o repulsion)

The method of deducing these various interactions from
the data on the S-wave phases makes use of the fact that the
ranges of the interactions differ, and it especially depends
on using crossing symmetry. Crossing symmetry can give us

@ 2
the values of 7& (s) on the cut o< s<M=u)” (cf. Fig. 8).
Since this is inside the circle, and the physical cut is
*
outside, we can more or less isolate ) the circle contribu-

@)
tion to 7& &) and so get the ¢~ and /9 -exchange inter-
(29)

actions Now-a-days this is done by using modern

(30)

analytic continuation methods More accurate phase

shifts would be very valuable in improving this method still

further,

The Amplitude P

11

In this case we would have to consider (for low energies)

the channels

TN = N

g N —=4N

Multi-channel calculations are not easy, but the worst aspect

*)

See § V.I below for more details, and a similar game with D-waves

(30) H. Nielsen, J. Lyng Petersen and E. Pietarinen,
Nuclear Phys. B22, 525 (1970)
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is that g~ is such a wide "resonance". It is probably
fair to say that there has not been a really good dynamical
description of this amplitude, although on the other hand
none of the observed features are difficult to understand

in qualitative terms.

V Information on O

There are at present three main methods for obtaining
information on low-energy pion-pion scattering in the T = 0
J =0 state. They depend on using: i) 7N p.w.a.,

ii) 7N backward scattering, diii) the process TN —=> TN .
Fach method involves analytic continuation. Experiments of
high accuracy by low energy machines can contribute to the

improvements of all three methods. Here we briefly survey

these methods.

*x
V.1 The Use of TIN~»7IN p.w.a. )

The singularities of a 7IN p.w.a. jéf[s) , OTr Ezt/g)
are shown in Fig. 8. From the scattering data we can find J%*@)
on the physical cut §,£s< o , and with the aid of
crossing symmetry we can also find f;+(‘} on the cut

o< s & (M) .

Now consider the discrepancy function

™ 7£Hﬂ l oo . 67 Goeg ™ .
A sy = (s _-fd;’ et!’/_L{" /
A+ 7 s e = A oAy 1;\:;/[(1 iy (LLO)
MYt ey
- L [ Ads’ Rf“j( ‘
T s ex (Y]
(M'/";ﬁ))' l/—_(

2
The singularities of A('H(s) are the cuts (sl=mM '/-«.?‘ and

*) See for example ref. (29) and ref. (30)
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the line —o0co0 £ S < O . It is regular elsewhere.
A(H

By using the experimental data we can determine 3]
accurately on the low energy and medium energy part of fhe
line § <'s ﬁdo , and on a large part of the line 0<S$(“‘7‘t)?‘

. o) ]

Analytic continuation of 4 (s} from these two lines towards

. 2 . . o . 4
the circle Isi=Mm A gives the discontinuity in %) across
the circle(Bo).

. . . . ) . .
The discontinuity in A (s) across the circle is

closely related to the absorptive part of the amplitude

for the t-channel process
‘mr—> NN (1)

in the isospin state T = 0 . The analytic continuation
will work best for the "front" of the circle (say, larg§ls'66o).
“
On that arc the discontinuity in a4 ?9 is predominatly
. o
due to the absorptive part I;;f&[{) of the helicity
[~ .
amplitude f,(¢) for the T = 0, J = O% channel of the
process in eq. (41). On the arc in question the range is
L Sam—
4/«.2‘5 t £ 504 , and Lo, ,f:lé) has been determined(Bo)
: &)
over this range, starting from the S-wave 7N amplitude oa).
' : [
It is then possible to find Ei-f;lt) over the same
range by solving the partial wave D.R. for ff_(f) . The

(30)

most recent'way of doing this employs an analytic

continuation method to avoid possible difficulties from
g o

unknown far away contributions to the D.R. for 7&_“) .

(this is the same sort of dévice as was used in § III.2

above) .
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Finally, extended unitarity(31) gives
0 o | i5u
fie = l7[+({—Jle o) (42)

where baut<c t € 164> and (%4) is the T = o0 ,J =0 ,
T —> T phase. Since there is little evidence of the process
21> 47 up to much higher energies, eq. (42) is assumed to
hold for our range h[tlé_t < 5Qﬁbl . Now it is possible
to deduce 4 lt) for hal<tZ 504t

This whole procedure has been carried out by Henry Nielsen,
J.L. Petersen and E. Pietarinen(Bo) starting from S-wave
mN-data. The resulting phase g:Hﬁ does not pass through
ﬂ/2, but it is consistent with a very broad absorptive part
in the T =0 , J = 0O , NN —> TN scattering amplitude.
This agrees fairly well with what is usually called the
¢ -meson (M, ~= 700 MeV, T;_>> 100 MeV).

We shall not discuss the estimates of accuracy of the
analytic continuations etc. (see ref. (30) for details, and
ref. (/5 ) for an elementary account of this work). It
should however be emphasized that much more accurate low

*
energy TIN phases ) would be very welcome. They would make

it possible to repeat the analysis with increased precision.

D-Wave Discrepancies

An interesting application of the low energy TIN D-wave

phases resulting from the fixed t D.R. described in § I1T

*) Especially a,

(31) F. Mandelstam, Phys. Rev. Letters 4, 84 (1960)
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above has been made by Henry Nielsen(26). He uses them to

&)
derive discrepancy functions AQtISS ;3 these are defined as

+J
in eq. (40), but using the reduced D-wave amplitudes /:.:t

+)
The values of AJ_(S) are shown in Fig. 11. The dots are

(s) .

the values deduced form the CERN phases(27). The crosses
are the values deduced from Nielsen's new phases (they are
only shown where they differ from the dots).
-4 . o g

Because of the factor (i) in the definition of 24 (..s))

the importance of the regions near (Mi-/u.)l on (M%)"S s< 00
e N
and 0<¢ < 1) is enhanced. Also the portion of the
X2 2 :
cut I8 =M —A near S= M has enhanced importance
(compared with the S-wave case discussed above). Therefore
this D-wave discrepancy should give a greater possibility
of distinguishing between the various T = O, J = 0, T =D TTTT
phases which have been proposed by many authors. For example,
+

the solid line in Fig. 11 shows the value of Azits) calculated
from the values of T jl-flé) given in ref. (30). [This

solid line should still be adjusted to include a small short

range term_-] .

V.2 Backward 7N —>nn(30)

Atkinson(32) showed that the backward 7N = 7N amplitude
and the backward nm—> NN amplitude are essentially the same
analytic function. Putting cos @ = -1 in eq. (2) gives
t = =4 22' , 8o the backward 7N = 7N region is —o0 < £< O
For nm —> NN the (pseudo) physical range is 4u < t oo |

&)

Let (t) (-»%tso) be the backward 7N amplitude

in the (+) charge combination. If we know this well enough

(32) D. Atkinson, Phys. Rev. 128, 1908 (1962)
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in the low and medium energy range, then by analytic continua-
' &)

tion we can find F (4] on lt/u"é t < co (or at least on

the lower part of that range). In fact we get both the real

TR .
~and the imaginary parts of = )/f)

In a particular normalization(Bz), for t > 4/«" , We
have
o
+) g - —_—
m - 1 J v
Filo==22 2 G+ Ae) £
> = + (43)
Mp T=o
(Tere,)
where fe‘ /b are the pion and nucleon momenta in the
, P

- T
c.m.s. for mn~> NN. Also 7[,* (¢#y 1is the + helicity amplitude
for mm => NN with angular momentum J.

Analogous to eq. (42) we have

T
P S L2a
j[ () = H-)’ o 1) (h2a)
2 . - !T . v /
for hut< t £ 504 . ,{t) is the 7mn — 77 phase for the
state T = O and angular momentum J. There is good reason
2
to believe that § (¢ is sma11(33) in wate ¢ < 50.%.

o J,
The same must be true for ‘{;({’) with J = 4. Thus to a good

approximation

-
R"ﬂ/f): — b

mA>

T fitey 5 (4a2e €559 (h3a)

Q — &)
However we cannot do this for e F t¢); indeed in

4+ .
the case of HReF )1{') the series in eq. (43) converges

(33) G.C. Oades, Phys. Rev. 132, 1277 (1963)
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slowly(BO), Let ét_ ‘'be the scattering angle in 77w - NN.

The nucleon pole occurs at

dp?&t" = 4 &-){:f-;“’L) 5
-ZOWQ—?zfﬁléyﬁuﬁ)l
For 4.%A}g.t<12j/(L'this is close to the physical range of
cos é; . Thus in the Legendre series which gives eq. (MB)
we require to include terms up to J = 6 to get 10% accuracy.
The difficulty can be overcome by removing the nucleon
pole term and treating it explicitly. In works earlier than
ref. (30) this was not done, and the results they found for
Si&j are therefore suspect.
The remainder of the analysis is now straight forward.
(for details see refs. (30) and (/$)) /3 «ff({,) is

determined over h/v"é_ t £ 50/~"'

, and eqs. (42) and
(43a) then‘givé'igjkj . The results are close to those

Lo
obtained from the S-wave TN amplitude je (s) , as described

in § V.1 above.

V.3 The Process 7IN - 7N

This method - the famous Chew-Low extrapolation - lies
somewhat outside the scope of these lectures. Fig. 12a shows
the general process 7N —» TN, and by extrapolation in t, the
nucleon's momentum transfer, one can isolate the process
shown in Fig. 12b, because it has a pole at t =I/*l . This
extrapolation is to be carried out for each value of mass

of the dipion system, so a very large amount of data is

required. In order to keep the 4astability of the extrapolation
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under control one should use good analytic continuation

techniques and error estimates(12)(13). A nice example

of using such methods to analyse pion production at 2.8 GeV/c

is the work of Baton et al.(34).

(34) J.P. Baton, G. Laurens and J. Reignier, Phys. Letters
33B, 525 and 528 (1970)
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Figure Captions

Contours in the J -plane. Z;consists of two large
semicircles of radius R. é; consists of contours
around the physical cut from & = « to wo= A

and around the crossed cut from & =_—-2 to &2

ég and 5; are around the nucleon poles at WO = 1/47

The conformal transformation of the whole uJL—plane

into the interior of the ellipse in the 2 -plane.
5

The transform of the pole wh= /hn> s 2p-

Schematic figure showing the several parts of eq. (27)

The dots show F, _ ( ¥V , t = -104") calculated
from eq. (36). The curves show the fits

The phase 0(33 deduced from eq. (32) is shown by
the curve. The dots are the CERN values, ref. (27)

The curves show the predicted phases D15 and D35.

The dots and error bars are the CERN values, ref. (27)

The phase <X1 . The error bars show the CERN values(27).
The solid line is Nielsen'!s prediction with the
CERN values of m% as input. The dashed lines
show the changes when the 831 contribution to 0131)
is changed by I 20% (see text).

The singularity structure of j%fu) or E;+[$)'

The process N-exchange, A -exchange /D -exchange,
O -exchange

The left hand cut contributions to F%t(k) in

the case of P and D The values in the low

13 35°

energy region are shown
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AGH
Fig. 11 The discrepancy 2_(3)

Fig. 12 a) The process TN.» TTN
b) The pion exchange part

t is the momentum transfer to the nucleon.
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Fig. 6
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