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SIMULATION IN HIGH-ENERGY PHYSICS

F. James
CERN, Geneva, Switzerland.

INTRODUCTION

These lectures, for a mixed audience of physicists and computer
scientists, offer a good opportunity for stepping back and taking a gen-
eral view of a calculation technique which is steadily growing in import-

ance in high-energy physics as well as in other sciences.

From the physicist's point of view, simulation is a convenient tech-
nique, made necessary by the increasing complexity of his theories and
experiments, and made possible by the increasing speed of computers. From
the point of view of the computer scientist or mathematician, simulation
must be considered in the larger context of Monte Carlo methods, generally
made useful by the existence of larger computers, but interesting in their

own right for the variety of purely mathematical disciplines involved.

In fact the essential problem in preparing these lectures is not so
much the excessive amount of material to be covered as the variety of
quite different approaches which may be adopted in exposing the subject.
When in addition neither the speaker nor the audience may be conveniently
classified into some pigeon-hole which could help to define the orienta-
tion of the lectures, the only possibility is to try to indicate different
approaches as we go along.

In view of the increasing quality and quantity of published works on
Monte Carlo methods in the past few years, I will spend a minimum amount
of time discussing particular numerical techniques which can now be
found abundantly in the literature. Since the audience is composed
largely of young people who may themselves make major contributions to
this field, it seems appropriate to spend as much time on unsolved prob-
lems as on established methods.
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2. PROBLEMS IN HIGH-ENERGY PHYSICS

To help in visualizing the place of simulation in the process of
"doing high-energy physics', let us consider the following simplified

diagram:

Theory with
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actual
experiments

The important part of the above diagram is the middle box, contain-
ing the observable (although idealized) physical phenomena usually re-
ferred to in the jargon of the trade as ''the physics of what's going on'.
In high-energy physics this consists of (i) the fundamental properties
of the elementary particles, and (ii) the interactions between them. All
of the input information comes essentially from observation of scatter-
ing and decay reactions of particles. It is these phenomena which the
experimentalists are trying to measure (the lower box), and the theore-
ticians are trying to explain and predict (the upper box).

As in other branches of science which have reached a relatively ad-
vanced stage, a perennial problem in high-energy physics is the inability
to observe directly the phenomena of interest. This difficulty of obser-
vation usually is due to some combination of the following reasons:



~ 445 -

i) The fundamental nature of matter on the microscopic level is statis-

ii)

iii)

tical rather than deterministic. One does not predict the outcome
of a given experiment, but only the probabilities of observing dif-
ferent outcomes. (The apparently deterministic behaviour of macro-
scopic objects comes about only because one experimental outcome is
overwhelmingly more probable than all others.)

The increasingly complex theories put forward to explain high-energy
phenomena invoke, more often than not, some unobservable object or
process whose properties determine the (in principle) observable

quantities.

Even the objects which are in principle observable are usually too
small, too fast, or too weak to be detected ''directly' and we are
forced to make use of complicated devices which introduce detection
biases, measurement errors, and background noise, all of which may
be difficult to determine accurately.

iv) The number of independent variables necessary to describe completely

one high-energy event (scattering or decay) with n outgoing particles
is 3n - 4. The problems then arise, especially for large n,

of what choice of independent variables to use, what to do about
the unobserved variables if any, and the general problem of how to

compare two m-dimensional distributions.

In view of the above difficulties, it is a major computational prob-

lem (i) for the theoretical physicist, once he has a theory, to predict

observable distributions, and (ii) for the experimental physicist, given

such a hypothetical physical distribution, to determine what outcome would

result in a particular experimental situation. These two kinds of compu-

tations are denoted on our diagram above by the word '"simulation' to indi-

cate that this is a common and increasingly important technique, although

it is certainly not the only one, and often not the best one.

Notice that the role of simulation can never replace that of the

physicist since it works essentially in the opposite direction. But by

helping him to perform the more straightforward deductive calculations,

it frees him for the more creative inductive work indicated on the dia-

gram.
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SIMULATION AND MONTE CARLO INTEGRATION

Let us define a Monte Carlo calculation as any calculation making
use of random numbers. We will discuss ''randomness' in some detail later,
but for the moment let us consider just a sequence of numbers r; ... T,
each distributed randomly (in the usual classical sense) between zero and
one. Now suppose that the result of the calculation is a number, or set

of numbers, F. We have

F = F(T], To eee rn)

and this we know from statistics to be an unbiased estimate of the inte-

gral
11 1 .
I=ff...fF(X1, X2 oo Xn) Xm d.Xz e d.Xn .
00 0

In this rather formal sense then, all Monte Carlo calculations may be con-
sidered as integrations. But simulation, an example of a Monte Carlo cal-

culation, is integration in a much more direct sense.

Let us define simulation as any calculation involving a series of

n trials (or events), the outcome of each trial being a function of k random

numbers. In this case the calculation involves n + k random numbers in
all, but is clearly equivalent to an integration over a k-dimensional
space, where the estimate of the integral is now the average over the

n points.

3.1 Mathematical foundation of Monte Carlo integration

Consider a function of k variables F(x; ... Xk). We define the ex-
pectation of the function F as

E(F) = jﬁ/.;..J[ F(x1 ... xk) gx; ... xk) dx; ... dxk s
Q

where Q denotes the full range of the x; ... Xy and g(xX; ... xk) is the

probability density function describing the distribution of the x; ... Xy -
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We will be interested in the special case where the x; ... Xy have all
been '"normalized'" to fall into the range 0 < x < 1 and where the
Xy ... Xy are all uniformly distributed, that is g(x; ... x) =1. In

this case,
11 1
B(F) ='/‘j’...'/'F(X1 cos Xk) d.Xl cee dxk ’
0 0 0

so that the expectation is just the mean, or average value of F. Now let
us define the variance as

var(F) = E{F - E(F)}?

which can be written, for our special case, as

var (F) =ff...j{F -EF}? d&x; ... dx -

The variance is thus the mean squared deviation of F from its mean E(F).

Now let us write X the vector x; ... X5 and let Xi represent the
random vector X corresponding to independent, truly random choices for
each x; ... Xy - The law of large numbers then says that, if var(F) is
finite,

n
limit {;11- Z F(Xi)]r = E(F) .
i=1

n->co

Since the quantity in curly brackets above is just the n-point Monte Carlo
estimate of the integral E(F), we can restate the law of large numbers as
follows: the Monte Carlo estimate of the integral of a function F is a
consistent estimator whenever var(F) is finite.

Having seen that the Monte Carlo estimate is consistent, we may now
see that it is unbiased. We recall that an unbiased estimator is one whose
expectation is equal to the true value of the quantity estimated. The
Monte Carlo estimate is the average of n terms, and since the expectation
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of each term is equal to the true value of the integral, the unbiasedness
of the estimate follows trivially from the linearity of the expectation
operator.

It remains now to find the complete distribution of the Monte Carlo
estimate. Unfortunately, this distribution depends on F and on n in a
complicated way which we cannot in general write down for small n. Limit-
ing ourselves to the asymptotic distribution (for n large), we can, how-
ever, use the Central Limit Theorem which says that, given a sequence
of random variables y, from distributions of expectations u; and finite
variances oi , the sum

n
Yn=;yi

will be asymptotically normally distributed, with mean

5,

1=1

=
I

and variance
n
82 = E o2
4 i
i=1

Since each term in a Monte Carlo integration is a random variable from
the same distribution, the estimate

will be asymptotically normally distributed, with mean equal to the true
value of the integral and variance

var(I) = %Var(F) .
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Since the standard error on I [the root-mean-square deviation of I from
E(F)] is the square root of var(I), this gives directly the well-known
1

result that Monte Carlo estimates converge as n 2.

3.2 Statistical efficiency

From the last equation of the preceding section it is clear that any
desired accuracy can be attained in simulation calculations by increasing
the number of trials n to the necessary value. The variance F can be
estimated by the sample variance, giving the required number

n
D (F-TD)°

FZJ - nI?
1= _\i=

- 2 2 ?
g g

i

where o is the desired standard error in I.

For practical calculations, however, one often encounters functions
whose variances are so large that the required n is unreasonable, even
for the fastest computers. The most striking example of this is the
delta function, defined to be zero everywhere except for one infinitely
sharp peak whose integral is unity. It is not a proper mathematical func-
tion since it cannot be defined completely by giving its value everywhere,
but it is of great importance in physics where it is often used to express
laws in the form of constraints, such as the conservation of energy-
momentum. It can be defined as the limit of a normal distribution

—2 2
§(x) = lim N(x,a?) = lim —1— ¢X /20

o0 a>0 ov/2m

The variance of this function (not to be confused with the variance of a
normally-distributed variable) may be calculated straightforwardly

var{N(x,a?)} = Jr N?(x,a2) dx =

-—00

1

oV
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We see, therefore, that the variance of a Gaussian (normal function) is
proportional to the sharpness of the peaking, as expressed by the para-
meter 1/a, and in the limit of the delta function this variance is infinite.
The rule is easily extended to Breit-Wigner (truncated Cauchy) functions,
which are of great importance in high-energy physics and also have vari-

ances which become very large as the peaks become narrow.

Historically, the delta function has been handled by approximating
it by a narrow peak of non-zero width. This means introducing an approxi-
mation into the theory which is essentially different from the approxima-
tion resulting from the statistical fluctuations of Monte Carlo results.
The 'wide delta-function' approximation can lead to completely unphysical
answers unless the results are interpreted carefully. For example, this
approximation may mean allowing momentum and energy conservation to be
violated by a small amount in each event.

The effect of a delta function is to reduce the dimensionality of
the integration space by one. It is clear that, except in the approxima-
tion mentioned above, this integration camnot be handled by Monte Carlo,
but must be performed analytically.

3.3 Variance-reducing techniques

As we have seen, the error on a Monte Carlo estimate is of the form

s =L

/n
where ¢ is the square root of the variance of the function involved, and
n is the number of points or events used. As long as we use truly random
or pseudorandom numbers, there is nothing we can do to increase vn except
to run our programs longer (in the next section we discuss the possibility
of using so-called "quasi-random' numbers to improve the convergence).
The optimization of Monte Carlo solutions consists therefore in reducing
the variance of the sample. A large and growing number of variance-reducing
techniques exist, and rather than try to mention all of them, we will con-
centrate on two techniques felt to be most useful and representative.
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3.3.1 Stratified sampling

It seems intuitively obvious that the random fluctuations in our

Monte Carlo integrations would be reduced if we could somehow assure that

points were more evenly distributed over the space. One clear way of

doing this is to divide the space up into equal cells and to choose an

equal number of points randomly within each cell. Indeed this usually

will improve the variance, but in actual practice the situation is some-

‘what complicated by the following considerations:

i)

i)

iii)

iv)

If we are working in many dimensions the division of the space into
equal hypercubes becomes unwieldy since the minimum number of such
cubes 1is Zk for a k-dimensional space.

If we write down the expression for the variance in the case of
stratified sampling (it is simply a complicated sum of squares of
integrals and integrals of squares) we see that the amount gained --
or in fact whether we gain at all -- depends on the behaviour of

the function, on the way we choose the cells, and on the way we
distribute points among the different cells.

Rather than choosing equal-sized cells, a better way is to choose
them so that the variation of the function is about the same in each
cell. Indeed we will gain if the differences between mean values of
the function in the different cells are greater than the variations
within the cells.

Given the division into cells, one should choose the number of points

.th

in the following way: in the j  cell choose

n; « | 4] ng(x)dx- fg(x) dxl ,
J
b J

A.
J

where Aj represents the volume of the jth cell in the k-dimensional

space.

If nothing is known a priori about the function the only natural way
to choose the cells is to divide the space equally. It can be shown

that if we do this, and if we choose equal numbers of points for each
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cell, we cannot lose by such a stratification (that is, the variance
cannot be larger than for the unstratified estimate). In the worst
case, where the mean value of the function within each cell is the
same, the variance is not changed by the stratification. The next
question is how many cells should we choose? Since we have seen
that we cannot lose by subdividing a cell, we should choose as many
cells as possible. However, if there is only one point per cell,

we no longer have a reliable error estimate since we have no estimate
of the variance within a cell. But we have an upper limit on the
error, namely the error calculated as though the space had not been
stratified.

3.3.2 Importance sampling

We have seen that a large variation in the value of the function F
leads to a large error in the Monte Carlo estimate of its integral. Con-
versely, our simulation calculations will be most efficient when each
trial (event) has nearly the same function value (weight). This can be
arranged by choosing a large number of trials in regions of the sampling
space where the function value is largest and reducing the function
value in this region to compensate for the fact that a larger number of
points was chosen. In this way the "weighted" function becomes more
nearly constant, and the variance is reduced. Such a technique is known
as importance sampling since it consists of increasing the sampling
density in the more important regions.

To apply importance sampling to a function F(X), a function g(X)
must be found such that

X
i) The integral G(X) =J g(X") dX' is known analytically.
ii) The integral G(X) can be inverted (solved for X) analytically.

iii) The ratio F(X)/g(X) is as nearly constant as possible, or at least
has a smaller variance than F(X) alone.

Once such a function has been found, a transformation is made:

F(X) dX » F(X) %%%l ,
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that is, instead of choosing X randomly and uniformly in its range,
choose G randomly and uniformly in the corresponding range, solve for
X, and calculate the new function value as F(X)/g(X). The variance of
the estimate will now be proportional to the variance of the ratio
F(X)/g(X), which should be smaller than that of F(X) alone.

3.4 Limits of integration

One of the fundamental advantages of the Monte Carlo method is that
it can handle easily problems in which the limits of integration are
awkward and interdependent. However, we must be careful about how these
limits are chosen, as the following example illustrates:

I= f f glx,y) dy dx .
X=0 y=0

It is tempting to solve this problem in the following way:

i) choose a random number (xi) between 0 and 1;
ii) choose another random number (yi) between 0 and X:3
iii) take the sum of g(xi,yi), repeating (i) and (ii).

A simple graphical representation of what we have done here shows that it
gives the wrong answer:

While it is true that this procedure would yield points only in the allowed
region (the lower triangle), it would give the same number of points along
each vertical line. This gives a much higher density of points on the left-
hand side than the right-hand side.
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A correct way to integrate the above problem is:

i) choose a random number (xi) between 0 and 1;
ii) choose another random number (yi) between 0 and 1;
iii) if Yi > Xy reject the point;

iv) take the sum of g(xi,yi) over the remaining points.

This method, although correct, has the disadvantage of using only
half the points generated. That is, it is equivalent to integrating over
the whole square, but considering the function value is equal to zero in
the upper triangle. A better way to handle this problem is the follow-
ing:

i) choose two independent random numbers, r;,T;;
ii) set X; = larger of r;,Tr,;
iii) set Y; = smaller of 1,,r2;
iv) sum up g(xi,yi) as before.

Graphically, this is equivalent to choosing points randomly over the
square, then folding the square about the diagonal so that all points fall
into the lower triangle. It is clear that this now results in a constant
density of points without rejecting any points. However, if we think of
the calculation on a large computer, we see that if all points in the
upper triangle were rejected, this would amount to very little extra time
if the time required for the test (is X; greater than yi?) is short com-
pared with the time necessary to evaluate the function. That is, we are
still wasting our time in the upper triangle, but we may only be wasting
a negligible amount of time, even though we are throwing away half the
points.

A third correct method for integrating over the triangle consists in
choosing points as in the wrong method described first, but then weighting
the function values to account for the bias introduced as follows:

i) choose a random number (Xi) between 0 and 1;
ii) choose another random number Cyi) between 0 and X;5
iii) take the sum of in g(xi,yi), repeating (i) and (ii).

This last method will, of course, be superior if the variance of x + g
is smaller than that of g.
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3.5 Comparison with numerical quadrature

The simplest method for numerical integration (not Monte Carlo) is
the trapezoid rule, which consists of dividing the required interval into
n bands and approximating the integral over each band by the area of the
trapezoid inscribed under (or over) the curve. This reduces to estimating
the integral by taking the average value of the function as determined
from n equally-spaced points and multiplying by the total interval. For
large n, we can think of the function as being expressed by a Taylor's
series expansion about each of the n points; then the constant terms and
the first derivative terms will be integrated exactly by the trapezoid
rule, and the largest contribution to the error will come from the second
derivative (constant curvature) terms. This error will be proportional
to the sagittas of the curve segments over each band, and these sagittas
will each be proportional to the square of the distance between successive
points where the function is evaluated. Therefore, if the function is
evaluated at n equally-spaced points, the error on the integral will be
proportional to 1/n® for large n. In fact, if we push the method a little
farther we can obtain even faster convergence. Consider an estimate of an

integral found by using the trapezoid rule at n points:

T, =T+om ") +om ")+ ...,

where I is the '"'true'" value of the integral and ¢(n-2) means an error of
the order of 1/n%, or this may be considered to be the integral of the
third term in the Taylor's series expansion mentioned above. If we make

another estimate based on 2n points we will have:

_ 1
Ton=1*7¢

-2

1 -y
)+Eun)+m
We now consider the following linear combination:

I} 4Tzn B Tn 1 -4
T" = —= = I -7 o(n ) + ... .
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Here the term in 1/n® has dropped out, so that this method will converge
as 1/n*. This process can then be extended in an obvious way in order to
eliminate the 1/n* term, etc.

But rather than extend this method to its limit, we can use the fully
optimized formula due to Gauss, which in fact represents the limit of
this kind of method in the sense that the n-point Gauss formula is exact
for all polynomials up to order 2n - 1.

We remind the reader here that Monte Carlo integration using stand-
ard random numbers converges always as vn. The following table may,
therefore, be established comparing the dependence of errors on number
of points for different methods of numerical estimation of a one-

dimensional integral in order of increasingly fast convergence:

-1
Monte Carlo on~nn ?
. -2
Trapezoid o"nvn
" " =k
Second-order rule ovn
. -2m+1
m-point Gauss rule o vn

This makes the Monte Carlo method look pretty bad, even if we notice
that it is the only one of these for which the error estimate does not

depend on any assumed '"smooth' behaviour of the function.

However, the future for Monte Carlo looks considerably brighter when
we go to multi-dimensional integration. If we modify the above formulae
to hold for integration over k dimensions, we see that the Monte Carlo
expression remains unchanged, whereas for the others the exponent must be
divided by k. This means that Monte Carlo converges faster than the
trapezoid rule in five or more dimensions, and when we go above five di-
mensions the »n-Monte Carlo methods begin to break down completely be-
cause of the outrageous number of points required. As we have seen,
these error fo-nulae are only valid for‘large n (that is, small spacing
between points) which certainly means at least 10 points per dimension,
for example. But 10 points in five dimensions means already 10° points
in the whole space, and this kind of number must be considered as the
limit of the possibilities of today's computers. We remark here that a
complete description of an %-particle final state requires 3% - 4
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parameters, so that for four-body phase space we are already operating
in eight dimensions (although some of these, such as the azimuthal orien-
tatien of the event about the beam direction, may be of no interest).

One would be justified, at this point, in wondering how it can be
that a randem seleectien of poifit can be more efficient than a uniform
or earefully optimized distributi a. Intuitively it seems that most of
the errer in a Monte Carle inté_ -al comes from the non-uniférmity of the
point distribution, and that we could reduce the error by choosing points
more unifermly. In fact. th  is not at all true (but see Section 3.3.1,
stratified sampling) s~ can be seen by considering the Gauss formula,
which is optimum in ene dimensien. The Gauss rule prescribes points which
correspond to the zeros of Legendre polynomials, which are not uniformly
spaced for small n., In many dimensions we always have effectively & small
n, and we have seen that the uniform (rectangular grid) distribution gives
Very poor convergence,

There are metheds which are better than Mente Carle in many dimensions
but these do not correspond to straightforward extensions of good one=
dimensional methods, and in fact no general method is known to be optimum
for n dimensions. The best that has been done in this domain is to es-
tablish limits on the lowest possible error that may be achieved, and it
turns out that Monte Carlo is not very far from these limits. The conclu-
sion is then, that in many dimensions you camnot do much better than

Monte Carlo, but you can do a lot worse.

RANDOM NUMBERS

In mathematical statistics a random variable is simply a variable
which may take on different values. It is not, in general, possible to
predict in advance the value of a random variable; we can only give the
probability that it will take on values in a given range. In the de-
generate case where the probability of taking on a given value becomes
unity, the random variable becomes a certain variable, but otherwise one

cannot say that one variable is, for example, more random than another.

In Monte Carlo studies one often uses the word ''random' to mean
something quite different. Here the term is applied to sequences of

numbers which, once they have been determined, are not at all random in
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the statistical sense, but may have some properties which are similar to
the properties of a truly random sequence. In fact, it is customary to
distinguish three different types of ''random'' sequences, namely:

1) Truly random numbers, random in the statistical sense that at any

given point in the sequence, all numbers are equally probable and
independent of the preceding numbers.

i1) Pseudo-random numbers are generated according to an arithmetic pre-

scription so that each number depends on the preceding one, but in
such a way that any sufficiently short sequence appears to be truly
random in a sense described below.

11i) Quasi-random numbers are not meant to appear random at all, but any

sufficiently long sequence should have the property of being more
advantageous than truly random numbers for the particular problem
being treated.

We have seen that any Monte Carlo calculation involves the use of a
sequence of ''random' numbers; in fact this may be considered as the defi-
nition of a Monte Carlo calculation. The choice of a proper sequence of
"random'' numbers is therefore central to the method, and, in spite of
great progress in the field, this choice is unfortunately not at all
trivial. We shall discuss in more detail the three main classes of

"random'" sequences.

4.1 Truly random numbers

A sequence of truly random numbers is unpredictable and unreproduc-
ible. Such a sequence can only be generated by a random physical process,
for example radioactive decay, thermal noise in electronic devices, cosmic
ray arrival times, etc. If such a physical process is used to generate
the random numbers, then there is no theoretical problem since the theory
of Monte Carlo outlined earlier in these lectures will certainly be valid
provided there is no defect in the physical apparatus which might intro-
duce a bias in the generator.

In practice, however, it turns out to be very difficult to construct
physical generators of this type which are fast enough (one needs typically
hundreds of numbers per second) and at the same time accurate and unbiased.
Faced with these practical difficulties, the development of truly random
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generators has largely been abandoned, and the technology has not ad-
vanced significantly in recent years. We therefore find ourselves in the
unfortunate situation that the truly random numbers demanded by the theory
are not feasible for practical reasons. Two possible ways out of this
dilemma are discussed below.

4.2 Pseudo-random numbers

It is in the field of pseudo-random numbers that recent progress has
been the greatest, but the situation is still far from ideal. The great
advantage with pseudo-random numbers is that calculations may be checked
or compared by regenerating the identical sequence. Also, the pseudo-
random sequences used for large computers are very fast (usually much
faster than is really necessary) and require very little storage and no
special hardware (a slight exception is the generators which can be
initialized by the computer's internal clock, thereby allowing "‘random'
entry points if 'independent'' sequences are desired). However, pseudo-
random generators are plagued by certain fundamental problems:

i) Since each number is generated from the preceding one, the recur-
rence of one number results in the recurrence of an entire sequence.
Each generator is therefore characterized by a certain period and
much of the progress in finding better generators consists in find-
ing generators with longer periods. Nowadays one can generally
achieve the maximum period (limited by the word length in the com-
puter) but for machines like the CDC 6600 this period is so long

that there is no point in going to the limit.

11) Again since each number is generated from the preceding number by a
fixed formula, if any number gj is arbitrarily close to some pre-
ceding number gi, then £j+1 will be arbitrarily close to €i+1‘

Exactly what is meant by arbitrarily close depends on the generator

and some are better than others in this respect.

iii) In order to show that a particular pseudo-random generator is ac-
ceptable, it must be submitted to an infinite number of statistical
tests, which is clearly impossible. In practice the generators
are submitted to increasingly complicated tests until one finds

the lowest order correlation existing (i.e. the simplest test which
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is failed) at which time it is said that the principal correlations
(unrandomness) are understood. It is generally agreed that it is
better to use a generator whose correlations are understood than an
unknown one which may be better. Generally good pseudo-random
generators exist in the libraries of all large computer centers,
but they are not always suitable for all Monte Carlo problems.

iv) The most fundamental problem is how to justify at all the use of
pseudo-random numbers in Monte Carlo calculations, even if the
sequence in question passes all the statistical tests that can be
devised in a finite time. A statistical test after all consists
in forming some function of the random numbers and seeing whether
it lies in a certain acceptable region around the value expected
from a truly random sequence. Since a Monte Carlo estimate is also
a function of the (pseudo-) random numbers, one such ''randomness'
test is to compare the Monte Carlo estimate with the exact value.
But the reason for the calculation of the estimate is that we do
not know the exact value, so that we must accept the estimate as
valid, which is seen to be equivalent to assuming that the addi-
tional statistical test will be passed simply because a certain
number of other tests were passed.

Although I personally tend to be optimistic about the usefulness of
pseudo-random sequences, it is interesting to consider what must be the
extreme pessimistic point of view expressed by Zaremba (see biblio-
graphy) :

"As far as pseudo-random numbers are concerned, the traditional

term 'tests of randomness' is certainly a misnomer. Surely, in

contrast to their name, the object af such tests is not the random
origin of the sequences, since this would amount to testing a hy-
pothesis known to be false ... . The only reasonable object of
such tests can be the verification of those properties of the
sequences concerned which promise a satisfactory accuracy of the
results of computations carried out with their help."

The last sentence of the above quotation suggests a totally dif-
ferent philosophy of ''random' number generation, which consists in

abandoning completely the idea that the sequence should in some sense
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appear to be random. This alternative philosophy is usually referred to

as quasi-Monte Carlo.

4.3 Quasi-random numbers

The principle of quasi-random generators is that certain correlations
are harmless (depending, of course, on the problem) and indeed they can
sometimes be helpful. In fact the development of suitable quasi-random
generators probably constitutes the most important recent progress in
multidimensional numerical integration, since it is only in this way that

-1
one can improve on the n ? convergence of Monte Carlo estimates.

For an integration in k dimensions we require sets of k random num-
bers, each set giving rise to a point in the space. The k numbers within
each set must be uncorrelated, for if any number in a given set depends
on another number in the same set, this restricts the possible combina-
tions, making certain regions of the space inaccessible. However, cer-
tain correlations between successive sets of numbers do not bother us.

For example, if each point is chosen close to the preceding point (an
obvious non-randomness), this does not matter as long as the final

sample is evenly distributed over the space. This is equivalent to saying
that the order in which the points are chosen is of no importance since

this does not normally enter into such calculations.

This leads us to study uniformly-distributed numbers, a subset of
quasi-random numbers which have the property that the density of points
is more uniform than that of truly random numbers. There is a very strong
serial correlation between successive numbers produced by the same
generator, so we need in general k different generators for an integra-
tion in k dimensions. A point in phase space is then chosen by taking

one ''random' number from each of the k generators.

Two different types of quasi-random generators have been studied
in detail and seem well-suited to Monte Carlo integration problems. Each
type has as many different generators as there are prime numbers. Inte-
grals calculated with these generators converge faster than 1/n, for
large n, a considerable improvement over pseudo-random numbers.

th

i) The Richtmyer formula gives, for the i~ '"random' number of the

jth generator:
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rij = iSj, modulo 1 ,

th prime number. This means

where Sj is the square root of the j
that the difference between successive numbers of the same genera-
tor is always Sj or Sj - 1. This also leads unfortunately to
strong short-term correlations (i.e. correlations which go away
as n +~ «) between corresponding numbers produced by different

generators.

11) The Van der Corput formula consists of expressing the integers in
a system of base P, then reversing the digits, preceding them by a
point, and interpreting the resulting numbers as fractions in a
system of base P. P is any prime number. For example, in the
binary system (P = 2):

Decimal | Binary | Y| R cton
n=1 1 0.1 0.5

2 10 0.01 0.25

3 11 0.11 0.75

4 100 0.001 0.125

5 101 0.101 0.625

6 110 0.011 0.375

7 111 0.111 0.875

8 1000 0.0001 0.0625

In spite of the apparent complexity of this method, there is an
algorithm which is simple and quite fast for generating such numbers
(see bibliography) and it is probably superior to the Richtmyer formula
for reasonable sample sizes.

To use either of the above formulas in practical cases where the
sample size is limited to the order of thousands of points, it is found

necessary to reduce the short-term correlation between different genera-
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tors. In order to do this and still retain the uniformity of the indi-
vidual distribution, a shuffling technique is used as follows.

Before the generation of the first point, a buffer is filled with
the first m numbers generated by each of the k generators (m ~ 20). Then
each time a point is to be generated, the k numbers required are chosen
at random one from each set of m in the buffer, and the used members are
replaced in the buffer by the next number generated by each of the k
generators. This assures that eventually all numbers will be used, but
in an order different from that in which they were generated.

THE PROBLEM OF MANY-DIMENSIONAL DISTRIBUTIONS

Having seen what are the fundamental problems in Monte Carlo inte-
gration, one can look still deeper and ask what is the underlying prob-
lem in our scientific method which forces us to use this technique in
the first place. Essentially it is the lack of satisfactory statistical
methods for comparing two multi-dimensional distributions that forces
us to integrate out most of the variables to reduce the dimensionality
of the space either to zero (a cross-section, reaction amplitude, phase
shift, lifetime, etc.), one (a histogram), or two (a scatter-plot).

For the estimation of parameters from experimental data, the usual
maximum likelihood method allows one to use the full multi-dimensional
space with no loss of information and without making unreasonable demands
on computers (except sometimes for a lack of memory space if the amount
of data is large) the power of the maximum likelihood method for esti-
mating parameters is essentially independent of the dimensionality of

the space involved.

For goodness-of-fit tests, however, the situation is radically dif-
ferent. The usual chi-square method is fine for a one-dimensional dis-
tribhtion, but since it requires grouping events into bins of at least
five events each, this method begins to require bigger and bigger boxes
as the dimensionality of the space increases, so that one is essentially
forced to throw away the information contained in the precision if the
measurements. In eight dimensions for example, if the range of each

variable is divided into only two parts, one has already 2® = 256 bins.
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If it is desired to divide each variable into 20 regions, then in only
three dimensions this makes 8000 bins. It is therefore clear that any
method with binning requiring a minimum number of events per bin will

be limited to two or possibly three dimensions in practical cases.

The empty cell test also uses binning but does not require so many
events per bin, and so will be applicable to spaces of somewhat higher
dimensionality, but it is not so powerful. In particular, its power
becomes zero in the limit where there is never more than one event per
bin.

It is possible that tests based on the sample distribution function,
such as the Kolmogorov test, may be extendable to many dimensions, but
as yet no satisfactory formulation of such an extension is known to the
author.

One is tempted to look to the methods of parametric estimation
which are good in many dimensions in order to find a suitable goodness-
of-fit test. Such a method is that of maximum likelihood. Thus we may
consider the value of the likelihood function itself as a goodness-of-
fit statistic. Let f£(X) be the probability density function over the
n-dimensional X-space and let us assume that no parameters have been
estimated from the data. Then the likelihood function L is just the

joint probability density and we may calculate for N events, in the space Q

M=

InL In £(X,)
I=1
E(InL) = N jln £(X) £(X) dx
Q
J' E (In L)’
V.(In L) =N ) [m £ - —x—| £ & .

We may then compare the observed value of the log likelihood with
its expectation and variance as a goodness-of-fit test. Two major dif-
ficulties arise:

i) If parameters have been estimated from the data it is not straight-

forward to calculate the expectation and variance of 1n L.
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ii) The test may not be very powerful. In particular, if we make a
transformation of variables X -+ X'(X) such that £(X') is constant,
V(1n L) becomes zero, and the value of 1n L becomes independent of
the observations, making it in this case a useless test.
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