- 275 -

CONSTRUCTION OF MASS FORMULAS DESIGNED TO BE VALID
FOR NEUTRON-RICH NUCLEI

J.W. Truran and A.G.W. Cameron,

Belfer Graduate School of Science, Yeshiva University, New York, U.S.A.
Goddard Institute for Space Studies, New York, U.S.A.

and E. Hilf,

Physikalisches Imstitut der Universitat Wurzburg, Wurzburg, Germany
Belfer Graduate School of Science, Yeshiva University, New York, U.S.A.

ABSTRACT

A semi-empirical atomic mass formula has been constructed aimed at
providing improved estimates of the masses of meutron-rich nuclei. 1In
addition to the four standard terms whose coefficients are determined
by a least-squares fit to masses - the volume, volume symmetry, surface
and Coulomb energy terms - a number of additional terms have also been
included. Our criteria for the selection of appropriate coefficients
for these terms have included the assumption that the shell corrections
to the reference mass formula should be separable in Z and N and well
behaved. This criterion has allowed us to assign reasonable coefficients
both to a Wigner-type term which predominantly affects the masses of
light nuclei and to a surface symmetry term. A higher order volume
symmetry term has been included as prescribed by Myers and Swiateckil),
and a curvature term of negative sign has been included in order to give
a reasonable fit to the Stanford determinations of nuclear Coulomb
energies. Still higher order volume and surface symmetry terms have been
included with reasonable but arbitrary assignments of coefficients in
order to prevent nuclei with very small charges from having positive
neutron binding emergies out to indefinitely large neutron numbers. It

was found that the 1liquid droplet model formula of Myers and Swiatecki

could not be used in the form suggested by those authors; their

determination of the nuclear symmetry effect in the nuclear interior
suffers from the premature dropping of terms and hence the resulting
truncated mass formula cannot be fitted to masses in a satisfactory

self-consistent fashion.
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INTRODUCTION

We have recently undertaken an extensive investigation of the

2)

dynamics of the rapid neutron capture process ' . These calculations are
dependent in several different ways upon the estimation of masses far
from the valley of beta stability. Such masses determine neutron binding
energies and total beta decay energies in the neutron-rich region.
Furthermore, detailed calculations of the rates of neutron capture and
of beta decay require a reasonably accurate determination of the level
densities in the various nuclei concerned, and it has been found that
such level densities depend sensitively upon the shell corrections to
the mass formu1a3). Because of this level density dependence upon the
shell corrections, one of the principal criteria that we have employed
in developing a new mass formula is the requirement that the nuclear
shell corrections behave reasonably along the valley of beta stability,
where masses are measured, so that we might have greater confidence in
the extrapolations that it is mnecessary to make into the neutron-rich
region far off the beta-stable valley.

Since the introduction of the semi-empirical mass formula by von
Weizsackera? many revised versions have been presented. Some obvious
modifications have involved the correction of various mass formula terms
to take into account the diffuse edge of the nucleus. Attempts have also
been made to introduce higher order symmetry energy terms into the mass
formula. These attempts have been motivated both by the obvious omission
of a surface symmetry term from the original von Weizsacker expression
and, more recently, by an interpretation of the product yield curve
produced in the Mike thermonuclear explosions) as indicating that
neutron binding energies decrease less rapidly in the neutron-rich
region off the valley of beta stability than is predicted by

6)

conventional mass formulas. Cameron and Elkin ° attempted to take this
into account in a rough way by assuming an exponential form for the
symmetry energy contribution to nuclear masses, which in effect
introduced an infinite series of higher order symmetry terms. The choice
of an exponential form amounted to an arbitrary choice of the relative
values of the coefficients of these higher order symmetry terms.

Although such a mass formula has the disadvantage of predicting that
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all nuclei will have positive meutron binding energies, it does have

the advantage that near the valley of beta stability the meutron capture
cross sections calculated on this basis seem to give good agreement
with more recent experimental yields of heavy nuclei from thermonuclear
explosions7).

The shell corrections of Cameron and Elkin6), as well as earlier
expressions derived by Cameron8), were determined based on the
assumption that the total shell corrections for each nucleus can be
written as a sum of two independent shell correction functions for

neutrons and protons:
S(Z,N) = S@Z) + S 1)

These shell corrections are intended to represent differences between
real masses and a reference mass formula due to shell effects. It may
therefore be expected that the shell corrections should increase rather
abruptly beyond a shell closure and then decrease again, having
suitable split between positive and nmegative values. The first backward
differences between the shell corrections, which , apart from a
constant, represent neutron or proton binding energies, should exhibit
a variation of values which roughly sum to zero over a givem shell. This
is what should be considered " good behavior " of the shell corrections.
These expectations are mnot very satisfactorily borme out for the

individual proton and neutron shell corrections determined originally

8) or for those of Cameron and E1kin6). In both instances,

by Cameron
the shell corrections show very large departures from the roughly
systematic distributions just described, but the proton and neutron
shell corrections are anticorrelated in such a way that they sum to
relatively small values along the valley of beta stability despite the
fact that the individual shell corrections may be very large. It is
clear that independent proton and neutron shell corrections which
exhibit this unsatisfactory behavior canmot be used with any degree of
reliability to predict total shell corrections off the valley of beta
stability, since random combinations of two individual shell corrections
can give total shell corrections off the valley of beta stability which

are very large compared to those on the valley of beta stability.

Therefore, one of our major objectives in developing a new mass formula



- 278 -

at this time is to provide ome in which the individual neutron and
proton shell correction functions are well behaved in the manner we have
described. This is essential if we are to be justified in using the
correlation between shell corrections and nuclear level density
parameters found for nuclei along the valley of beta stability as a
basis for calculating level demsities of nuclei far off the valley.

The level demsity correlation derived on the basis of this work is
presented in Section 4.

Tt is clear that smaller correction terms must be added to the
reference mass surface, if improved estimates of nuclear shell
corrections are to be obtained. However, because the actual emnergies
associated with these terms are quite small compared to the magnitudes
of the four dominant liquid drop terms, with the masses to a
considerable degree representing small differences between these larger
terms, it is impossible to determine the coefficients of the smaller
correction terms with any degree of reliability by fitting masses. It
is therefore necessary to adopt subsidiary criteria for the
determination of reasomable values of the coefficients of the smaller
terms. We have used two such criteria; these have been the reasonable
behavior of the meutron and proton shell corrections and the approximate
reproduction of the nuclear Coulomb energy as determined by the Stanford
electron scattering results. In our discussion of the construction of
our final mass formula expression ( Section 3 ), we show how the
behavior of the shell corrections and Coulomb energies can be used in
this manner. We will first describe, in Section 2, some difficulties we

encountered in our attempts to fit the droplet model formula to masses.

STUDIES OF THE DROPLET MODEL FORMULA

Our preliminary attempts to comstruct a mass formula included a
rather extensive investigation of the characteristics of the " droplet
model " formula of Myers and Swiateckil). We believe that their
assumption of the independence of the proton and neutron distributions
represents a realistic approach to the construction of an improved
liquid drop formula. We have encountered difficulties, however, in our

efforts to fit their final mass formula expression to masses.
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The droplet formula contains a total of nine parameters, four of
which are the coefficients of the dominant mass formula terms - the
volume, volume symmetry, surface and Coulomb energy terms. The five
additional coefficients specify various properties of nuclear systems:
these coefficients were determined in the context of a Thomas-Fermi
Model calculation. The droplet model also provides several equations
relating various of these parameters. We have used the Thomas-Fermi
Model formulae and droplet relations as presented by Myers and Swiatecki
and attempted to determine the four remaining liquid drop coefficients
by a least-squares fit to masses. The mass formula resulting from this
fitting procedure contained some unsatisfactory features. Specifically,
the value obtained for the volume symmetry coefficient was rather large
( ~ 50), the calculated Coulomb energies were not in good agreement with
the Stanford scattering results and the residual proton and meutron
shell corrections were not well behaved in the sense we have discussed
previously. We were unable to eliminate these features without
violating the basic droplet model relatioms.

We believe that these difficulties arise largely due to the
premature dropping of terms in the expansion given by Myers and
Swiatecki for the " bulk asymmetry ' parameter, &. In their final
expression for the liquid drop energy, the volume symmetry energy is
given by J 82 where J is the volume symmetry coefficient and the

bulk asymmetry, §, is given by

— 2 —
3 =1+ % 96 Z 1+ % % A"1/3
A5/3 (2)
In this expression I = (A-2Z)/A , C; is the usual Coulomb energy
coefficient and Q is an " effective surface stiffness " coefficient

resulting from the droplet model analysis. A number of higher order
terms have been omitted in this expression for 8 s when we include
these terms, we arrive at the final expression for 8 used in our
preliminary studies:
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The additional parameters included in this expression are H ( the
"surface skin coefficient" ), P ( the "skin-symmetry coefficient” ),
G ( the surface symmetry coefficient ), L ( the "density-symmetry
coefficient" ), M ( the "symmetry anharmonicity coefficient" ) and

the bulk variable e given by

72
1
Au/s %)

2
E=% - 2a,A"Y3 + 13 +cC

where K is the compressibility coefficient and a, is the surface energy
coefficient. The relative importance of these higher order terms is
illustrated below for two nuclei ( Z = 30, A = 64 and Z = 84, A = 216).
D for the various
0.717, H= 9.42, P= 17.55, J= 28.062, G= 45.4, Q= 16.04,
L= 123.53, M= 2.673, K= 294.80 and a,= 18.560 where all are in units of
MeV:

We have used the values quoted by Myers and Swiatecki

parameters: C;

5(30,64)

0.0625 +0.0251 -0.0111 -0.0436 -0.0108 _ ~0.036
1 +0.986 -0.698 -0.675 - 7.41 5 + 0.16 &

(5)

5(84,216) = 0.222 + 0.0260 -0.0139 -0.103 -0.00895 ~ 0.14
]
1 +0.657 -0.465 - 0.300 - 4.94 =+ 0.107 &

The added terms indicated here are clearly important. They lead to
values of the bulk asymmetry, § , which are considerably smaller than I,
thus forcing the volume symmetry energy coefficient, J, to higher values
in the least-squares fits to masses we described above. This sensitivity
of the fitted coefficients to the details of the expansion for 8 is
particularly disturbing when one notes that even the revised expression
for & we have employed meglects some higher order correctioms ( see
Myers and Swiatecki1 , equation 2.15). We have concluded on the basis
of these considerations that a reliable determination of the volume
symmetry coefficient cammot be made for the droplet model in its
published form. We have, nevertheless, made use of a number of the
features of the droplet formula in the comstruction of our mass formula,

as will be elaborated in the following sectiom.
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3. THE MASS FORMULA

The atomic mass formula we have arrived at in this study may be

written in the form

(M-A) = 8.07144 A - 0.78245 Z .

2
+B. A +B I A +8 I A +8 1 A

2/ 3 2 2/3 4 2/3 (6)
+ Y A + v LA + v I A

+ E + S(Z,N) + P(Z,N)

Curvature + EWigner + ECoulomb

where (M-A) is the mass excess in MeV omn the 12C scale of masses
and I = (A-ZZ)éé. We have included the higher order volumi symmetry
terms through I  and the surface symmetry terms through I ; no
reliable estimates are available for the magnitudes of still higher

order terms. The curvature energy is written in the form

- 173
ECurvature % A (7)

where @, is a parameter to be specified. The Wigner energy is written

E))

in the form suggested by Myers and Swiatecki

Egigner = % exp( -6 {I1]) (8)
where o is a coefficient to be determined. S(Z,N) and P(Z,N) are the
total shell and pairing energies, respectively.

The expression for the total Coulomb emergy used in this work is

given by
2 2 1/3 2 4/ 3
= A Z Z
Eoulomb a; 2. +a3Z A +azZ + a _Z_l_/3 9)
A A A

Here, in addition to the usual Coulomb and Coulomb exchange energy

1)

terms, we have i?fluded two terms from the droplet model formula :
2 1/3

the term ag Z A . is a "Coulomb redistribution'' energy correction

and the term asz Z /A is a Coulomb diffuseness emergy contribution, which
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acts to correct the pure Coulomb energy for the effects of a finite

surface. The coefficients of the four terms are given by

a; = 0.8640/ ro
ag = -0.0088869 ( 0.015265+ 0.250)
o Bz
s (10)
ag = -1.50117/r,
a4 =-0.65976/ ro

where 1o is the nuclear radius parameter and Bz is the volume symmetry
coefficient. The numerics for the parameters ag, az and a, have been

1)

taken from the droplet model formula ’. The values for the Coulomb

diffuseness coefficient (az) and the Coulomb exchange coefficient (ag)

6)

are quite consistent with those obtained by Cameron and Elkin ° for a
trapezoidal density model of the nucleus.

Our determination of the various mass formula coefficients has
proceeded in the following mammer. It has been our experience that
meaningful coefficients can be obtained by a least-squares fit to masses
for only the dominant terms in the liquid drop reference formula. The
coefficients of lesser terms can vary dramatically when fits are
performed to restricted groups of nuclei. We have therefore chosen to
determine four of the reference mass formula parameters - the volume
energy coefficient (B,), the volume symmetry emergy coefficient (Bz),
the surface energy coefficient (¥ ) and the nuclear radius parameter

10)

performed for specified values of the remaining parameters ( Bz, Be,

(ro) - by a least-squares fit to experimental masses . These fits are
Y2 Yar and Qﬁ)’ Having thus defined a smooth reference mass surface,
the shell and pairing energies are calculated by fitting the differences
between the liquid drop ﬁasses and the experimental masses. We have
adopted the same procedure as used by Cameron and E1kin6): the shell
corrections are determined independently for each value of Z and N.
While this approach necessitates the determination of a rather large
number of adjustable constants, we believe that the shell correctioms
thus obtained have physical significance since they exhibit a gemerally
smooth and understandable variation with nucleon number between closed
shells.
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The assumption of the independence of the meutron and proton

corrections enables us to write

S(Z,N) + P(Z,N) = C(Z) + C(N) (11)

where C(Z) and C(N) are the total shell-plus-pairing corrections for

proton number Z and neutron number N

C(@) = s(z) + P@)
(12)
cC(N) = S(N) + P(N)
For each nucleus we can therefore write an expression of the form
(M-A)exp. - (M_A)ref. = C() + c(N) (13)

where (M-A)exp. is the experimental mass excess and (M-A)ref. is the
reference (liquid drop) mass excess without correctioms. The total
shell-plus-pairing corrections for each proton and neutron number are
then determined by a least-squares procedure.

With regard to the construction of a mass formula, only the total
proton and neutron corrections defined above are required. We are
interested as well, however, in the comstruction of a nuclear
systematics which will enable us to make predictions of the various
reaction and decay properties of meutron-rich nuclei. For this purpose,
it is convenient to obtain separate shell and pairing energies. The
total corrections determined as outlined above do, in fact, exhibit a
pronounced odd-even oscillation. We have removed the pairing energies
from the total corrections in a systematic manner, insisting on a
generally smooth variation of the S(Z) and S(N).

As stated previously, of the ten parameters in our reference mass
formula only four can be meaningfully determined, in our view, by a
least-squares fit to masses. The higher order volume symmetry
coefficients, the surface symmetry coefficients and the curvature and
Wigner coefficients must be otherwise estimated. Preliminary studies
revealed that the fitting of the reference formula to masses near the

valley of beta stability is quite insemnsitive to three of these
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parameters - the two higher order volume symmetry coefficients (B4 and
Bs) and the higher order surface symmetry coefficient (ya). It is
important to recognize, however, that these three parameters play a
significant role in determining the position of the neutron drip line.
A1l mass formula predictions of the relative stability of superheavy
nuclei are sensitive to these emergy contributions. We have used the
value B4 = -24.545 predicted by the Thomas-Fermi Model parameters of
Myers and Swiateckil) in their large-A expansion for the droplet emergy.
For the coefficient Bg, our choice has been influenced both by the

11)

ratio Be/Bs predicted by the calculations of Weiss and Cameron for
infinite nuclear matter and by a consideration of the relative position
of the drip line for nuclei with low proton numbers: we take Bs = 20.0 .
Finally, we choose s = 40.0, again guided largely by a comnsideration
of the position of the drip line. We emphasize that these choices are
highly uncertain; to the extent that these choices are arbitrary, so is
the position of the drip line predicted by our mass formula.

Our selection of coefficients for the surface symmetry emergy (va),
the Wigner energy (o(W) and the curvature energy (ac) terms has been
guided by several characteristics of the resulting mass formula. The
magnitudes of the surface symmetry energy and the Wigner energy terms
strongly influence the gross variations of the proton and neutron shell
corrections with mass number. The curvature energy term influences the
value obtained for the nuclear radius parameter, Yo, and thus the
total Coulomb enmergy. The nature of these dependences and the reasons
for our choices of these coefficients will be illustrated below. For
the moment, we simply quote our final values: 79z = -70.0, o, = -10.0
and & = -11.50.

The final coefficients enumerated above are collected in Table 1.
The numerical values, as throughout this paper, are given in MeV. For
these values, a least-squares fit to masses was performed for the
following four coefficients: Bo (volume energy), Be (volume symmetry),
Yo (surface energy) and ro(nuclear radius parameter). The coefficients
thus obtained are also given in Table 1. The proton and neutron shell
and pairing corrections determined by the procedure defined earlier
are presented in Tables 2 and 3. Note that pairing corrections are given
only for even nucleon numbers; they are defined to be zero for odd

values of Z and N.
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The proton and neutron shell corrections are plotted as a function
of nucleon number in Fig. 1. Both sets of corrections exhibit a rather
smooth variation with nucleon number; the effects of shell closures at
proton numbers Z = 28, 50 and 82 are readily apparent, as are those for
neutron numbers N = 28, 50, 82 and 126. Note particularly that there is
no gross dependence of these two sets of shell corrections on nucleon
number; that is, neither the proton or the neutron corrections show a
general increase or decrease over the entire range.

We believe that this 'level' behavior of the proton and neutron
shell corrections is significant. We would interpret any alternative
behavior (for example an overall increase in the proton corrections
together with a general decrease of the meutron corrections) as an
indication that the reference formula was somehow skewed relative to
the behavior of the experimental masses. This criterion, as we have
discussed in our introduction, has provided a guide for our
determination of the magnitudes of the Wigner energy and the surface
symmetry energy. The influences of these two terms on the behavior of
the proton and neutron shell corrections are illustrated in Figs. 2 and
3. The corrections shown in Fig. 2 are those obtained by setting the
Wigner energy term to zero. This has resulted in a profound increase in
the proton corrections in the region Z < 30 and a comparable decrease
in the neutron corrections for N < 40. Note that the ordinate for this
figure has been altered by a factor of three relative to Fig. 1. As we
can find no alternative method for leveling these corrections in the
region Z < 30, N < 40, we would argue in the spirit of the semi-
empirical mass formula that the inclusion of a Wigner-type term is
justifiable.

The shell correctioms shown in Fig. 3 are those resulting from our
procedures when the surface symmetry coefficient, 45, is set equal to
zero. This results in a severe distortion of the behavior of both the
proton and the meutron shell correction functions. We should point out
again that the total shell correctioms, S(Z) + S(N), for nuclei mnear the
valley of beta stability are still quite well behaved, as these
corrections have been fit to the experimental masses. For purposes of
extrapolation, however, we believe that such a distorted behavior is

entirely unsatisfactory.
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The surface symmetry energy and the Wigner energy have somewhat
opposing effects on the behavior of the shell correction functiomns,
as indicated by the results in Figs. 2 and 3. The values we have taken
for the coefficients of these two terms therefore represent to some
extent what we have found to be a satisfactory compromise.

Our choice for the coefficient of the curvature emergy term is
governed by Coulomb energy considerations. Myers and Swiatecki1
determined this coefficient to be approximately 9-10 Mev. This value
was obtained in the context of the Thomas-Fermi model as a difference
between small quantities and is therefore, in our opinion, far less
reliable than their other estimates. Keeping all other specified
parameters as before (Table 1), we have constructed mass formulas for
three different choices of the curvature emergy coefficient: o, = -10,
0, and + 10. The behavior of the resulting shell corrections is mot
particularly semsitive to the value of this parameter, as is illustrated
in Fig. 4. While some slight tipping of the proton corrections relative
to the meutron corrections is evident compared to those of our adopted
mass formula shown in Fig. 1, the magnitude of this effect is far less
than we observed when the Wigner and surface symmetry emergy terms
were adjusted.

The influence of the curvature energy term on the determination of
the nuclear radius parameter, ro, and thus on the Coulomb energy, is
significant. This dependence is illustrated in Table 4, where the
Coulomb energies calculated from our formula for the three values of o,
are compared to those deduced from the experimental (Stanford) charge
distributionslz). The fitted mass formula coefficients for the three
cases are also tabulated. For the purposes of these comparisoms, the

calculated Coulomb energies are given by

2 2 1/83 2
= Z 2 Z
ECoulomb ay . + as A + ag

A

(14)

>N

where a;, ap and ag are as given in equations (10). The Coulomb exchange
energy contribution is not appropriate to these comparisoms, and
therefore is omitted. Further, we have adjusted the redistribution

1)

energy term to remove a contribution which is a purely nuclear effect .
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Our motivation for choosing the coefficient o, = -10.0 Mev is apparent
from these comparisons. For this choice, the agreement of our calculated
Coulomb energies with the Stanford results is extremely good. The
maximum deviation is less than 2.5% and, moreover, our determinations
oscillate somewhat about the accepted values. For the choice a, = 0,
the calculated energies are all low by 2-5% while, for o, = +10.0, they
are all low by 6-10%.

The first backward shell correction differences for protons and
neutrons ( 8S(Z) and 8S(N) ) are shown in Fig. 5 and 6 for our final
mass formula. We have also indicated in these figures possible
extrapolations of the shell correction differences to large proton and
neutron numbers, assuming that the next closed shells occur at Z = 114
and N = 184, respectively. These differences are expected to be large
and positive immediately following closed shells and to fall gradually
and smoothly to large negative values immediately preceeding the next
closed shells, assuming the nuclei to be undeformed. This behavior is
quite apparent in our corrections for neutron numbers in the range
21 SN <28, 29 <N £ 50 and 51 <N < 82. The proton shell corrections
similarly show shell features at proton numbers Z = 20, 28 and 50; a
proton shell feature at Z = 40 is also evident.

For deformed nuclei, the 8S(Z) and §S(N) are expected to be small.
This is true for neutron numbers in the ranges 90 S N < 115 and
135 < N € 150 and for proton numbers 60 < Z < 75. The 8S(Z) for protons
in the range 90 < Z < 101 are all negative by approximately 0.5 MeV. It

is unclear to us at this time whether this feature implies that our

reference mass surface is slightly skewed in this region; crude
estimates based on the single-proton levels of Gustafson et 3113)
suggest to us that this may be a real shell feature.

The shell correction differences plotted in Fig. 5 and 6 exhibit a
very different character in regions of nuclear deformation than in
undeformed regions. Such regions of deformation among heavier nuclei
occur only when both the neutron numbers and the proton numbers are
substantially removed from closed-shell values. For purposes of
extrapolation into the neutron-rich regions off the valley of beta
stability, it is clear that some allowance should be made for the

possibility that both undeformed and deformed shell corrections may be
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required for certain ranges of proton or neutron number. Based on the
characteristic behavior of the shell correction differences shown in
Figs. 5 and 6, we have interpolated '"undeformed'" shell corrections for
both proton and neutron numbers associated with the rare-earth region.
These corrections are presented in Table 5. We employ the following
prescription for choosing the appropriate shell correction in these
cases. For proton numbers in the range 60 ¢ Z < 76, the undeformed shell
corrections should be chosen when 122 <N < 130 or 180 <N < 188.
Similarly, for meutron numbers in the range 90 <N < 115, the
undeformed shell corrections should be used when 46 SZ ¢ 54. In both

instances, some smoothing across the transition region may be desirable.

NUCLEAR LEVEL DENSITY SYSTEMATICS

One of the essential ingredients of any nuclear systematics aimed
at estimating the properties of neutron-rich nuclei is the nuclear level
density. Our calculations both of nuclear radiation widths and of the
beta decay lifetimes for meutron-rich nuclei formed in the rapid meutron
capture process require these level density estimates. It is therefore
appropriate for us to consider whether the mass formula we have
constructed provides a basis for a realistic level density systematics.

The formulation of the theory of nuclear level densities based upon

14,15)

the Fermi gas model of the nucleus leads to the following

expression for the nuclear level demsity at high excitation energies:

1/ 2 1/ 2
p(U) = = exp (2(a) ) (15)
1/4 5/4
12 a U

Here p(U) is the total density of nuclear states at an excitation
U above the degenerate state. The level demsity parameter a is

predicted to obey the relation
a/ A = constant (16)
Gilbert and Cameron3) have inferred 'experimental' values of a for a

large number of nuclei by comparing the above expression for p(U)

with experimental determinations of the demsities of neutron resonances.
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The values of a/A thus obtained exhibited features which coincided with
the positions of closed nucleon shells. They demonstrated, further, that
a correlation existed between these values of a/A and the total shell

6)

In the work described above, a distinction was drawn between the

corrections of the mass formula of Cameron and Elkin

deformed and undeformed nuclei: two linear relationships between a/A
and the shell corrections were obtained. The criterion used by Gilbert
and Cameron to define deformed nuclei was rather crude; by their

definition, deformed nuclei are those for which

54 €Z <78 and 86 SN < 122

or (17)
86 <7 < 122 and 130 £ N £ 180

In a subsequent analysis of this problem, Brancazio and Cameron16)
demonstrated that a single relation can be obtained if a deformation
energy correction is subtracted from the shell correction. They
demonstrated further that this deformation energy is roughly
proportional to the distance (number of neutrons or protons) to the
nearest closed nucleon shell. We have determined a similar correlation
between a/A and the total shell corrections calculated for the mass
formula presented in this paper. A least-squares fit to the data

compiled by Gilbert and Cameron gives the following relation
a/A = 0.139 + 0.0102 (S - 0.33D ) (18)

where S is the total shell energy and D is the 'distance' to the
nearest closed nucleon shell. A plot of a/A verses (S-0.33D) is
presented in Fig. 7; the least-squares line is also shown in this
figure. The distinction between deformed and undeformed nuclei is

that due to Gilbert and Cameron ( equations 17).

SUMMARY AND DISCUSSION

The semi-empirical atomic mass formula we have developed in this
paper has two features which we find particularly satisfying: the

shell-correction functions for protons and neutrons show no gross



- 290 -

systematic dependences on nucleon number and the calculated Coulomb
energies are in excellent agreement with those deduced from the Stanford
charge distributions. In order to incorporate these features, we fbund
it necessary to introduce both a Wigner-type energy term and a curvature
energy term of negative sign. Our justification for the inclusion of
these terms is entirely empirical in nature, although a curvature term
of positive sign is in fact predicted for the droplet model formulal).
We are continuing our mass formula studies in an attempt to gain a
better understanding of the nature of these emergy correctionms.

The correlation of the nuclear level density parameter 'a' with
the total shell corrections calculated from our formula is also quite
satisfactory. The deformation energy adjustment to our shell corrections
predicted by the least-squares fitting procedure, AS = -0.33D, is in
excellent agreement with the deformation energy relation determined by
Brancazio and Cameronle), Edeformation= 0.33D. In both cases, D is the
distance to the nearest closed nucleon shell. This improved level
density correlation, together with the more satisfactory behavior of
the shell-correction functions of our mass formula, give us greater
confidence in extrapolations of these systematics into the neutron-rich
regions.

There are still large uncertainties associated with such
extrapolations due to the absence of reliable estimates of the
coefficients of the higher order volume symmetry and surface symmetry
energy terms. As we have discussed in the text, these terms play a
dominant role in the determination of the position of the neutron drip

line. We emphasize, in conclusion, the need for further theoretical

studies of this problem.
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TABLE 1

MASS FORMULA COEFFICIENTS

Specified Coefficients Energy Term Numerical Value
Bs B, I* A - 24.545
Bs B I° A 20.0
Yo v, I? IVE - 70.0
va vy T¢ 43/ 40.0
Qc Qe AV/3 - 10.0
4 o exp(-6 [I]) - 11.50

Fitted Coefficients

Bo Bo A - 17.070591
B B, I% A 36.698710
Yo vo A3 27.184659

To (R=ro AL/3) 1.104825
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TABLE 2

SHELL CORRECTIONS

Z or N X¢A) s(N) or N s@) S (N)

10 2.349 2.439

11 1.936 1.829 41 1.128 0.140
12 1.596 1.419 42 1.007 0.149
13 1.061 0.746 43 0.603 -0.001
14 0.341 -0.082 44 0.013 -0.230
15 -0.040 -0.832 45 -0.635 -0.604
16 0.565 -0.960 46 -1.258 -1.010
17 1.065 -1.006 47 -1.905 -1.570
18 1.536 -1.045 48 -2.562 -2.466
19 1.972 -1.114 49 -3.266 -3.489
20 1.855 -0.900 50 -4.099 -4,552
21 2.043 -0.081 51 -3.615 -4.214
22 1.931 0.334 52 -3.171 -3.375
23 1.652 0.064 53 -2.814 -2.526
24 1.347 ~-0.639 54 -2.337 -1.725
25 0.973 -1.363 55 -1.778 -0.923
26 0.579 -2.138 56 -1.220 -0.164
27 0.159 -2.987 57 -0.694 0.601
28 -0.487 -4.042 58 -0.181 1.316
29 -0.192 -4,001 59 0.323 1.947
30 0.443 -3.582 60 0.624 2.482
31 0.932 -3.120 61 0.841 2.971
32 1.387 -2.677 62 0.904 3.398
33 1.810 -2.259 63 0.906 3.737
34 1.969 -1.778 64 0.930 3.979
35 2.067 -1.315 65 0.919 4,183
36 2.064 -0.944 66 0.934 4,374
37 1.825 -0.599 67 0.941 4.517
38 1.539 -0.285 68 0.978 4.605
39 1.251 -0.020 69 0.982 4.539
40 0.957 0.121 70 1.083 4.375
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TABLE 2 (continued)

SHELL CORRECTIONS

Z or N s(z) SO Z or N S(z) s(N)
71 1.201 4.043 101 -3.499 0.727
72 1.281 3.672 102 -3.042 0.574
73 1.189 3.250 103 0.436
74 0.963 2.776 104 0.320
75 0.781 2.254 105 0.264
76 0.738 1.715 106 0.397
77 0.696 1.151 107 0.507
78 0.119 0.463 108 0.405
79 -0.619 -0.237 109 0.346
80 -1.265 -1.031 110 0.369
81 -1.898 -1.850 111 0.397
82 -2.431 -2.722 112 0.403
83 -1.326 -1.663 113 0.379
84 -0.268 -0.724 114 0.184
85 0.737 0.035 115 -0.226
86 1.451 0.786 116 -0.737
87 2.138 1.587 117 -1.305
88 2.307 2.145 118 -1.950
89 2.221 2.669 119 -2.565
90 2.041 2.680 120 -3.126
91 1.827 2.488 121 -3.721
92 1.239 2.243 122 -4.393
93 0.747 1.969 123 -5.082
9% 0.214 1.778 124 -5.921
95 -0.263 1.663 125 -6.712
96 -0.778 1.487 126 -6.853
97 -1.272 1.325 127 -5.592
98 -1.800 1.148 128 -4.413
99 -2.302 0.962 129 -3.333

100 -2.846 0.843 130 -2.413
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TABLE 2 (continued)

SHELL CORRECTIONS

Z or N s(z) S (N) Z or N s@) S (N)
131 -1.582 146 1.449
132 -0.966 147 1.596
133 -0.421 148 1.712
134 -0.123 149 1.851
135 0.228 150 1.949
136 0.543 151 2.044
137 0.874 152 2.155
138 1.059 153 2.307
139 1.181 154 2.621
140 1.186 155 3.096
141 1.029
142 1.029
143 1.153
144 1.227
145 1.330



PAIRING CORRECTIONS
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TABLE 3

Z or N P(2) P(N) or N P(Z) P(N)

10 -2.200 -2.400

12 -2.120 -2.358 72 -0.714 -1.254
14 -1.981 -2.057 74 -0.799 -1.310
16 -1.491 -1.462 76 -0.840 -1.171
18 -1.450 -1.592 78 -0.726 -1.092
20 -1.701 -1.528 80 -0.815 -1.062
22 -1.344 -1.470 82 -0.715 -0.713
24 -1.349 -1.310 84 -0.788 -0.822
26 -1.397 -1.316 86 -0.793 -0.843
28 -1.311 -1.265 88 -0.663 -0.968
30 -1.161 -1.279 90 -0.705 -1.117
32 -1.201 -1.256 92 -0.711 -0.999
34 -1.449 -1.285 94 -0.561 -0.877
36 -1.331 -1.440 96 -0.69%4 -0.844
38 -1.272 -1.517 98 -0.683 -0.889
40 -1.198 -1.486 100 -0.501 -0.729
42 -1.340 -1.456 102 -0.491 -0.706
b4 -1.407 -1.471 104 -0.623
46 -1.287 -1.336 106 -0.511
48 -1.334 -1.341 108 -0.773
50 -1.307 -1.278 110 -0.662
52 -1.128 -0.821 112 -0.808
54 -1.152 -0.814 114 -0.889
56 -1.139 -1.095 116 -0.930
58 -1.138 -1.147 118 -0.771
60 -1.115 -1.295 120 -0.751
62 -1.070 -1.281 122 -0.835
64 -1.096 -1.245 124 -0.658
66 -1.123 -1.197 126 -0.607
68 -0.901 -1.227 128 -0.657
70 -0.933 -1.291 130 -0.695
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TABLE 3 (continued)

PATRING CORRECTIONS

Z or N P(Z) P(N) Z or N P(2) P(N)
132 -0.457 152 -0.654
134 -0.345 154 -0.557
136 -0.452
138 -0.648
140 -0.681
142 -0.416
144 -0.545
146 -0.482
148 -0.481
150 -0.611
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TABLE 4

COULOMB ENERGY COMPARISONS

NUCLEUS E (Stanford) E (Calculated) - E (Stanford) / E. (Stanford)
(MeV) *
o, = 10 o =0 o, = -10
20 Ca*® 78 -0.0676 -0.0204 0.0243
o5 VO1 100 -0.0998 -0.0520 -0.0062
o9 CO°7 130 -0.0841 -0.0343 0.0137
2o Int1® 360 -0.1060 -0.0538 -0.0024
51 Sb'22 380 -0.0990 -0.0461 0.0059
v AUt 790 -0.1053 -0.0512 0.0023
a5 B1%°° 840 -0.0886 -0.0333 0.0214

FITTED COEFFICIENTS

Volume Energy -15.021 -16.046 -17.071
Volume Symmetry Energy 34.025 35.371 36.699
Surface Energy 14.877 21.024 27.185
Nuclear Radius Parameter 1.2517 1.1739 1.1048

* Adopted value:
this mass formula
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TABLE 5

UNDEFORMED SHELL CORRECTIONS

PROTONS NEUTRONS
Z S(z) N S(N)
60 0.773 90 3.123
61 1.174 91 3.513
62 1.532 92 3.845
63 1.853 93 4.118
64 2.135 94 4.338
65 2.373 95 4.504
66 2.568 96 4.617
67 2.721 97 4.678
68 2.829 98 4.688
69 2.871 99 4.646
70 2.844 100 4.554
71 2.749 101 4.429
72 2.586 102 4.279
73 2.453 103 4.101
74 2.045 104 3.892
75 1.667 105 3.655
76 1.219 106 3.391
107 3.100
108 2.782
109 2.438
110 2.066
111 1.667
112 1.241
113 0.788
114 0.309
115 -0.200
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SHELL CORRECTION DIFFERENCE (MEV)
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Fig. 5
Shell-correction differences for protoms

plotted as a function of proton number.
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